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An exact relation is derived between scalar dissipation due to molecular diffusivity and
the randomness of stochastic Lagrangian trajectories for flows without bounding walls.
This ‘Lagrangian fluctuation–dissipation relation’ equates the scalar dissipation for
either passive or active scalars to the variance of scalar inputs associated with initial
scalar values and internal scalar sources, as these are sampled backward in time by
the stochastic Lagrangian trajectories. As an important application, we reconsider the
phenomenon of ‘Lagrangian spontaneous stochasticity’ or persistent non-determinism
of Lagrangian particle trajectories in the limit of vanishing viscosity and diffusivity.
Previous work on the Kraichnan (Phys. Fluids, 1968, vol. 11, pp. 945–953) model of
turbulent scalar advection has shown that anomalous scalar dissipation is associated
in that model with Lagrangian spontaneous stochasticity. There has been controversy,
however, regarding the validity of this mechanism for scalars advected by an
actual turbulent flow. We here completely resolve this controversy by exploiting the
fluctuation–dissipation relation. For either a passive or an active scalar advected by any
divergence-free velocity field, including solutions of the incompressible Navier–Stokes
equation, and away from walls, we prove that anomalous scalar dissipation requires
Lagrangian spontaneous stochasticity. For passive scalars, we prove furthermore
that spontaneous stochasticity yields anomalous dissipation for suitable initial scalar
fields, so that the two phenomena are there completely equivalent. These points are
illustrated by numerical results from a database of homogeneous isotropic turbulence,
which provide both additional support to the results and physical insight into the
representation of diffusive effects by stochastic Lagrangian particle trajectories.

Key words: turbulent flows, turbulent mixing, turbulence theory

1. Introduction
A fundamental feature of turbulent flows is the enhanced dissipation of kinetic

energy. It was suggested by Taylor (1917) that kinetic energy can ‘be dissipated in
fluid of infinitesimal viscosity’. This idea that turbulent dissipation might become
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independent of molecular viscosity at sufficiently high Reynolds numbers was
pursued further by Kolmogorov (1941a,b,c) and Onsager (1945, 1949) in developing
their theories of turbulence. The physical phenomenon is sometimes called the
turbulent ‘dissipative anomaly’ or even the ‘zeroth law of turbulence’, although it
is, of course, no ‘law’ but rather an experimentally observed phenomenon which
is still only partially understood theoretically. For current empirical evidence from
laboratory experiments and numerical simulations, see, e.g., Sreenivasan (1998),
Pearson, Krogstad & van de Water (2002) and Kaneda et al. (2003), whose data are
all consistent with energy dissipation in the bulk of turbulent flows being essentially
independent of viscosity. Similar phenomena are expected for other turbulent systems,
in particular for scalar fields advected by a turbulent fluid, such as concentrations
of dyes or aerosols, temperature fluctuations, etc. It was suggested by Taylor (1922)
that diffusion by turbulence should depend ‘little on the molecular conductivity
and viscosity of the fluid’, and the asymptotic independence of the dissipation rate
of scalar fluctuations from the molecular transport coefficients was a fundamental
assumption in the Kolmogorov-style theories of scalar turbulence developed by
Obukhov (1949) and Corrsin (1951). A very comprehensive review of the empirical
evidence for this hypothesis on scalar dissipation is contained in the paper of Donzis,
Sreenivasan & Yeung (2005), whose compilation of data is again consistent with
scalar dissipation in the bulk of turbulent flows being insensibly dependent on
molecular transport coefficients at sufficiently high Reynolds and Péclet numbers.
This phenomenon still requires a complete theoretical explanation.

Fundamental new ideas on the Lagrangian origin of turbulent scalar dissipation
arose from mathematical work of Bernard, Gawȩdzki & Kupiainen (1998), which
was carried out in the Kraichnan (1968) model of synthetic turbulence. In this model,
the advecting velocity is a Gaussian random field that has Kolmogorov-type scaling
of increments in space but a white-noise correlation in time. It was shown in the
Kraichnan model that the dissipative anomaly for a decaying passive scalar is due
to a remarkable phenomenon called spontaneous stochasticity (Chaves et al. 2003).
Simply stated, Bernard et al. (1998) showed that Lagrangian particle trajectories
become non-unique and stochastic in the infinite-Reynolds-number limit for a fixed
initial particle position and a fixed velocity realization, due to the spatial roughness of
the advecting velocity field. More precisely, they showed that at very large Reynolds
and Péclet numbers, when the velocity field is smooth but approximates a ‘rough’ field
over a long range of scales, small stochastic perturbations on Lagrangian trajectories
due to molecular diffusivity lead to persistent randomness over any finite times
even as the perturbations vanish. This effect is due to the explosive (superballistic)
dispersion of particle pairs in a turbulent flow predicted by Richardson (1926),
which leads to loss of memory of initial particle separations or of amplitudes of
stochastic perturbations. For excellent reviews of this and related studies on the
Kraichnan model, see Falkovich, Gawȩdzki & Vergassola (2001), Kupiainen (2003)
and Gawȩdzki (2008).

Since this pioneering work, however, recurrent doubts have been expressed
concerning the validity of these results for real hydrodynamic turbulence. For
example, Tsinober (2009, § 5.4.5) has argued that in real fluids ‘The flow field is
smooth. In such flows “phenomena” like “spontaneous stochasticity” and “breakdown
of Lagrangian flow” do not arise and one has to look at different more realistic
possibilities.’ This is a simple misunderstanding, because spontaneous stochasticity
is a phenomenon that appears for smooth velocity fields that merely appear ‘rough’
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Fluctuation–dissipation relation 155

over a long range of scales. More serious questions have been raised concerning the
approximation of a white-noise temporal correlation in the Kraichnan model. In a
recent detailed comparison of passive scalars in the Kraichnan model and in fluid
turbulence, Sreenivasan & Schumacher (2010) have remarked that ‘It is still unclear
in the Kraichnan model as to which qualitative and quantitative differences arise from
the finite-time correlation of the advecting flow.’ This latter paper also discussed some
of the challenges in extending results for the Kraichnan model to an understanding
of the energy cascade in Navier–Stokes turbulence.

The principal contribution of the present paper is a new approach to the theory
of turbulent scalar dissipation based upon an exact fluctuation–dissipation relation
for scalars. Our new relation expresses an equality between the time-averaged scalar
dissipation and the input of scalar variance from the initial data and interior scalar
sources, as these are sampled by stochastic Lagrangian trajectories. This relation
makes it intuitively clear that scalar dissipation requires non-vanishing Lagrangian
stochasticity. In fact, using our new relation, we can prove the following fact
rigorously. Away from boundaries and for any advecting velocity field whatsoever,
spontaneous stochasticity of Lagrangian particle trajectories is sufficient for anomalous
dissipation of passive scalars, and necessary for anomalous dissipation of both passive
and active scalars. Thus, there is no possible mechanism for a scalar dissipative
anomaly in such situations other than spontaneous stochasticity. In this way, we
completely resolve the controversies on the applicability of the dissipation mechanisms
in the Kraichnan model to scalars in hydrodynamic turbulence, at least away from
walls. The importance of our exact fluctuation–dissipation relation (FDR) is not
limited to analysis of anomalous scalar dissipation and it is valid even when scalar
dissipation may vanish as ν, κ→ 0. In general, our relation gives a new Lagrangian
viewpoint on dissipation of scalars, both active and passive. As such, it generalizes
some previously derived relations, such as that of Sawford, Yeung & Borgas (2005)
and Buaria, Yeung & Sawford (2016) for scalars forced by a mean scalar gradient
and the exact balance relations for stochastic scalar sources which are Gaussian white
in time (Novikov 1965). In two companion papers (Drivas & Eyink 2017; Eyink &
Drivas 2017; hereafter denoted Parts II and III), we show how the FDR extends also
to wall-bounded domains, with either fixed-scalar (Dirichlet) or fixed-flux (Neumann)
conditions for the scalar field, and we apply the FDR to the concrete problem of
Nusselt–Rayleigh scaling in turbulent Rayleigh–Bénard convection.

The detailed contents of the present paper are as follows. In § 2, we first derive
the stochastic representation of scalar advection and our FDR in the case of flows
in domains without walls. In § 3, we review the notion of spontaneous stochasticity,
with numerical verifications from a database of homogeneous isotropic turbulence. In
§ 4, we establish the connection of spontaneous stochasticity with anomalous scalar
dissipation. In the summary and discussion § 5 we discuss both the implications
for turbulent vortex dynamics and other Lagrangian aspects of turbulence, and
also the outstanding challenges, including that of relating spontaneous stochasticity
to anomalous dissipation of kinetic energy. Three appendices give further details,
including rigorous mathematical proofs of all of the results in the main text. These
deal with the connection between spontaneous stochasticity and anomalous dissipation
(appendix A), the relation of our scalar FDR to previous results in the literature
(appendix B) and discussion of numerical methods employed (appendix C).
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2. Lagrangian FDR
We consider in this paper turbulent fluid flows in finite domains without walls.

A relevant numerical example is direct numerical simulation (DNS) of turbulence
in a periodic box. A set of examples from nature is provided by large-scale flows
in thin planetary atmospheres, which can be modelled as 2D flows on a sphere.
Mathematically speaking, the results in this section apply to fluid flows on any
compact Riemannian manifold without boundary, merely replacing the Wiener process
with the Brownian motion on the manifold whose infinitesimal generator is the
Laplace–Beltrami operator (Ikeda & Watanabe 1989). For simplicity of presentation,
we derive the relation only for periodic domains.

Scalar fields θ (such as temperature, dye or pollutants) transported by a fluid with
velocity u are described by the advection–diffusion equation

∂tθ + u · ∇θ = κ1θ + S, (2.1)

where S(x, t) is a source field and κ > 0 is the molecular diffusivity of the scalar.
The work of Bernard et al. (1998) employed a stochastic representation of the
solutions of this equation, which is known as the Feynman–Kac representation in the
mathematics literature (Oksendal 2013) and as a stochastic Lagrangian representation
in the turbulence modelling field (Sawford 2001). This stochastic approach is the
natural extension to diffusive scalars of the Lagrangian description developed for
‘ideal’ scalar fields without diffusion advected by smooth velocities. We presently
discuss this representation only for domains Ω without boundaries, as assumed also
by Bernard et al. (1998), and in Part II we describe the extension to wall-bounded
domains. We shall further discuss in these papers only advection by an incompressible
fluid satisfying

∇ · u= 0, (2.2)

so that the ideal advection term formally conserves all integrals of the form
Ih(t) =

∫
Ω

ddx h(θ(x, t)) for any continuous function h(θ). It should be noted that
the representation applies in any space dimension d, with most immediate physical
interest for d= 2, 3, of course.

