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Abstract

The mojarras (Eucinostomus) are a widespread group of coastal fishes of controversial tax-
onomy because of similarities in their external morphology. In the present study, we assessed
the genetic diversity of species and populations of Eucinostomus using DNA barcodes using a
systematic and phylogeographic context. In total, 416 COI sequences of all valid Eucinostomus
representatives were analysed based on public databases and collected specimens from the
north-eastern coast of Brazil (Western South Atlantic). Several cases of misidentification
were detected in the barcode dataset (E. argenteus, E. harengulus, E. gula, E. dowii and E. jone-
sii) that could account for the taxonomic issues in this genus. In contrast, we identified four
molecular operational taxonomic units (MOTUs), with divergence above 2% in the Western
Atlantic, that correspond to cryptic forms within E. argenteus, E. harengulus, E. gula and E.
melanopterus. These data suggest that Plio-Pleistocene events (rise of the Panama isthmus,
Amazonas outflow and sea-level fluctuations) played a major role in the diversification of
mojarras. While subtle morphological differences have been used as proxies to discriminate
Eucinostomus species, the genetic data proved to be efficient in differentiating them and
revealing potentially undescribed taxa. Therefore, we recommend that further taxonomic
studies in mojarras should incorporate DNA-based evidence.

Introduction

The apparent weakness of geographic barriers over large distances in marine environments
hinders the identification of cladogenesis and several cases of cryptic lineages might remain
overlooked (Rocha, 2003; Luiz et al., 2012; Da Silva et al., 2016). Moreover, considering
that speciation processes might take place without major changes in morphology, the actual
number of species might be underestimated when external body features are analysed in iso-
lation (Winker, 2005). Failure of species diagnosis has a particularly negative impact on eco-
nomically important species in fisheries where distinct morphotypes putatively related to a
single species might encompass multiple evolutionary units (Mayden, 1997; Winker, 2005;
Da Silva et al., 2018).

The mojarras (genus Eucinostomus, family Gerreidae) comprise 11 nominal taxa (Froese &
Pauly, 2019) widespread in the Western Atlantic (WA; seven species) and Eastern Pacific (EP;
four species) that have commercial relevance to local fisheries. These fish are found in coastal
areas, including estuaries and hypersaline lakes because of their high osmoregulation adapt-
ability (Nelson et al., 2016). Morphologically, they are characterized by dorsal compression,
protractile mouth, smooth gill bones, cycloid scales on the head and ctenoid scales over the
body (Nelson et al., 2016). From a systematic viewpoint, the genus Eucinostomus is considered
one of the most problematic genera of coastal fishes from the New World since their putative
interspecific morphological traits are subtle and usually overlapped, while their evolutionary
interrelationships remain poorly known (Matheson & McEachran, 1984; De La
Cruz-Agüero & Galvan-Magana, 1993; De La Cruz-Agüero, 2013). Because of their controver-
sial taxonomy, some species in this group, such as Ulaema lefroyi (E. lefroyi), are regarded as
inquirendae (Nelson et al., 2016). In addition, other taxonomic methods such as cytogenetic
analyses have been inefficient in discriminating mojarra species (Calado et al., 2014).

The difficulties in recognizing Eucinostomus species based on traditional taxonomy were
recently reported in a wide study of DNA barcoding in fish species from north-eastern
Brazil, WA (Brandão et al., 2016). These authors verified that 82 specimens of mojarras
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morphologically identified as Eucinostomus melanopterus or only
to the genus level (Eucinostomus sp.) encompassed five molecular
units with deep genetic divergence, representing E. melanopterus
(N = 5), E. lefroyi (N = 7), E. gula (N = 2), E. harengulus (N = 64)
and E. jonesii (N = 4). Moreover, this work represented the first
report about the occurrence of E. harengulus and E. jonesii in
north-eastern Brazil.

The accurate diagnosis of taxa is a key step to biodiversity con-
servation (Bickford et al., 2007). The utilization of mitochondrial
markers such as the Cytochrome c oxidase subunit I (COI) as
DNA barcodes has been particularly useful in the identification
of cryptic species and in the resolution of taxonomic uncertain-
ties, with several examples in fishes (Ferreira et al., 2014; Hyde
et al., 2014; Winterbottom et al., 2014; Barreira et al., 2016;
Nirchio et al., 2018). This approach has also been improved
over the last decade by the incorporation of distinct algorithms
to test the hypothesis of evolutionary independent lineages and
to avoid synonyms in the dataset (Brown et al., 2012; Puillandre
et al., 2012; Zhang et al., 2013; Luo et al., 2018).

Considering the problematic systematics, the wide range of
mojarras and the efficiency of DNA-based identification, we
assessed the genetic diversity of all Eucinostomus representatives
with available COI sequences throughout most of their geographic
distribution. Based on distinct analytical methods, including spe-
cies delimitation algorithms, we reviewed their systematic rela-
tionships within a phylogeographic context, providing evidence
of overlooked phylogenetic diversity and variation in the range
of evolutionary units, with emphasis in the WA.

Materials and methods

Sampling

A total of 400 COI sequences of Eucinostomus, comprising 11
recognized taxa were analysed: E. argenteus (N = 90), E. cf. gula
(N = 6), E. currany (N = 7), E. dowii (N = 6), E. entomelas
(N = 10), E. gracilis (N = 2), E. gula (N = 49), E. havana (N = 2),
E. harengulus (N = 88), E. jonesii (N = 86), E. lefroyi (N = 11)
and E. melanopterus (N = 20), as well as other sequences named
as Eucinostomus sp. (N = 23). These sequences were downloaded
from the public datasets, for example Bold Systems and GenBank
(NCBI) (supplementary material 1). We also added 16 specimens
of mojarras, E. argenteus (N = 1), E. gula (N = 8), E. jonesii
(N = 2), E. lefroyi (N = 5), collected in the state of Rio Grande
do Norte (05°05′26′′S 36°16′031W′′), north-eastern Brazilian
coast, that were identified according to Woodland (2006). Fish
were collected by gillnets and euthanasia was accomplished by
immersion in cold water for 10–15 min. Afterwards, muscle tis-
sues were removed from each individual and stored in ethanol
at −20 °C (Blessing et al., 2010).

DNA isolation, amplification and sequencing

Total DNA was isolated from stored muscle tissues, using the
DNeasy kit (QIAGEN). A fragment of 645 base pairs (bp) of
the COI gene was amplified via PCR using the primers VF2_t1
(5′TGTAAAACGACGGCCAGTCAACCAACCACAAAGACAT-
TGGCAC3′) and FishR2_t1 (5′CAGGAAACAGCTATGACACT-
TCAGGGTGACCGAAGAATCAGAA3′) as described by Ward
et al. (2005). The reactions encompassed 12 μl of 2× Taq master
mix (Vivantis), 2 μl of template DNA solution at 40 ng μl−1,
0.5 μl of each primer (10 mM) and ultrapure water to a final vol-
ume of 25 μl. The PCR steps (adapted from Ward et al., 2005)
included a first denaturation at 95°C for 2 min, 35 cycles at
94°C (30 s), 57°C (30 s) and 72°C (2 min), plus a final extension
at 72°C for 7 min. The PCR products were purified with

ExoSap IT enzymatic system (Affimetrix). The sequencing of
COI fragments was carried out using the BigDyeTM Terminator
v 3.1 Cycle Sequencing Ready Reaction kit (Applied
Biosystems) using the M-13 initiator followed by reading in ABI
3130 automatic sequencer (Applied Biosystems).

The electropherograms were checked and edited in the soft-
ware Geneious (Kearse et al., 2012), followed by visual inspection
of consensus sequences for final edition adjustments. In addition,
the COI sequences were uploaded and deposited in the BOLD
platform under the project ‘Assessing the genetic diversity of spe-
cies Eucinostomus – EUCI’, being automatically assigned to a
Barcode Index Number – BIN (group of sequences that should
correspond to a single taxon), following the analytical procedures
of Ratnasingham & Hebert (2013). Afterwards, these sequences
were aligned with those available in Bold Systems and GenBank
by using the ClustalW method.