The stochastic representation of non-ideal scalar dynamics involves stochastic
Lagrangian flow maps ξ̃ ν,κt,s (x) describing the motion of particles labelled by their
positions x at time t to random positions at earlier times s< t. The physical relevance
of the backward-in-time particle trajectories can be anticipated from the fact that
the advection–diffusion equation (2.1) mixes (averages) the values of the scalar field
given in the past and not, of course, the future values. Mathematically, the relevant
stochastic flows are governed by the backward Itô stochastic differential equations,

d̂sξ̃
ν,κ
t,s (x)= uν(ξ̃ ν,κt,s (x), s)ds+

√
2κ d̂W̃s, ξ̃ ν,κt,t (x)= x. (2.3)

Here, W̃s is a standard Brownian motion and d̂s denotes the backward Itô stochastic
differential in the time s. For detailed discussions of backward Itô equations and
stochastic flows, see Kunita (1997) and Friedman (2006). For those who are familiar
with the more standard forward Itô equations, the backward equations are simply
the time reverses of the forward ones. Thus, a backward Itô equation in the time
variable s is equivalent to a forward Itô equation in the time ŝ = tr − s reflected
around a chosen reference time tr. (We note that the difference between forward
and backward Itô equations is not essentially the direction of time in which they
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Fluctuation–dissipation relation 157

are integrated. Rather, the difference has to do with the time direction in which
those equations are adapted (Kunita 1997; Friedman 2006). Thus, a forward Itô
differential b(W̃t) dW̃t is discretized in time as b(W̃tn)(W̃tn+1 − W̃tn) for tn+1 > tn,
with the increment W̃tn+1 − W̃tn statistically independent of W̃t for t 6 tn. Instead, a
backward Itô differential b(W̃t)d̂W̃t is discretized as b(W̃tn)(W̃tn − W̃tn−1) for tn > tn−1,
with W̃tn − W̃tn−1 statistically independent of W̃t for t> tn. The distinction only matters
when, as in our (2.4), the differential of W̃s is multiplied by a stochastic function
of W̃.) The noise term involving the Brownian motion in (2.3) is proportional to the
square root of the molecular diffusivity κ . The velocity field uν is assumed to be
smooth so long as the parameter ν > 0. In the case of greatest physical interest when
uν is a solution of the incompressible Navier–Stokes equation, then ν represents the
kinematic viscosity and we assume, for simplicity of presentation, that there is no
blowup in these solutions. (See Rezakhanlou (2014) for weak solutions.) Because
(2.3) involves both ν and κ , its random solutions ξ̃ ν,κt,s have statistics that depend
upon these parameters, represented by the superscripts. To avoid too heavy a notation,
we omit these superscripts and write simply ξ̃t,s unless it is essential to refer to the
dependence upon ν, κ . It should be noted that when κ = 0 and uν remains smooth,
then ξ ν,0t,s (x) is no longer stochastic and gives the usual reverse Lagrangian flow from
time t backward to the earlier time s< t.

The stochastic representation of the solutions of the advection–diffusion equation
follows from the backward differential

d̂sθ(ξ̃t,s(x), s) = [(∂s + uν · ∇− κ∆)θ ](ξ̃t,s(x), s) ds+
√

2κ d̂W̃s · ∇θ(ξ̃t,s(x), s)

= S(ξ̃t,s(x), s) ds+
√

2κ d̂W̃s · ∇θ(ξ̃t,s(x), s), (2.4)

using the backward Itô formula (Kunita 1997; Friedman 2006) in the first line and
(2.1) in the second. Integration over time s from 0 to t gives

θ(x, t)= θ0(ξ̃t,0(x))+
∫ t

0
S(ξ̃t,s(x), s) ds+

√
2κ
∫ t

0
d̂W̃s · ∇θ(ξ̃t,s(x), s), (2.5)

where θ0 represents the initial data for the scalar at time 0. Because the backward Itô
integral term in (2.5) averages to zero, one obtains

θ(x, t)=E
[
θ0(ξ̃t,0(x))+

∫ t

0
S(ξ̃t,s(x), s) ds

]
, (2.6)

where E denotes the average over the Brownian motion. Equation (2.6) is the desired
stochastic representation of the solution of the advection–diffusion equation (2.1). It
should be noted that the reverse statement is also true, that the field θ(x, t) defined a
priori by (2.6) is the solution of (2.1) for the initial data θ0. For a simple proof, see
Eyink & Drivas (2015b, § 4.1), which gives the analogous argument for the Burgers
equation.

To see that this stochastic representation naturally generalizes the standard
Lagrangian description to non-ideal scalars, we observe that the scalar values along
stochastic Lagrangian trajectories θ(ξ̃t,s(x), s) are, for S≡ 0, martingales backward in
time. This means that

E[θ(ξ̃t,s(x), s)|{W̃τ , r< τ < t}] = θ(ξ̃t,r(x), r), s< r< t, (2.7)
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where the expectation is conditioned upon knowledge of the Brownian motion over
the time interval [r, t]. Thus, the conditional average value is the last known value
(going backward in time). This is the property for diffusive flow, which corresponds to
the statement for diffusionless smooth advection that θ is conserved along Lagrangian
trajectories, or that θ(ξt,s(x), s) is constant in s. The proof is obtained by integrating
the differential (2.4) over the time interval [s, t] to obtain

θ(ξ̃t,s(x), s)= θ(x, t)−
√

2κ
∫ t

s
d̂W̃τ · ∇θ(ξ̃t,τ (x), τ ) (2.8)

and then exploiting the corresponding martingale property of the backward Itô integral
(Kunita 1997; Friedman 2006). It is important to emphasize that a martingale property
like (2.7) does not hold forward in time, which would instead give a solution of the
negative-diffusion equation with κ replaced by −κ < 0. Thus, the backward-in-time
martingale property (2.7) expresses the arrow of time arising from the irreversibility
of the diffusion process.

The main result of this paper is a new exact FDR between scalar dissipation due to
molecular diffusivity and fluctuations associated with stochastic Lagrangian trajectories.
To state the result, we introduce a stochastic scalar field

θ̃ (x, t)≡ θ0(ξ̃t,0(x))+
∫ t

0
S(ξ̃t,s(x), s) ds, (2.9)

which, according to (2.6), satisfies θ(x, t)= E[θ̃ (x, t)] when averaged over Brownian
motions. (It should be noted that, for all s< t, the quantity θ̃ (x, t; s)= θ(ξ̃t,s(x), s)+∫ t

s S(ξ̃t,r(x), r) dr is a martingale backward in time, by the same argument as used
above for S= 0.) Thus, θ̃ (x, t) in (2.9) represents the contribution to θ(x, t) from an
individual stochastic Lagrangian trajectory as it samples the initial data θ0 and scalar
source S backward in time. Using this definition and (2.6), we can rewrite (2.5) as

θ̃ (x, t)−E[θ̃ (x, t)] =−
√

2κ
∫ t

0
d̂W̃s · ∇θ(ξ̃t,s(x), s). (2.10)

Squaring this equation and averaging over the Brownian motion gives

Var[θ̃ (x, t)] = 2κ
∫ t

0
dsE[|∇θ(ξ̃t,s(x), s)|2], (2.11)

where ‘Var’ on the left-hand side denotes the stochastic scalar variance in the average
over the Brownian motion, and on the right-hand side we have used the Itô isometry
(see Oksendal 2013, § 3.1) to evaluate the mean square of the backward Itô integral.
If we now average in x over the flow domain Ω , use the fact that the stochastic flows
ξ̃t,s with condition (2.2) preserve volume, and divide by 1/2 we obtain

1
2
〈Var θ̃ (t)〉Ω = κ

∫ t

0
ds〈|∇θ(s)|2〉Ω . (2.12)

This is our exact FDR. The quantity on the right-hand side is just the volume-averaged
and cumulative (time-integrated) scalar dissipation and the quantity on the left-hand
side is (half) the stochastic scalar variance. The relation (2.12) thus represents a
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balance between scalar dissipation and the input of scalar fluctuations from the initial
scalar field and the scalar sources, as sampled by stochastic Lagrangian trajectories
backward in time.

It is important to emphasize that the origin of statistical fluctuations in our relation
(2.12) is not that assumed in most traditional discussions of turbulence, i.e. random
ensembles of initial scalar fields, of advecting velocity fields or of stochastic scalar
sources. Our FDR (2.12) is valid for fixed realizations of all of these quantities. The
fluctuating quantity θ̃ (x, t) which is defined in (2.9) and which appears in our (2.12) is
an entirely different object from the conventional ‘turbulent’ scalar fluctuation θ ′(x, t).
The latter is usually defined by θ ′ := θ − 〈θ〉, where the scalar mean 〈θ〉 is taken to
be an ensemble or space/time average. Instead, the origin of randomness in θ̃ (x, t)
is the Brownian motion in the stochastic flow equation (2.3). In special cases, e.g.
a dye passively advected by a turbulent flow, this mathematical Wiener process has
direct significance as the description of a physical Brownian motion of individual dye
molecules in the liquid (Saffman 1960; Buaria et al. 2016). In general, however, the
Wiener process is simply a means to model the effects of diffusion in a Lagrangian
framework. For example, for a temperature field, there are no ‘thermal molecules’
undergoing physical Brownian motion.

Because our FDR is valid for fixed realizations of initial scalar fields, of advecting
velocity fields or of scalar sources, we are free to average subsequently over random
ensembles of these objects. In this manner, we recover from (2.12) as special cases
some known results. For example, when the scalar source is a random field with zero
mean and delta-correlated in time,

〈S̃(x, t)S̃(x′, t′)〉 = 2CS(x, x′)δ(t− t′), (2.13)

then we recover the steady-state balance equation for the scalar dissipation,

〈κ|∇θ |2〉Ω,∞,S =
1
V

∫
Ω

ddx CS(x, x), (2.14)

where the average on the left-hand side is over space domain Ω , an infinite time
interval and the random source S̃. This is the standard result usually derived for
Gaussian random source fields as an application of the Furutsu–Donsker–Novikov
theorem (Novikov 1965; Frisch 1995). We derive it instead as a consequence of a
general steady-state FDR,

〈κ|∇θ |2〉Ω,∞ =

∫ 0

−∞

dt〈〈S̃L(0)S̃L(t)〉TE,Ω〉∞, (2.15)

where the random variable S̃L(x, s) = S(ξ̃0,s(x), s) arises by sampling a single
realization of the source S along stochastic Lagrangian trajectories, 〈·〉TE,Ω denotes
the truncated correlation function (covariance) in the average over Brownian motion
and space domain, and 〈·〉∞ an infinite-time average with respect to the release time
0 of stochastic particles. Further averaging of (2.15) over random ensembles of S
with delta covariance (2.13) then gives the steady-state balance (2.14). For details,
see appendix B. Similar relations hold for freely decaying scalars with no sources
but random initial scalar fields. For example, when the initial scalar has a uniform
random space gradient, θ̃0(x)= G̃ · x with isotropic statistics

〈G̃G̃
T
〉G =G2I, (2.16)
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then we recover a relation of Sawford et al. (2005) and Buaria et al. (2016),

κ

∫ t

0
ds〈|∇θ(s)|2〉Ω,θ0 =

1
4

G2E1,2
〈|ξ̃

(1)
t,0 − ξ̃

(2)
t,0 |

2
〉Ω, (2.17)

where the 1, 2 averages are taken over two independent ensembles of Brownian
motion. We delay the derivation of the special cases (2.14), (2.15), (2.17) to
appendix B, since the proofs require additional material which will be introduced in
subsequent sections.

It should be noted, finally, that the result (2.11) provides a spatially local FDR,
which we may write in the form

1
2t

Var[θ̃ (x, t)] = 〈E[κ|∇θ(ξ̃t,s(x), s)|2]〉t, (2.18)

where, on the right-hand side, 〈·〉t denotes an average over s in the time interval [0, t],
carried out along stochastic Lagrangian trajectories moving backward in time from
space–time point (x, t). It follows that at short times the local scalar variance exactly
recovers the local scalar dissipation,

lim
t→0

1
2t

Var[θ̃ (x, t)] = κ|∇θ(x, 0)|2. (2.19)

A substantial spatial correlation between (1/2t)Var[θ̃ (x, t)] and εθ(x, t)= κ|∇θ(x, t)|2
should persist for relatively short times t. On the other hand, in the long-time limit,
the local scalar variance becomes space–time-independent and equals

lim
t→∞

1
2t

Var[θ̃ (x, t)] = 〈κ|∇θ |2〉Ω,∞ for all x ∈Ω. (2.20)

To see that (2.20) should be true, one can note that the random variables ξ̃t,s(x) ∈
Ω for each fixed x are ergodic random processes in the time variable s for κ > 0.
Because of incompressibility of the velocity field and the ergodicity of the stochastic
Lagrangian flow, the variables ξ̃t,s(x) will be nearly uniformly distributed over Ω at
times s 6 t − τ , where τ is a characteristic scalar mixing time. This time τ will be
at most of the order L2/κ, where L is the diameter of the domain, and thus finite for
κ > 0, but usually much shorter because of advective mixing by the velocity field. For
any positive integer n,

lim
t→∞

1
2t

Var[θ̃ (x, t)] = lim
t→∞

1
t

∫ t−nτ

0
dsE[κ|∇θ(ξ̃t,s(x), s)|2], (2.21)

since the corrections are vanishing as O(nτ/t). By choosing an n sufficiently large but
fixed as t→∞, we can make the right-hand side arbitrarily close to

lim
t→∞

1
t− nτ

∫ t−nτ

0
ds〈κ|∇θ(ξ , s)|2〉Ω = 〈κ|∇θ(ξ , s)|2〉Ω,∞, (2.22)

where the space–time average 〈·〉Ω,∞ on the right-hand side is over ξ ∈ Ω and s ∈
[0,∞). Since limt→∞ (1/2t)Var[θ̃ (x, t)] is independent of the choice of n, we obtain
(2.20). Of course, here we have assumed that all of the various infinite-time averages
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exist, as they shall (at least along subsequences of times tk→∞) if the space-averaged
scalar dissipation remains a bounded function of time.

It should be noted that if the scalar is freely decaying from bounded initial data
θ0, then the variance on the left-hand side of (2.20) is also bounded. In this case, the
long-time-averaged scalar dissipation rate tends to zero, which comes as no surprise.
In order to have a non-vanishing long-time dissipation, the scalar must be continually
supplied to the system so that the variance of θ̃ (x, t) grows linearly in time. For
example, a scalar source S(x, t) within the flow domain can provide the necessary
scalar input. In such a case, the variance of θ̃ (x, t) grows proportionally to time t
at long times because of the cumulative contribution from the scalar source S in the
time integral

∫ t
0 S(ξ̃t,s, s) ds, and the long-time average scalar dissipation rate matches

the mean input rate of the scalar. In fact, the expression on the right-hand side of
(2.15) arises after dividing by t the variance of this time integral of S and then taking
the limit t→∞. The linear growth of the variance and the expression in (2.15) are
central-limit-theorem results based on the statistical independence of the flow maps
ξ̃t,s over widely separated intervals of time [t, s].

3. Spontaneous stochasticity of Lagrangian trajectories
We now specialize in this section to the sourceless case S ≡ 0, in order to make

contact with the work of Bernard et al. (1998) on spontaneous stochasticity and
anomalous scalar dissipation. The stochastic representation (2.6) simplifies in this
case to

θ(x, t)=E[θ0(ξ̃
ν,κ
t,0 (x))] =

∫
ddx0 θ0(x0)pν,κ(x0, 0|x, t), (3.1)

where we have introduced the backward-in-time transition probability

pν,κ(x′, t′|x, t)=E[δd(x′ − ξ̃ ν,κt,t′ (x))], t′ < t (3.2)

for the stochastic flow. As already noted, the stochastic flow preserves volume when
the velocity field is divergence-free. In terms of the transition probability, this means
that ∫

pν,κ(x′, t′|x, t) ddx= 1, (3.3)

where det(∂ ξ̃ ν,κt,t′ (x)/∂x) = 1 is used to write δd(x′ − ξ̃ ν,κt,t′ (x)) = δd(x − (ξ̃ ν,κt,t′ )
−1(x′))

and perform the integral over x. It should be noted that if the limit κ→ 0 is taken
with ν fixed (infinite-Prandtl-number limit), then the stochastic flow (3.2) becomes
deterministic and

pν,0(x′, t′|x, t)= δd(x′ − ξ ν,0t,t′ (x)), t′ < t, (3.4)

which corresponds to a single deterministic Lagrangian trajectory passing through
position x at time t.

In the Kraichnan model of turbulent advection, it was shown by Bernard et al.
(1998) that the joint limit ν, κ → 0 with Pr = ν/κ fixed is non-deterministic and
corresponds to more than one Lagrangian trajectory passing through space–time point
(x, t). We remind the reader that the Kraichnan model of turbulent advection replaces
the Navier–Stokes solution with a realization drawn from an ensemble of Gaussian
random fields uν with mean zero 〈uν〉 = 0 and covariance satisfying

〈[uνi (x+ r, t)− uνi (x, t)][uνj (x+ r, t′)− uνj (x, t′)]〉 =Dν
ij(r)δ(t− t′) (3.5)
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for a spatial covariance function satisfying Dν
ij(r)=Dν

ji(r), ∂Dν
ij(r)/∂rj = 0, and

Dii(r)∼

{
D1rξ , `ν� r� L,
D2r2, r� `ν,

(3.6)

for some 0< ξ < 2, with the effective ‘dissipation length’

`ν = (D1/D2)
1/(2−ξ). (3.7)

It should be noted that D2∝ 〈|∇uν|2〉 and in real turbulence would be proportional to
ε/ν, where ε is the viscous energy dissipation. Hence, D2→∞ or `ν→ 0 with D1
fixed is the analogue for the Kraichnan model of the infinite-Reynolds-number limit
for Navier–Stokes turbulence. In fact, one can introduce a ‘viscosity’ parameter ν for
the Kraichnan model with units of (length)2/(time), so that `ν = (ν/D1)

1/ξ . For any
ν > 0, the velocity realizations are spatially smooth, but in the limit ν→ 0, they are
only Hölder continuous in space with exponent 0 < ξ/2 < 1. It is well known that
for such ‘rough’ limiting velocity fields the solutions of the deterministic initial-value
problem

dξ(s)/ds= u(ξ(s), s), ξ(t)= x (3.8)

need not be unique and, if not, form a continuum of solutions (e.g. see Hartman 2002).
In the Kraichnan model, it has been proved in the double limit with both ν→ 0 and
κ→ 0 that the transition probabilities tend to a limiting form

p∗(x′, t′|x, t)= lim
ν,κ→0

pν,κ(x′, t′|x, t). (3.9)

It is important to stress here that no average is taken over u in defining these
transition probabilities, but only an average over Brownian motions in the stochastic
flow equations (2.3), while the velocity realization is held fixed. (It would be less
ambiguous to write them as pν,κu (x′, t′|x, t), with u denoting the fixed flow realization,
but this would lead to an even heavier notation.) Most importantly, the limiting
transition probabilities for the Kraichnan model are not delta distributions of the
form (3.4), but non-trivial probabilities over an ensemble of non-unique solutions
of the limiting ordinary differential equation (3.8). This remarkable phenomenon is
called spontaneous stochasticity. See Bernard et al. (1998) and the later papers of
Vanden-Eijnden & Vanden-Eijnden (2000, 2001), Gawȩdzki & Vergassola (2000),
Falkovich et al. (2001) and Le Jan & Raimond (2002, 2004).