Phylogenetic and distance analyses

Phylogenetic reconstructions were carried out based on
Maximum likelihood (ML) and Bayesian inference (BI). The
best evolutionary model for both ML and BI trees was HKY + I
as indicated in the software PartitionFinder (Lanfear et al.,
2012). Branch support in ML analysis was based on 1000 boot-
strap replicates using RAxML (Stamatakis et al., 2012). In the
case of BI, ultrametric trees following the Yule Speciation prior
model were generated in the software BEAST 1.8.4 (Drummond
& Rambaut, 2007), based on 20 million generations with sam-
pling at every 2000 generations. The convergence of Markov
chains was inspected in Tracer 1.6 (Drummond et al., 2012).
All values of Effective Sample Size (ESS) were above 200. Based
on 10% of burn-in, the remaining trees were used to obtain a con-
sensus tree and the branch support was based on the posterior
probability values.

Based on BI and ML results, we calculated the genetic distance
of each cluster with support values higher than 1 of probability or
95% of bootstrap to build a Neighbour-joining (NJ) tree in the
software MEGA6 (Tamura et al., 2013) using the Kimura 2-par-
ameter (K2P) evolutionary model as identified by the Barcode
of Life initiative (www.boldsystems.org). All trees were visualized
using FigTree v. 1.4.1 (Rambaut & Drummond, 2009).

Species delimitation methods

To establish a potential threshold among Eucinostomus species,
we built a distance matrix based on the K2P model using the
function sppDistMatrix available in the R package SPIDER
v1.3–0 (Brown et al., 2012). Based on this matrix, we created a
density object with the minimum local function which disregards
any previous knowledge about the species identity to indicate
potential thresholds to infer intra- and interspecific variation
levels (Brown et al., 2012). We also used three widely used algo-
rithms for species delimitation from molecular data: the Bayesian
Poisson Tree Process (bPTP) (Zhang et al., 2013), the generalized
mixed Yule-coalescent model (GMYC) (Pons et al., 2006) and the
Automatic Barcode Gap Discovery (ABGD) (Puillandre et al.,
2012).

The bPTP method was carried out in the web server <http://
species.h-its.org/ptp/> using as input a non-ultrametric tree
based on ML inference. This analysis was performed with
500,000 generations with sampling at every 500 generations and
10% of burn-in. The GMYC was implemented in the web server
<http://species.h-its.org/gmyc/>, based on an ultrametric tree
obtained in BEAST (Drummond et al., 2012).

The ABGD was carried out based on the pairwise genetic dis-
tances (based on p-distance, K2P and Jukes–Cantor models). The
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analysis was done using a gap width value of 1.0 for all distances
using the software available in <http://wwwabi.snv.jussieu.fr/
public/abgd/>. The congruence among the delimitation of
MOTUs was evaluated by comparing the clusters inferred from
each algorithm.

Population analysis

Haplotype networks were built in the software Popart (Leigh &
Bryant, 2015) using the Median-joining network algorithm to elu-
cidate the genealogical relationships of E. argenteus and E. gula,
because both species encompassed a high number of sequences
from distinct localities throughout most of their range.

Results

The final alignment of COI sequences comprised 593 bp. Insertions,
deletions or stop codons were absent, indicating that all sequences
correspond to functional COI genes and not to putative pseudo-
genes or nuclear mitochondrial DNA segments (numts).

Phylogenetic analyses combined with distance methods and
tools of molecular identification were helpful in identifying 34
potentially misidentified sequences in the analysed dataset of
Eucinostomus, related to E. argenteus, E. harengulus, E. jonesii,
E. dowii and E. gula (see supplementary material 2). The genetic
variation in these samples ranged from 0.2–1.7%. Therefore, these
sequences were reallocated to their respective groups and analysed
according to their actual taxonomic classification to avoid biased
evolutionary inferences. Sequences with divergence above 2%,
which did not fit into any of the described taxonomic species of
Eucinostomus were included with the acronym ‘cf.’. They are: E
cf. argenteus, E. cf. melanopterus, E. cf. harengulus and E. cf. gula.