As shown in these works, spontaneous stochasticity occurs because of the analogue
of Richardson (1926) dispersion in the Kraichnan model, which leads to a loss of
influence of the molecular diffusivity κ on the separation of the perturbed Lagrangian
trajectories after a short time of order (κ2−ξ/D1)

1/ξ . It is important to emphasize that
this result does not mean that randomness in the Lagrangian trajectories suddenly
‘appears’ only for ν, κ=0, but instead that the randomness persists even as ν, κ→0. It
is thus a phenomenon that can be observed with sequences of positive values, ν, κ > 0,
for which the velocity field is smooth. For the case of a divergence-free velocity that
we discuss here, it is furthermore known that the result does not depend upon the
order of limits ν→ 0 and κ→ 0, which can be taken in either order or together. (The
only delicate case is when κ→ 0 first, so that the Prandtl number goes to infinity, and
then ν→ 0 subsequently. Since the Brownian motion disappears from the stochastic
equation (2.3) while the velocity field remains smooth, the limiting Lagrangian
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trajectories are deterministic. To observe spontaneous stochasticity in that limit, one
must additionally allow the initial condition to be random, e.g. with ξ̃(t) = x + ερ̃
for a stochastic perturbation ρ̃ drawn from some fixed distribution P(ρ). In that case,
spontaneous stochasticity appears in the double limit with ε→ 0 and ν→ 0 together,
and, for a divergence-free velocity u, the limiting transition probabilities are identical
to those obtained for the other limits involving κ → 0. This infinite-Prandtl case is
discussed carefully by Vanden-Eijnden & Vanden-Eijnden (2000) and Gawȩdzki &
Vergassola (2000).) See Bernard et al. (1998), Vanden-Eijnden & Vanden-Eijnden
(2000, 2001) Gawȩdzki & Vergassola (2000), Falkovich et al. (2001) and Le Jan &
Raimond (2002, 2004) for discussions of this point.

There is empirical evidence for such phenomena also in Navier–Stokes turbulence
obtained from numerical studies of two-particle dispersion. Eyink (2011) studied
stochastic Lagrangian particles whose motion is governed by (2.3) in a 10243 DNS
at Reλ = 433 and found that the mean-square dispersion becomes independent of κ
after a short time of order (κ/ε)1/2. Bitane, Homann & Bec (2013) studied dispersion
of deterministic Lagrangian trajectories (κ = 0) in a 20483 DNS at Reλ = 460 and
a 40963 DNS at Reλ = 730, and found that the mean-square dispersion becomes
independent of the initial separation r0 of particle pairs in a short time of order
r2/3

0 /ε1/3. The results of these studies provide evidence of Lagrangian spontaneous
stochasticity for Navier–Stokes solutions. In particular, Bitane et al. (2013) found
consistent Richardson-dispersion statistics for the two Reynolds numbers studied
there. The principal limitation of these previous studies is that they averaged over
the release points x of the particles. A particle dispersion averaged over release
points which remains non-vanishing in the joint limit ν, κ → 0 is enough to infer
spontaneous stochasticity for a set of points x of non-zero volume measure (Bernard
et al. 1998). However, averaging over x removes information about the effects of
spatial intermittency and the local fluid environment on the limiting behaviour of the
particle distributions pν,κ(x′, t′|x, t) for specific release locations x. There was some
previous study of such spatial intermittency in pair dispersion by Biferale et al. (2005,
2014) but they studied only deterministic Lagrangian particles at small (Kolmogorov
scale) initial separations, and not the stochastic Lagrangian particles relevant to our
FDR.

We present here new data obtained from numerical experiments on a high-Reynolds-
number turbulence simulation in a 2π-periodic box, for a couple of representative
release points. We use simulation data from the homogeneous isotropic dataset in
the Johns Hopkins Turbulence Database (Li et al. 2008; Yu et al. 2012), publicly
available online at http://turbulence.pha.jhu.edu. It is ideal for our purposes, since the
entire time history of the velocity is stored for a full large-scale eddy-turnover time,
allowing us to integrate the flow equations (2.3) backward in time. A significant
limitation, however, is that only one Reynolds number is available, Re ' 5058.
One should consider together with the limit κ → 0 also a limit ν → 0, so that
the Navier–Stokes solution uν converges to a fixed velocity u that is some sort of
weak solution of Euler (as always occurs along a suitable subsequence νk→ 0; see
Lions (1996, § 4.4)). (The necessity of extracting such a subsequence makes the
empirical study of spontaneous stochasticity quite difficult, as a matter of principle.
The compactness argument of Lions (1996) establishes existence of subsequences of
νk→ 0 such that Navier–Stokes solutions uνk(x, t) converge to a fixed limiting velocity
field u(x, t) that is a ‘dissipative Euler solution’, in a suitable sense. Unfortunately, the
proof is not constructive and therefore there is currently no concrete computational
algorithm to generate any specific convergent subsequence. Amusingly, the direct
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experimental observation of spontaneous stochasticity in such a joint limit may be
easier in quantum mechanics than in turbulent fluids. See Eyink & Drivas (2015a).)
Since no such joint limit ν, κ → 0 can be considered within the given database at
one fixed value of viscosity, our study of spontaneous stochasticity is based on the
assumption that the Reynolds numbers is already ‘sufficiently large’. More precisely,
we assume that an inertial-range superballistic Richardson-type dispersion of particle
pairs released at space–time point (x, t) will occur at times |t′ − t| > tc, with a
crossover time tc = max{(ε/ν)1/2, (ε/κ)1/2}, and then pν,κ(x′, t′|x, t) ' p∗(x′, t′|x, t)
for |t′ − t| � tc. It should be noted that, for Pr < 1, mean-square dispersion grows
diffusively ∝κ|t′ − t| up to a time tκ = (ε/κ)1/2, when relative advection begins
to dominate at the length scale ηκ = (κ3/ε)1/4 within the inertial range. Instead,
for Pr > 1, particle pairs also separate diffusively initially but then transition to
exponential divergence ∼exp(t/tη)ηκ , with Kolmogorov time tη = (ε/ν)1/2, until the
particles separate to the Kolmogorov dissipation scale η = (ν3/ε) at time ∼tη log Pr,
when superballistic dispersion commences. The particle distributions pν,κ(x′, t′|x, t) at
|t′ − t| ' tc will be distinct in these different cases and will presumably also depend
upon the particular values of ν, κ even as ν, κ→ 0. However, Richardson dispersion
leads to a very rapid ‘forgetting’ of the precise initial data, and thus it is reasonable
to expect that pν,κ(x′, t′|x, t)' p∗(x′, t′|x, t) for |t′ − t| � tc. With this assumption, we
may study the limiting particle distributions p∗(x′, t′|x, t) in the database at large but
finite Reynolds number. A check on this assumption is provided by the fact that, for
incompressible flows, the limiting distributions are also expected to be independent
of the Prandtl number Pr (Vanden-Eijnden & Vanden-Eijnden 2000, 2001; Gawȩdzki
& Vergassola 2000). By varying κ for the fixed ν in the database, we can change Pr
and verify to what extent the Prandtl independence of limiting distributions holds for
our numerical results.

We consider two release points x at time tf = 2.048, the final database time,
one chosen in a typical turbulent ‘background’ region and the other in the vicinity
of a strong large-scale vorticity. We study stochastic trajectories with diffusivities
κ corresponding to three values of the Prandtl number, Pr = 0.1, 1 and 10. See
appendix C for details about the numerical methods employed in our analysis.
Figure 1(a,b) shows 30 representative particle trajectories for the two release points
and for each of the three Prandtl numbers. To illustrate the local fluid environment, we
also plot isosurfaces of the vorticity filtered with a box filter of width L/4 (where L is
the integral scale) at the time s= (2/3)TL (where TL is the large-scale turnover time).
The isosurfaces are for magnitudes of filtered vorticity equal to 15/TL. Figure 1(a,c,e)
shows the particles released in a typical ‘background’ region with spottier weaker
vortices and figure 1(b,d, f ) shows particles released near a strong vortex. (In the
weak background region in figure 1(a), ωrmsTL = 2.98, and thus the isosurface level
is |ω| ≈ 5.0ωrms, with 0.75 % of the volume in that box carrying filtered vorticity
above this threshold. In the strong vortex region in figure 1(b), instead, ωrmsTL= 4.25,
so that the isosurface there is |ω| ≈ 3.5ωrms, with 2.9 % of the volume above.) The
three colourings of the trajectories (green/blue/red) represent the three values of the
Prandtl number, Pr= 0.1, 1, 10 respectively. The clearly observable ‘splitting’ of the
bundle of stochastic trajectories into sub-bundles at specific times recalls one proposed
mechanism for Richardson dispersion, via a sequence of smooth transport and rapid
‘flight-like’ departures at fluid separatrices (Shlesinger, West & Klafter 1987; Davila
& Vassilicos 2003; Thalabard, Krstulovic & Bec 2014). Most importantly, as one can
see by eye, the ensembles of trajectories are quite similar for the three Pr values.

To make the latter observation more quantitative, we plot in figure 1(c,d) the
mean-square dispersion of pairs of stochastic Lagrangian particles with different
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FIGURE 1. (Colour online) (a,c,e) Plots for release at x= (4.9637, 3.1416, 3.8488) in the
background region; (b,d, f ) plots for release at x= (0.2610, 3.1416, 1.4617) near a strong
vortex. (a,b) Plots of 30 representative stochastic trajectories for Pr=0.1 (green, light), 1.0
(blue, medium) and 10 (red, heavy) together with isosurfaces of coarse-grained vorticity
|ω̄|TL = 15 at time s= (2/3)TL. (c,d) Plots of particle dispersions (heavy) and short-time
results 12κ ŝ (light) for each Pr, with Pr = 0.1 (green, dot, · · · · · ·), 1.0 (blue, dash–dot,
— · —) and 10 (red, dash, – – –), and a plot in (solid, ——) of gεŝ3 with g= 0.7 (c) and
g= 4/3 (d). (e, f ) Plots of py(y′, 0|x, tf ) for the three Pr values with the same line styles
as in (c,d).
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realizations of the noise, for the two release points and the three Prandtl numbers.
The error bars (almost too small to be observed) represent the standard error of
the mean (s.e.m.) for averages over N = 1024 sample trajectories. For both release
points, there is an initial period (going backward in time) where the dispersion grows
diffusively as 12κ ŝ with ŝ = tf − s, but which then crosses over to a regime of
superballistic separation that is close to the ŝ3 growth predicted by Richardson (1926)
and is approximately independent of Pr. An essential observation from figure 1 is
that ŝ ≈ tc is indeed the time of crossover to a roughly Richardson t3 growth. The
two release points shown here illustrate behaviour that we have observed also in
many other points of the turbulent fluid, where we find that the Richardson ŝ3 law is
surprisingly robust (albeit imperfect), without the necessity of averaging over release
points x. This is especially so for points x in ‘background’ regions, and is at least
approximately observed for x located in more intermittent regions.

Finally, we plot in figure 1(e, f ) particle transition probabilities, which provide even
more information about the limiting behaviour. We plot at time 0, in the approximate
Richardson range, the one-dimensional probability density functions (PDFs) of the
y-coordinate, or

pν,κy (y′, 0|x, tf )=

∫
dx′ dz′pν,κ(x′, 0|x, tf ), (3.10)

for each of the two release points x and three Prandtl numbers. We observe very
similar behaviour also for the x- and z-coordinates. In order to minimize the number
of samples required to construct the PDFs numerically, we employed kernel density
estimator techniques, which gave us good results with only N = 6144 samples. See
Silverman (1986) and appendix C, where our numerical procedures are completely
described. The error bars represent both the s.e.m.s for the N-sample averages
and the effects of variation in the kernel density bandwidth. Consistent with the
dispersion plots, we see that the transition PDFs are approximately independent of
Pr for times in the superballistic dispersion range. This is especially true for the
release point x in the ‘background’ region, and for the strong vorticity region, such
independence holds better for the two largest values of Pr (smallest κ), when the
Richardson-like superballistic range is the longest. This approximate independence
of the PDFs from the Prandtl number gives some support to the conjecture that
pν,κ(x′, 0|x, tf ) ' p∗(x′, 0|x, tf ) and that the infinite-Re limit is already achieved
for such particle transition kernels in the database at finite Re. These numerical
studies illustrate the present quality of direct evidence for Lagrangian spontaneous
stochasticity in high-Reynolds-number Navier–Stokes turbulence, which is suggestive
but far from compelling. As we shall now demonstrate, observations of anomalous
scalar dissipation provide further evidence, as the two phenomena are essentially
related.

4. Spontaneous stochasticity and anomalous dissipation

The phenomenon of spontaneous stochasticity leads to a simple explanation of
anomalous dissipation in a turbulent flow, as was first pointed out by Bernard et al.
(1998) for decaying scalars (no sources) in the Kraichnan model of random advection.
This connection can be understood more directly and more generally using our FDR.
In fact, it is intuitively clear from the FDR (2.12) that there can be scalar dissipation
that is non-vanishing in the limit κ → 0 only if there is a non-vanishing variance
in that same limit, implying that Lagrangian trajectories must remain stochastic.
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This argument holds in the presence of scalar sources and for a scalar advected
by any velocity field uν whatsoever. In particular, the argument holds when uν
is a Navier–Stokes solution. Thus, spontaneous stochasticity is the only possible
mechanism of anomalous dissipation, for both passive and active scalars, away from
walls. Furthermore, we shall show for a passive scalar that does not react back
on the flow that spontaneous stochasticity also makes anomalous scalar dissipation
possible. Thus, for passive scalars, the two phenomena are completely equivalent. In
this section, we shall deduce these conclusions, assuming only that the flow domain
is compact (closed and bounded) and without any bounding walls.

We first discuss the technically simpler case with S≡ 0 and then show that the same
argument extends easily to the case with a non-zero scalar source. When S ≡ 0, we
can rewrite the left-hand side of the FDR (2.12) using

Var[θ0(ξ̃t,0(x))] =
∫

ddx0

∫
ddx′0 θ0(x0)θ0(x′0)

×[pν,κ2 (x0, 0; x′0, 0|x, t)− pν,κ(x0, 0|x, t)pν,κ(x′0, 0|x, t)], (4.1)

where we have introduced the two-time (backward-in-time) transition probability
density

pν,κ2 (y, s; y′, s′|x, t)=E[δd(y− ξ̃ ν,κt,s (x))δ
d(y′ − ξ̃ ν,κt,s′ (x))], s, s′ < t, (4.2)

which gives the joint probability for the particle to end up at y at time s< t and at
y′ at time s′ < t, given that it started at x at the final time t (moving backward from
final to earlier times). At equal times s= s′,

pν,κ2 (y, s; y′, s|x, t)= δd(y− y′)pν,κ(y, s|x, t). (4.3)

We now consider the limit ν, κ → 0, so that the transition probabilities approach
limiting values p∗(y, s; y′, s|x, t), p∗(y, s|x, t). Such limits exist, at least along suitably
chosen subsequences νn, κn → 0, whenever the flow domain is compact. This can
be shown using Young measure methods similar to those that have been employed
previously to study statistical equilibria for 2D Euler solutions (Robert 1991; Robert
& Sommeria 1991; Sommeria, Staquet & Robert 1991). Because the proof of this
result is a little technical, we give it in appendix A.1. When the Lagrangian particles
move according to a deterministic flow ξ ∗t,s, one easily sees that the two-time transition
probability factorizes as

p∗2(y, s; y′, s′|x, t)= δd(y− ξ ∗t,s(x))δ
d(y′ − ξ ∗t,s′(x))= p∗(y, s|x, t)p∗(y′, s′|x, t). (4.4)

Hence, non-factorization in the limit ν, κ→ 0 is an unequivocal sign of spontaneous
stochasticity. The variance on the left-hand side of the FDR (2.12) can only be
non-vanishing in the limit if factorization fails, so that anomalous dissipation clearly
requires spontaneous stochasticity. In the other direction, if there is spontaneous
stochasticity and thus factorization fails for some positive-measure set of x∈Ω , then
the contribution to the volume-integrated variance from that subset must be positive
for some suitable smooth choice of θ0, which implies a positive lower bound to the
cumulative volume-integrated scalar dissipation. In short, anomalous scalar dissipation
and Lagrangian spontaneous stochasticity are seen to be equivalent. This argument is
given as a formal mathematical proof in appendix A.2.
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The sufficiency argument works only for a passive scalar. For active scalars, the
initial datum θ0 partially determines the velocity field u and so is not free to vary.
In order to conclude sufficiency in this case, one needs to assume that the resulting
velocity field does not ‘conspire’ with the initial scalar to cause the variance to
vanish, i.e. for the random trajectories to sample only points on a single level set of
θ0. If this remarkable behaviour did happen to occur for some choice of θ0, then one
would not expect it to persist for a small perturbation of θ0. Thus, it is highly likely
also for active scalars that spontaneous stochasticity implies anomalous dissipation,
but we have not proved that with the FDR. We can, however, conclude rigorously
both for passive and for active scalars that anomalous dissipation implies spontaneous
stochasticity. The above proposition shows that any evidence for anomalous scalar
dissipation in the free decay of an active or passive scalar (no sources) obtained
from DNS in a periodic box is also evidence for spontaneous stochasticity. The
argument in this section is a strong motivation to perform DNS studies to verify
anomalous dissipation in the free decay of a scalar, since this would provide additional
confirmation of spontaneous stochasticity. All of the DNS cited by Yeung, Donzis &
Sreenivasan (2005, § 2.1) employed sources (e.g. a mean scalar gradient coupled to
the velocity field) that maintained a statistical steady state for the scalar fluctuations.

Inclusion of a non-zero scalar source involves only minor changes to the previous
argument. First, it should be noted that

Var
[
θ0(ξ̃t,0(x))+

∫ t

0
S(ξ̃t,s(x), s) ds

]
=Var[θ0(ξ̃t,0(x))]

+ 2 Cov
[
θ0(ξ̃t,0(x)),

∫ t

0
S(ξ̃t,s(x), s) ds

]
+Var

[∫ t

0
S(ξ̃t,s(x), s) ds

]
. (4.5)

Furthermore, one has for the variance of the time-integrated source sampled along the
stochastic particle trajectory that

Var
[∫ t

0
S(ξ̃t,s(x), s) ds

]
=

∫ t

0
ds
∫ t

0
ds′
∫

ddy
∫

ddy′S(y, s)S(y′, s′)

×[pν,κ2 (y, s; y′, s′|x, t)− pν,κ(y, s|x, t)pν,κ(y′, s′|x, t)] (4.6)

and for the covariance between the sampled initial data and the integrated source that

Cov
[
θ0(ξ̃t,0(x)),

∫ t

0
S(ξ̃t,s(x), s) ds

]
=

∫ t

0
ds
∫

ddx0

∫
ddy θ0(x0)S(y, s)

×[pν,κ2 (x0, 0; y, s|x, t)− pν,κ(x0, 0|x, t)pν,κ(y, s|x, t)]. (4.7)

Clearly, anomalous scalar dissipation requires spontaneous stochasticity. For a passive
scalar, we can also argue in the other direction. Indeed, we can repeat the previous
argument to conclude that, if there is spontaneous stochasticity for a positive-measure
set of x, then not only is there a smooth choice of θ0 so that the variance associated
with the initial condition in (4.1) is positive when integrated over this set of x, but
also there is a smooth choice of source field S so that the contribution of the variance
(4.6) is positive. This is already enough to conclude that there must be anomalous
dissipation for the scalar with initial condition 0 and with the chosen source S. We
can also conclude that there is anomalous dissipation for the initial condition θ0
and the source S. Indeed, if the total variance contribution in (4.5) is not positive,
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then it must vanish, which implies that the covariance term in (4.7) provides a
negative contribution. In this case, we simply take S→−S to make the contributions
of all three terms (4.1), (4.6), (4.7) positive. We thus conclude that, also for the
passive scalar rejuvenated by a source, there is equivalence between anomalous scalar
dissipation and Lagrangian spontaneous stochasticity. The argument is given more
carefully in appendix A.2.