The BI and ML analyses recovered 15 MOTUs distributed into
highly supported clades 1/>95, as follows: E. jonesii, E. dowii,
E. cf. argenteus, E. harengulus, E. cf. harengulus, E. gracilis,
E. gula, E. cf. gula, E. entomelas, E. argenteus, E. lefroyi, E. mela-
nopterus, E. cf. melanopterus, E. currani and E. havana (Figure 1).
The species delimitation algorithms (GMYC, bPTP, BINs and
ABGD) also separated these clusters, besides revealing four add-
itional MOTUS within E. gula, E. argenteus, E. melanopterus
and E. harengulus (Figure 1). However, only the barcode index
(BINs) was not found for E. cf. harengulus, since these sequences
are only available in NCBI.

According to the distance method based on the K2P evolution-
ary model, the highest genetic distance was observed between
E. havana and E. argenteus (21.8%), while the lowest value was
detected between E. cf. melanopterus and E. melanopterus
(2.9%). Two sequences erroneously assigned to E. argenteus
were closely related to E. harengulus with 3.3% genetic divergence,
being thus referred to as E. cf. harengulus. The highest values of
intraspecific genetic variation were observed in E. gula (1.6%)
and E. cf. gula (1.2%), while values close to 0% were observed
in most of the Eucinostomus representatives (Table 1). The thresh-
old potential from intra- to interspecific variation in mojarras as
inferred by the minimal local function using Spider was estab-
lished as 2.7% (Figure 1). This value was in agreement with the
species delimitation algorithms where sequences with genetic
distances above 2.7% were recovered as distinct MOTUs.

Haplotype networks based on the most representative taxa
with information about their geographic origin (E. argenteus
and E. gula) revealed two haplogroups within each. The hap-
logroups composed of E. argenteus + E. cf. argenteus and
E. gula + E. cf. gula were separated by 103 mutation steps (genetic
distance = 20.7%) and 23 mutation steps (genetic distance =
4.4%), respectively (Figure 2). Particularly within E. argenteus/
E. cf. argenteus, the range of each haplogroup corresponds to
the Caribbean and Brazilian provinces.

Discussion

Besides identifying cryptic diversity, DNA barcoding analyses
have been particularly effective in detecting synonyms and
misidentifications among fish (Ferreira et al., 2014; Hyde et al.,
2014). Accordingly, the pairwise divergence in COI sequences
of Eucinostomus associated with comparative tools (BLASTn
and Species Level Barcode Records) and phylogenetic inferences
detected several cases of misidentification in the sequences avail-
able from Bold Systems and GenBank, as observed in E. argenteus,
which has four BINs representing different species with the same
morphological identification. It is possible to observe that two of
these BINs include the species E. jonesii, E. dowii, E. harengulus
and Eucinostomus sp. as well as a possible cryptic lineage for
the coast of Brazil. Two clusters were also found for E. gula,
E. melanopterus and E. harengulus species. For the latter
sequences are only available on GenBank (see supplementary
material and Figure 1). Furthermore, some sequences were

Fig. 1. Species delimitation using GMYC, bPTP, ABDG and BINs within Eucinostomus. The density related to the genetic distances among representatives of the
genus Eucinostomus is shown below on the left side.
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Table 1. Matrix of genetic distance based on K2P model among Eucinostomus species

Distance between species

Species Distance within species HAR HAR1 JON GUL GUL1 ARG ARG1 ENT DOW HAV CUR LEF MEL MEL1 GRA