It has not been generally appreciated that similar conclusions can be reached in the
special case of sourceless scalars using the arguments of Bernard et al. (1998), which
are not at all restricted to the Kraichnan model. To underline this point and, also, to
give additional insight, we here briefly summarize their reasoning. It should be noted
that the stochastic representation (3.1) of the advected scalar in the limit ν, κ → 0
becomes, using (3.9),

θ∗(x, t)=
∫

ddx0 θ0(x0)p∗(x0, 0|x, t). (4.8)

It is worth noting that θ∗(x, t) is a kind of ‘weak solution’ of the ideal advection
equation, ∂tθ

∗
+ u · ∇θ∗ = 0, although this fact is not needed for the argument. It

follows from (4.8) that for any strictly convex function h(θ), e.g. h(θ)= θ 2/2,

h(θ∗(x, t))6
∫

ddx0 h(θ0(x0))p∗(x0, 0|x, t), (4.9)

and equality holds if and only if the transition probability is a delta distribution
of type (3.4). This is the so-called Jensen inequality (e.g. see Itô 1984). Since the
limiting transition probabilities are not delta distributions in the Kraichnan model,
the inequality in (4.9) is strict. Furthermore, the limiting transition probabilities for
ν, κ→ 0 inherit the volume-preservation property (3.3), so that∫

p∗(x′, t′|x, t) ddx= 1. (4.10)

In this case, integrating (4.9) over x gives∫
h(θ∗(x, t)) ddx<

∫
h(θ0(x0)) ddx0, (4.11)

so that the h-integral is decaying (dissipated) even in the limit ν, κ → 0. The
anomalous scalar dissipation in the Kraichnan model thus has an elegant Lagrangian
mechanism. Essentially, the molecular diffusivity is replaced by a ‘turbulent diffusivity’
associated with the persistent stochasticity of the Lagrangian trajectories, which
continues to homogenize the scalar field even as the molecular diffusivity vanishes.
We give rigorous details of this argument in appendix A.3, where, in the absence
of sources, we obtain necessary and sufficient conditions for anomalous dissipation
identical to those derived from the FDR.

5. Summary and discussion
This paper has derived a Lagrangian FDR for scalars advected by an incompressible

fluid. Our relation expresses an exact balance between molecular dissipation of scalar
fluctuations and the input of scalar fluctuations from the initial scalar values and
internal sources as these are sampled by stochastic Lagrangian trajectories backward in
time. We have exploited this relation to give a simple proof (in domains without walls)
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170 T. D. Drivas and G. L. Eyink

that spontaneous stochasticity of Lagrangian trajectories is necessary and sufficient for
anomalous dissipation of passive scalars, and necessary (but possibly not sufficient)
for anomalous dissipation of active scalars.

An important outstanding question is the extent to which the results of this paper
can be carried over to provide a Lagrangian picture of anomalous energy dissipation
in Navier–Stokes turbulence. (The most direct application of our scalar results to
Navier–Stokes might appear to be to analyse the viscous dissipation of enstrophy
in freely decaying 2D turbulence, where the vorticity is an active (pseudo)scalar
field. Unfortunately, all of our analysis assumes that the initial scalar field is
square-integrable or L2, but it has been shown by Eyink (2001) and Tran & Dritschel
(2006) that there can be no anomalous enstrophy dissipation for a freely decaying
2D Navier–Stokes solution with finite initial enstrophy. It may still be the case that
there is anomalous enstrophy dissipation for more singular infinite-enstrophy initial
data and that this dissipation is associated with spontaneous stochasticity (see the
further discussion in Eyink 2001). However, we cannot investigate this delicate issue
using the FDR of the present paper.) We briefly comment upon this issue here. The
formal extension of our FDR to viscous energy dissipation is straightforward. We can
exploit the stochastic Lagrangian representation for the incompressible Navier–Stokes
equation

∂tu+ u · ∇u=−∇p+ ν1u, (5.1)
∇ · u= 0, (5.2)

recently elaborated by Constantin & Iyer (2008, 2011), which is valid both for flows
in domains without boundaries and for wall-bounded flows. Their results can be most
simply derived using a backward stochastic particle flow ξ̃t,s(x) and a corresponding
‘momentum’ π̃t,s(x)≡ u(ξ̃t,s(x), s), which together satisfy the backward Itô equations

d̂ξ̃t,s(x)= π̃t,s(x) ds+
√

2ν d̂W̃s, (5.3)

d̂π̃t,s(x)=−∇p(ξ̃t,s(x), s) ds+
√

2ν d̂W̃s · ∇u(ξ̃t,s(x), s). (5.4)

These are a stochastic generalization of Hamilton’s particle equations, making contact
with traditional methods of Hamiltonian fluid mechanics (Salmon 1988). See the
more detailed discussion of Eyink (2010) and Rezakhanlou (2014). By integrating
the second of these Hamilton equations from 0 to t and taking expectations over the
Brownian motion, one readily obtains

u(x, t)=E
[

u0(ξ̃t,0(x))−
∫ t

0
∇p(ξ̃t,s(x), s) ds

]
, (5.5)

using the fact that the stochastic integral
√

2ν
∫ t

0 d̂W̃s · ∇uν(ξ̃t,s(x), s) is a backward
martingale and so vanishes under expectation. The formula (5.5) was previously
derived by Albeverio & Belopolskaya (2010). Moreover, by exploiting the same
Itô-isometry argument as applied earlier for scalars, one can derive

ν

∫ t

0
ds〈|∇u(s)|2〉Ω =

1
2

〈
Var
[

u0(ξ̃t,0)−

∫ t

0
∇p(ξ̃t,s, s) ds

]〉
Ω

. (5.6)

This can be considered as an ‘FDR’ for viscous energy dissipation in a Navier–Stokes
solution.
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Unfortunately, this relation does not appear to be particularly useful for analysing
the high-Reynolds-number (or inviscid) limit. It has a mixed Eulerian–Lagrangian
character, since it involves both the particle trajectories ξ̃t,s(x) and the Eulerian
pressure-gradient field ∇p(x, t). The latter field is furthermore a dissipation-range
object, which grows increasingly singular as ν→ 0. For example, using the classical
K41 scaling estimates (Obukhov 1949; Yaglom 1949; Batchelor 1951), one expects a
root-mean-squared value of the pressure gradient (∇p)rms∼ (ε

3/ν)1/4, and intermittency
effects will make this field even more singular. Mathematically speaking, the pressure
gradient cannot be expected to exist as an ordinary function in the limit ν → 0
but only as a distribution. Because of these facts, we cannot derive from (5.6)
any relation between anomalous energy dissipation and spontaneous stochasticity
for Navier–Stokes turbulence. In particular, even if there were anomalous energy
dissipation, the limiting stochastic particle trajectories might become deterministic
as ν → 0. In that case, the variance on the right-hand side of (5.6) could remain
non-vanishing, because the smaller fluctuations due to vanishing stochasticity could
be compensated by the diverging magnitude of the pressure gradient.

More fundamentally, we believe that (5.6) misses essential physics. It should be
noted that this relation holds for freely decaying Navier–Stokes turbulence both
in 2D and in 3D, but in the former case there is certainly no anomalous energy
dissipation. Furthermore, in forced steady-state 2D turbulence, there is evidence
in the inverse energy cascade range for Richardson dispersion and Lagrangian
spontaneous stochasticity (Boffetta & Sokolov 2002; Faber & Vassilicos 2009),
but this is associated not with small-scale energy dissipation by viscosity but instead
with large-scale energy dissipation by Ekman-type damping. A possibly important
clue is provided by the fact that Richardson dispersion is faster backward in time for
3D forward energy cascade Sawford et al. (2005), Berg et al. (2006), Eyink (2011),
but faster forward in time for 2D inverse energy cascade (Faber & Vassilicos 2009).
By a comparison of these observations for 2D and 3D Navier–Stokes turbulence
and by means of exact results for Burgers turbulence, Eyink & Drivas (2015b)
have argued that anomalous energy dissipation for Navier–Stokes turbulence should
be related not simply to the presence of spontaneous stochasticity but instead to
time asymmetry of the stochastic Lagrangian trajectories. This is reminiscent of
so-called ‘fluctuation theorems’ in non-equilibrium statistical mechanics, which imply
exponential asymmetry in the probability of entropy production with positive and
negative signs. See Gawȩdzki (2013) and Schuster et al. (2013) for recent reviews.
These results are deeply related to traditional fluctuation–dissipation theorems in
statistical physics, but we have been unable to discover any connection with our
Lagrangian FDR. More recently, a time asymmetry has been established in the
very-short-time dispersion of nearby Lagrangian trajectories by Falkovich & Frishman
(2013) and Jucha et al. (2014). However, these results hold only for times of order
∼(r2

0/ε)
1/3 and therefore cannot explain the long-time Richardson behaviour or the

observed time asymmetry therein.
The most important implication of the present work is the additional support

provided to the concept of Lagrangian spontaneous stochasticity. Exploiting our
Lagrangian FDR, we have shown that any empirical evidence for anomalous scalar
dissipation, either for passive or for active scalars, and away from walls, must be
taken as evidence also for spontaneous stochasticity. There are profound implications
of this phenomenon for many Lagrangian aspects of turbulent flows. For example,
Constantin & Iyer (2008) have shown that the classical Kelvin–Helmholtz theorems
for vorticity dynamics in smooth solutions of the incompressible Euler equations
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generalize within their stochastic framework to solutions of the incompressible
Navier–Stokes equation with a positive viscosity. In fact, similarly to the case of
the advected scalars discussed in the present work, Constantin & Iyer (2008) proved
that circulations around stochastically advected loops are martingales backward in
time for the Navier–Stokes solution and also proved that this property completely
characterizes these solutions. This ‘stochastic Kelvin theorem’ demonstrates again
that the stochastic Lagrangian approach is the natural generalization to non-ideal
fluids of the Lagrangian methods for ideal fluids. Furthermore, if there is spontaneous
stochasticity, then vortex motion must remain stochastic for arbitrarily high Reynolds
numbers. Contrary to the traditional arguments of Taylor & Green (1937), vortex
lines in the ideal limit will not be ‘frozen into’ the turbulent fluid flow in the
usual sense. Similar results holds also for magnetic-field-line motion in resistive
magnetohydrodynamics (Eyink 2009), and spontaneous stochasticity then implies
the possibility of fast magnetic reconnection in astrophysical plasmas for arbitrarily
small electrical conductivity (Eyink et al. 2013). In Parts II and III, we extend the
derivation of our Lagrangian FDR to wall-bounded flows, and derive similar relations
between anomalous scalar dissipation and spontaneous stochasticity, as well as new
Lagrangian relations for Nusselt–Rayleigh scaling in turbulent convection.
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Appendix A. Mathematical proofs
A.1. Existence of limiting transition probabilities

To make the arguments in § 4 rigorous, we note that the transition probabilities
pν,κ(x0, 0|x, t) discussed there are well defined for any sequence of continuous (or
even just bounded) velocity fields uν . However, we shall generally assume that
these fields are even smooth for ν > 0 and their energies are bounded uniformly in
ν. Because of the latter assumption, we can always extract a subsequence νj → 0
such that uνj → u, with u a finite energy or L2(Ω × [0, T]) velocity field, where
convergence is in the weak sense,

lim
j→∞

∫
Ω

ddx
∫ T

0
dt uνj(x, t) ·w(x, t)=

∫
Ω

ddx
∫ T

0
dt u(x, t) ·w(x, t), (A 1)

for all w ∈ L2(Ω × [0, T]). This is a consequence of the Banach–Alaoglu theorem
(Rudin 2006). Thus, we consider limits in which there is a definite fixed fluid velocity
u. If the uν are solutions of the incompressible Navier–Stokes equation indexed by
viscosity ν, then we can furthermore select the subsequence νk→0 so that the limiting
velocity u is a ‘dissipative Euler solution’ in the sense of Lions (1996, § 4.4).