HAR 0.007 *

HAR1 0.007 0.033 *

JON 0.003 0.116 0.120 *

GUL 0.016 0.144 0.134 0.138 *

GUL1 0.012 0.151 0.141 0.143 0.044 *

ARG 0.004 0.197 0.182 0.181 0.167 0.161 *

ARG1 0.001 0.139 0.121 0.127 0.171 0.173 0.207 *

ENT 0.001 0.165 0.164 0.150 0.175 0.165 0.103 0.181 *

DOW 0.001 0.128 0.117 0.110 0.159 0.158 0.185 0.117 0.157 *

HAV n/c 0.203 0.183 0.185 0.211 0.201 0.218 0.207 0.190 0.190 *

CUR 0.001 0.177 0.168 0.203 0.182 0.180 0.163 0.178 0.206 0.206 0.215 *

LEF 0.004 0.152 0.145 0.146 0.162 0.175 0.165 0.155 0.155 0.166 0.207 0.176 *

MEL 0.005 0.178 0.167 0.194 0.209 0.203 0.193 0.200 0.193 0.202 0.202 0.135 0.175 *

MEL1 0.001 0.132 0.169 0.191 0.185 0.187 0.204 0.198 0.198 0.198 0.202 0.178 0.178 0.029 *

GRA 0.000 0.170 0.127 0.135 0.129 0.142 0.182 0.168 0.132 0.132 0.192 0.151 0.151 0.182 0.174 *

HAR, E. harengulus; HAR1, E. cf. harengulus; JON, E. jonesii; ARG, E. argenteus; ARG1, E. cf. argenteus; GUL, E. gula; GUL1, E. cf. gula; CUR, E. currani; MEL, E. melanopterus; MEL1, E. cf. melanopterus; DOW, E. dowii; ENT, E. entomelas; GRA, E. gracilis.
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identified only at genus level. In general, these sequences are
derived from reports about larvae and juveniles of Caribbean
fish without any previous information about COI sequences for
comparative analysis, thus hindering their precise identification
(Valdez-Moreno et al., 2010; Weigt et al., 2012). Indeed, even
the morphological identification of adult stages in Eucinostomus
species is still under debate (Matheson & McEachran, 1984; De
La Cruz-Agüero & Galvan-Magana, 1993).

Another issue commonly observed in studies using DNA bar-
codes is the restricted range of sampling from putative widespread
taxa (Ward et al., 2005; de Ribeiro et al., 2012; Brandão et al.,
2016). This issue restrains further biogeographic inferences,
including the potential detection of phylopatric evolutionary
lineages (Neves et al., 2016). In this sense, the phylogenetic and
species delimitation analyses carried out in the present study
were particularly informative in assessing the actual diversity in
Eucinostomus, since 15 distinct lineages (MOTUs) were clearly
identified. Four MOTUs were related to cryptic forms in the for-
mal taxa E. argenteus, E. gula, E. melanopterus and E. harengulus
from the Western Atlantic (Caribbean and Brazilian provinces).
Moreover, the tree topologies suggest distinct evolutionary histor-
ies for these lineages (Figure 1), as also supported by their high
genetic diversity (20.7% for E. argenteus, 4.4% for E. gula, 3.3%
for E. harengulus and 2.9% for E. melanopterus).

Similarly, molecular studies in distinct animal groups have
shown the remarkable isolation of Caribbean lineages when com-
pared with other regions (De Biasse et al., 2016; Fields et al., 2016;
Hurtado et al., 2017). Furthermore, recent reports have revealed
that the biogeographic patterns in fishes from the Brazilian
Province are quite heterogeneous, with growing evidence for
high levels of endemism according to body size, dispersal routes
and environmental features (Argolo et al., 2018; Pinheiro et al.,
2018). Therefore, some of these vicariant effects could be respon-
sible for the distinction among the lineages within the complex
E. argenteus. In the Caribbean province, the great biodiversity
reflects ancient and recent patterns of circulation and topography
from the Miocene, when the Americas were not yet connected.
Climatic changes during this period conditioned the opening
and closing of currents at different depths that modified the

circulation pattern, and influenced global climate changes during
the Pliocene (Williams & Duda, 2008; Williams et al., 2013;
Thacker, 2017). In addition, change in the flow of the Amazon
on the north coast of South America between 10–6 mya and
closure of the Isthmus of Panama between 5.5–3.6 mya might
have, although temporarily, affected other taxa, such as E. gula,
E. melanopterus and E. harengulus. Therefore, major diversifica-
tion events during the Miocene–Pliocene could have become
more and more accentuated during Pleistocene sea level fluctua-
tions, leading to population isolation and divergence of cryptic
MOTUs in E. cf. argenteus, E. cf. melanopterus, E. cf. gula and
E. cf. harengulus (Lambeck & Chappell, 2001; Müller et al., 2008).

It should also be pointed out that the divergence between the
cryptic lineages in E. argenteus was seven times higher than that
established as the threshold from intra- to interspecific variation
(2.7%). Similar cases of deep variation in COI sequences have also
been reported in marine fish such as Scorpaena nonata (18%;
Landi et al., 2014), lantern fishes (17–25%; Pappalardo et al.,
2015), Gonostomatidae, Sternoptychidae and Myctophidae (16–
23%; Kenchington et al., 2017). In fact, E. argenteus is a controver-
sial taxon within Eucinostomus, being regarded as a putative species
complex (Matheson & McEachran, 1984). Moreover, the present
data diagnosed that most of misidentified sequences in public data-
sets are related to E. argenteus, bringing more noise to their taxo-
nomic status that remains to be resolved. Besides these aspects,
the close relationship between the cryptic lineages of E. argenteus
from the Atlantic in relation to E. entomelas and E. downi from
the Pacific (∼10–12% of divergence) is also intriguing. This pattern
reinforces the role of the Panama isthmus in cladogenetic events of
the ichthyofauna from the Eastern Pacific and Western Atlantic
(Bacon et al., 2015; O’Dea et al., 2016; Thacker, 2017).

In Eucinostomus gula a different scenario was observed. Even
though the sampled region of E. gula overlaps with the cryptic
lineages of E. argenteus, the genetic difference between the
lineages in the former is 50% higher than the threshold of 2.7%
for interspecific distinction, suggesting a more recent evolutionary
history for the cryptic lineages of E. gula. The close relationship
between both lineages in this formal taxon indicates a recent
expansion of their range in the Brazilian Province.

Fig. 2. Map and haplotype network based on COI sequences in populations of E. gula, E. cf. gula, E. argenteus and E. cf. argenteus throughout their range in the
Western Atlantic. The bars over lines indicate the number of mutations between the haplotypes.
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The lack of shared haplotypes in the complex E. gula provides
strong evidence for phylogeographic disjunction caused by allop-
atry. Therefore, E. gula is likely to encompass two Evolutionary
Significant Units (ESUs), one of them representing an undescribed
taxon since a divergence of 4.4% was observed in COI sequences in
relation to the other lineages. Putatively, a Brazilian endemic lin-
eage evolved in allopatry as a result of major past vicariant events
previously mentioned for E. argenteus. A similar pattern was also
reported in Chromis multilineata (Rocha et al., 2008), a reef fish
species of similar distribution to E. gula.

The hypothesis of allopatric evolution of distinct lineages in
E. gula could be weakened by the lack of geographic isolation of
both lineages. However, the evidence combined with reciprocal
monophyly, geographic coexistence and lack of a shared haplo-
type reinforces that both ESUs of E. gula in the tropical
Atlantic evolved in allopatry followed by dispersal that deter-
mined their secondary contact. This evidence combined with
reciprocal monophyly, geographic coexistence and lack of a
shared haplotype reinforces that both ESUs of E. gula in the
tropical Atlantic evolved in allopatry followed by dispersal that
determined their secondary contact.

Unfortunately, the lack of georeferenced data in the other cryp-
tic lineages of E. melanopterus and E. harengulus restrains further
inferences about their diversification processes. Therefore, further
phylogeographic studies focusing on both formal taxa are highly
recommended.

Final remarks

Our phylogenetic analyses combining species molecular delimita-
tion in a biogeographic context revealed new operational taxo-
nomic molecular units (MOTUs) in Eucinostomus species from
the Atlantic. Based on extensive barcode datasets we were able
to recover the intraspecific diversity for this genus, estimating a
potential threshold of 2.7%. Our data also corroborated the effi-
ciency of COI markers in detecting cryptic lineages of mojarras
that could be useful in resolving the taxonomic uncertainties in
this fish group by providing a database to further support integra-
tive approaches involving morphology, ecological features and
other molecular markers. Subtle and overlapped morphological
differences have served as proxies for species discrimination
within Eucinostomus, however, in future systematic studies are
strongly encouraged to consider genetic evidence as well.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0025315419001206.
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