We must now show that a further subsequence νk= νjk can be selected together with
a corresponding subsequence κk→0, so that the transition probabilities pνk,κk(x0,0|x, t)
satisfy the following conditions.
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(i) There is a transition density p∗(x0, 0|x, t) which is measurable in x so that

lim
k→∞

∫
Ω

ddx0

∫
Ω

ddx f (x0, x)pνk,κk(x0, 0|x, t)=
∫
Ω

ddx0

∫
Ω

ddx f (x0, x) p∗(x0, 0|x, t)

(A 2)
for all continuous functions f ∈C(Ω ×Ω).

(ii) (Normalization)
∫
Ω

ddx0 p∗(x0, 0|x, t)= 1 for a.e. x ∈Ω .
(iii) (Volume conservation)

∫
Ω

ddx0
∫
Ω

ddx g(x0)p∗(x0, 0|x, t) =
∫
Ω

ddx0 g(x0) for all
continuous g ∈C(Ω).

To prove the properties (i)–(iii), the key fact we shall use is that the transition
probability densities for ν, κ > 0 can be regarded as Young measures,

µν,κ,tx (dx0)= ddx0 pν,κ(x0, 0|x, t); (A 3)

that is, as probability measures µν,κ,tx on Ω which are measurably parameterized
by x ∈ Ω. Fluid dynamicists will be familiar with Young measures from theories
of long-time statistical equilibria for two-dimensional fluids (Robert 1991; Sommeria
et al. 1991). A good introduction is provided by the lectures of Valadier (1994), and a
comprehensive treatment can be found in the monograph of Florescu & Godet-Thobie
(2012).

Here, we briefly review the necessary theory. In the context of our problem, Young
measures may be defined as families of probability measures µx, defined on a compact
set Y ⊆ Rm, measurably parameterized by x ∈ X ⊂ Rn, with X also compact. This
uniquely defines a positive Radon measure µ over X × Y given on product sets by

µ(A× B)=
∫

A
µx(B) dx. (A 4)

By construction, µ satisfies the following identity:

〈µ, f 〉 ≡
∫

X×Y
f (x, y)µ(dx, dy)=

∫
X

(∫
Y

f (x, y)µx(dy)
)

dx, (A 5)

for any continuous function f ∈C(X × Y). Moreover, for f ∈C(X), one has

〈µ, f 〉 =
∫

X
f (x) dx; (A 6)

that is to say, the projection of µ on X is dx, the Lebesgue measure. One may
alternatively take these last two properties as the definition of a Young measure. That
is, for any positive Radon measure µ on X× Y whose projection on X is dx, there is
a mapping x 7→µx satisfying (A 5). This is the content of the so-called disintegration
theorems (Jiřina 1959; Valadier 1973). The mapping x 7→ µx is unique Lebesgue
almost everywhere.

Let us denote by Y the set of Young measures µ on the product set X × Y . This
set has the important property that it is a closed subset of the space M(X × Y)
of Radon measures on X × Y in the topology of narrow convergence. The narrow
topology is the coarsest topology on M(X × Y) for which the maps µ 7→ 〈µ, f 〉 are
continuous for all f ∈ Cb(X × Y), the space of bounded continuous functions. Since
X× Y is compact, this topology coincides with the so-called vague topology which is
the coarsest for which the maps µ 7→ 〈µ, f 〉 are continuous for all f ∈Cc(X× Y), the
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space of compactly supported continuous functions. Furthermore, it coincides with
the topology defined by the maps µ 7→ 〈µ, f 〉 for all f ∈ C(X × Y). For a detailed
discussion of these different topologies, see Florescu & Godet-Thobie (2012). Here,
we note only that these make M(X × Y) into a compact metrizable topological space
for compact X, Y . That Y is a closed subspace of M(X× Y) may then easily seen by
noting that for any sequence µn

∈Y with µn
→µ narrowly,∫

X
f (x) dx= 〈µn, f 〉→ 〈µ, f 〉, for all f ∈C(X), (A 7)

so that the projection of µ onto X is dx and µ∈Y . A further closed subset Ym⊂Y is
the set of measure-preserving Young measures, which satisfy the additional condition
that

〈µ, g〉 =
∫

X

(∫
Y

g(y)µx(dy)
)

dx=
∫

Y
g(y) dy, for all g ∈C(Y), (A 8)

which may be stated formally as
∫

X dxµx(dy)= dy. That Ym is closed in the narrow
topology is shown by an argument exactly like that for Y above.

From these basic results, we can easily derive the consequences (i)–(iii), taking X=
Y =Ω , where Ω is the closure of a bounded open set with a smooth boundary. Then,
with the definition (A 3), one has µν,κ,t ∈Ym for fixed t and all ν, κ > 0. Since Ym is
a closed subset of the compact metrizable space M(X × Y), it is itself (sequentially)
compact. Hence, given the subsequence νj, there is a further subsequence νk = νjk
and a corresponding sequence κk such that µνkκk,t→µ∗t ∈Ym in the narrow topology.
It should be noted that the limit µ∗t need not be unique and may depend upon the
selected subsequence. The narrow convergence µνkκk,t→µ∗t is equivalent to (i), with
the definition

ddx0p∗(x0, 0|x, t)=µ∗,tx (dx0), (A 9)

where in general p∗(x0, 0|x, t) is a distribution in the variable x0, not an ordinary
function. Then, (ii) is a restatement that µ∗t ∈Y and (iii) is a restatement that µ∗t ∈Ym.
These observations complete the proof of properties (i)–(iii) above.

With these results in hand, we now rigorously prove the equivalence of spontaneous
stochasticity and anomalous dissipation. We do this in two ways: first, by exploiting
our general FDR and, second, by the original argument of Bernard et al. (1998) for
the case of scalars without sources.

A.2. Proofs using the FDR
As in the main text, we first consider the case without a scalar source (S = 0). Our
starting point is the FDR (2.12), with formula (4.1) for the variance Var[θ0(ξ̃

νk,κk
t,0 (x))].

It follows from (i)–(ii) of appendix A.1 that a subsequence νk = νjk can be selected
together with a corresponding subsequence κk→0, so that the space-averaged variance
will satisfy

lim
k→∞
〈Var[θ0(ξ̃

νk,κk
t,0 )]〉Ω =

∫
ddx
∫

ddx0

∫
ddx′0 θ0(x0)θ0(x′0)

×[p∗2(x0, 0; x′0, 0|x, t)− p∗(x0, 0|x, t)p∗(x′0, 0|x, t)], (A 10)

for all θ0 ∈C(Ω), where

p∗2(x0, 0, x′0, 0|x, t)≡ δd(x0 − x′0)p
∗(x0, 0|x, t). (A 11)
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It should be noted that p∗2 is a Young measure on Y = Ω × Ω measurably indexed
by elements x of X=Ω, since it is a narrow limit of the Young measures pνk,κk

2 . We
shall not use the property (iii) from appendix A.1 in our argument, although volume
conservation was, of course, used in the derivation of the FDR (2.12). Since that
FDR holds for all ν, κ > 0, it follows that the limit of the cumulative global scalar
dissipation exists and must coincide with the limiting variance,

lim
k→∞

κk

∫ t

0
ds〈|∇θ νk,κk(s)|2〉Ω =

∫
ddx
∫

ddx0

∫
ddx′0 θ0(x0)θ0(x′0)

×[p∗2(x0, 0; x′0, 0|x, t)− p∗(x0, 0|x, t)p∗(x′0, 0|x, t)], (A 12)

for all θ0 ∈ C(Ω). It follows immediately that anomalous scalar dissipation requires
spontaneous stochasticity since, by the exact formula (A 12), a non-vanishing
cumulative dissipation necessitates non-factorization on a finite-measure set of x.

The argument that spontaneous stochasticity implies anomalous dissipation is a little
more involved. We need to show that if non-factorization holds on a finite-measure
set of x, then there exists a smooth choice of θ0 such that both sides of (A 12) are
positive. Thus, we assume the opposite, that both sides vanish for all smooth θ0. The
right-hand side then also vanishes for all continuous θ0, since C∞(Ω) is dense in
C(Ω) in the uniform norm. For example, this density follows by the Stone–Weierstrass
theorem (Rudin 2006), since C∞(Ω) is a subalgebra of C(Ω) containing the constant
1, closed under complex conjugation, and separating points of Ω . Since the integrand
with respect to x is a variance, it is non-negative, so that the vanishing of the integral
over x implies that there is a subset Ω0 ⊂Ω of full measure, such that∫

ddx0

∫
ddx′0 θ0(x0)θ0(x′0)[p

∗

2(x0, 0; x′0, 0|x, t)− p∗(x0, 0|x, t)p∗(x′0, 0|x, t)] = 0,

(A 13)
for all x ∈Ω0 and θ0 ∈C(Ω). It should be noted furthermore that the quantity in the
square brackets ‘[ · ]’ in the equation above is symmetric in x0, x′0. Thus, for any
pair of functions g, h, one can take θ0 = g+ h to infer that∫

ddx0

∫
ddx′0 g(x0)h(x′0)[p

∗

2(x0, 0; x′0, 0|x, t)− p∗(x0, 0|x, t)p∗(x′0, 0|x, t)] = 0 (A 14)

for all x ∈ Ω0 and g, h ∈ C(Ω). Since the product functions (g ⊗ h)(x, x′0) =
g(x0)h(x′0) form a subalgebra of C(Ω2) that satisfies all of the conditions of the
Stone–Weierstrass theorem, we can use this theorem again to extend the equality to∫

ddx0

∫
ddx′0 f (x0, x′0)[p

∗

2(x0, 0; x′0, 0|x, t)− p∗(x0, 0|x, t)p∗(x′0, 0|x, t)] = 0 (A 15)

for all x ∈Ω0 and f ∈C(Ω2). The parameterized measure νx defined by

νx(dx0, dx′0)= ddx0 ddx′0[p
∗

2(x0, 0; x′0, 0|x, t)− p∗(x0, 0|x, t)p∗(x′0, 0|x, t)] (A 16)

is a difference of two Young measures, and, thus, there is a continuous linear
functional on C(Ω2) for all x ∈ Ω0, also denoted νx, defined by 〈νx, f 〉 =

∫
Ω2 f dνx.

Since
〈νx, f 〉 = 0, for all f ∈C(Ω2) and x ∈Ω0, (A 17)
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it follows for all x∈Ω0 that νx≡ 0, as an element of the dual Banach space C(Ω2)∗.
A direct consequence is that

p∗2(x0, 0; x′0, 0|x, t)= p∗(x0, 0|x, t)p∗(x′0, 0|x, t) (A 18)

as distributions in x0, x′0, for all x ∈ Ω0. However, this contradicts our starting
assumption that factorization fails on a set of full measure. Hence, there must be a
smooth choice of θ0 that makes the right-hand side of (A 12) positive, and thus also
the left-hand side.

Let us next consider the case with θ0 ≡ 0, but with the source S non-vanishing. In
this circumstance, the FDR (2.12) becomes

κ

∫ t

0
ds〈|∇θ(s)|2〉Ω =

1
2

〈
Var
[∫ t

0
S(ξ̃ ν,κt,s (s)) ds

]〉
Ω

, (A 19)

with expression (4.6) for the variance. We show first that there is a suitable
subsequence νk = νjk→ 0 and κk→ 0 such that

lim
k→∞

∫
Ω

ddx Var
[∫ t

0
S(ξ̃ νk,κk

t,s (x), s) ds
]

=

∫
Ω

ddx
∫ t

0
ds
∫ t

0
ds′
∫
Ω

ddy
∫
Ω

ddy′S(y, s)S(y′, s′)

×[p∗2(y, s; y′, s′|x, t)− p∗(y, s|x, t)p∗(y′, s′|x, t)] (A 20)

for any S ∈ C(Ω × [0, t]) and for suitable limiting transition probabilities p∗2 and p∗.
To show this, we note that

µ
ν,κ
s,s′,x(dy, dy′)= ddy ddy′pν,κ2 (y, s; y′, s′|x, t) (A 21)

defines a set of Young measures on Y = Ω × Ω measurably indexed by elements
(s, s′, x) of X = [0, t] × [0, t] × Ω . Since these spaces X and Y are both compact,
we can appeal to the general results on Young measures discussed in appendix A.1
to infer that a subsequence νk, κk exists so that, for all f ∈C(X × Y),

lim
k→∞

∫ t

0
ds
∫ t

0
ds′
∫
Ω

ddy
∫
Ω

ddy′
∫
Ω

ddx f (y, s; y′, s′; x)pνk,κk
2 (y, s; y′, s′|x, t)

=

∫ t

0
ds
∫ t

0
ds′
∫
Ω

ddy
∫
Ω

ddy′
∫
Ω

ddx f (y, s; y′, s′; x)p∗2(y, s; y′, s′|x, t) (A 22)

for some limit Young measure with distributional density p∗2, which it is easy to show
inherits the symmetry of pνk,κk

2 in (y, s) and (y′, s′). Choosing the function f to be of
the form f (y, s; y′, s′; x)= h(s′)g(y, s; x) gives also

lim
k→∞

∫ t

0
ds
∫
Ω

ddy
∫
Ω

ddx g(y, s; x)pνk,κk(y, s|x, t)

=

∫ t

0
ds
∫
Ω

ddy
∫
Ω

ddx g(y, s; x)p∗(y, s|x, t) (A 23)

for all continuous g, with

p∗(y, s|x, t)=
∫
Ω

ddy′ p∗2(y, s; y′, s′|x, t) (A 24)
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Fluctuation–dissipation relation 177

constant in s′ for almost every s, x and defining a consistent one-time Young measure.
We can also establish volume-preserving properties of these limiting Young measures,
although that will not be necessary to our argument. From these results, (A 20) follows
by taking the limit along the subsequence νk, κk of the formula (4.6) for the variance.

The proof that spontaneous stochasticity is both necessary and sufficient for
anomalous scalar dissipation now follows by arguments almost identical to the
situation with θ0 6= 0, S ≡ 0 that was first considered in this section. Necessity is
immediate from (A 19), (A 20). The proof of sufficiency is very similar to that given
before, by showing that vanishing of the space-integrated variance (A 20) for all
smooth source fields S implies the factorization

p∗2(y, s; y′, s′|x, t)= p∗(y, s|x, t)p∗(y′, s′|x, t) (A 25)

for almost every x∈Ω . The non-negativity of the x-integrand requires some argument,
because it is no longer obviously a variance. However, it is the limit of a variance in
the sense that

lim
k→∞

∫
Ω

ddxu(x)Var
[∫ t

0
S(ξ̃ νk,κk

t,s (x), s) ds
]

=

∫
Ω

ddxu(x)
∫ t

0
ds
∫ t

0
ds′
∫
Ω

ddy
∫
Ω

ddy′S(y, s)S(y′, s′)

×[p∗2(y, s; y′, s′|x, t)− p∗(y, s|x, t)p∗(y′, s′|x, t)] (A 26)

for all u∈C(Ω) and S∈C(Ω × [0, t]). If also u> 0, then the left-hand Feynman–Kac
side is non-negative, and thus so is the right-hand side. This is enough to infer that∫ t

0
ds
∫ t

0
ds′
∫
Ω

ddy
∫
Ω

ddy′S(y, s)S(y′, s′)

×[p∗2(y, s; y′, s′|x, t)− p∗(y, s|x, t)p∗(y′, s′|x, t)]> 0 (A 27)

for all x ∈Ω0, a set of full measure in Ω . The remainder of the argument uses the
same strategy as before, with θ0→ S and the Banach space C(Ω2)→C((Ω ×[0, t])2).

The argument when both θ0 6= 0 and S 6= 0 has already been given in the main text.
We only add here the technical detail that a single subsequence may be selected so
that one has narrow convergence both of the two-time Young measure

µ
νk,κk
s,s′,x(dy, dy′)= ddy ddy′pνk,κk

2 (y, s; y′, s′|x, t)→ ddy ddy′p∗2(y, s; y′, s′|x, t) (A 28)

and also of the one-time Young measure at time t0 = 0

µνk,κk
x (dx0)= ddx0 pνk,κk(x0, 0|x, t)→ ddx0 p∗(x0, 0|x, t). (A 29)

The second statement does not follow from the narrow convergence

µνk,κk
s,x (dy)= ddy pνk,κk(y, s|x, t)→ ddy p∗(y, s|x, t) (A 30)

because {0} is a subset of [0, t] with zero Lebesgue measure. However, after extracting
a subsequence for which the two-time Young measure converges, one can extract a
further subsequence so that the one-time Young measure at time t0= 0 also converges.
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178 T. D. Drivas and G. L. Eyink

A.3. Rigorous Bernard–Gawȩdzki–Kupiainen argument
We first demonstrate that spontaneous stochasticity implies anomalous dissipation of
passive scalars, using the same ideas as for the Kraichnan model. We give an indirect
proof, supposing that there is no anomalous dissipation and showing that there can
then be no spontaneous stochasticity, in contradiction to the starting assumption. Thus,
we assume for some strictly convex function h that∫

h(θ∗(x, t)) ddx=
∫

h(θ0(x0)) ddx0, (A 31)

for all smooth initial data θ0. Using the volume-conserving property (4.10), we can
write this equality as∫

ddx
[∫

ddx0 h(θ0(x0))p∗(x0, 0|x, t)− h(θ∗(x, t))
]
= 0. (A 32)

Because of Jensen’s inequality (4.9), the integrand in the square bracket is non-
negative, and thus

h(θ∗(x, t))=
∫

ddx0 h(θ0(x0))p∗(x0, 0|x, t) (A 33)

holds pointwise in space for Lebesgue almost every x. We can rewrite this equality
in terms of the PDF of the random variable θ̃ (x, t)= θ0(ξ̃

∗

t,0(x)) to assume the value
ψ or

p∗θ(ψ |x, t)=
∫

ddx0δ(ψ − θ0(x0))p∗(x0, 0|x, t), (A 34)

so that (A 33) becomes

h(θ∗(x, t))=
∫

dψh(ψ)p∗θ(ψ |x, t), (A 35)

with θ∗(x, t)=
∫

dψψp∗θ(ψ |x, t). Because of strict convexity of h, Jensen’s inequality
together with (A 35) immediately implies that p∗θ(ψ |x, t) is a delta distribution, or

p∗θ(ψ |x, t)= δ(ψ − θ∗(x, t)), (A 36)

and thus θ̃ (x, t) is deterministic. It should be noticed that this conclusion holds
for active as well as passive scalars. However, (A 36) by itself does not necessarily
contradict spontaneous stochasticity, because particle positions ξ̃ ∗t,0(x) may remain
random but sample only one isosurface of θ0 for a fixed value θ∗! This latter
possibility seems very unlikely to be true, even for an active scalar, for every choice
of θ0. However, we cannot presently rule out a possible ‘conspiracy’ for an active
scalar in which changing θ0 would always alter the velocity field u so that the
limiting particle positions ξ̃ ∗t,0(x) would remain in an isosurface of θ0. (Although
our proof does not work for active scalars, we conjecture that if there is some θ0
for which spontaneous stochasticity occurs for an active scalar, then there shall be
anomalous scalar dissipation for ‘generic’ perturbations of θ0. More formally, in
a neighbourhood of θ0, there shall be a dense Gδ set of scalar initial data which
produce anomalous dissipation. It should be noted that for passive scalars also we
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Fluctuation–dissipation relation 179

expect anomalous dissipation for generic θ0, although our proofs only guarantee
the existence of one initial datum leading to anomalous dissipation.) For a passive
scalar, fortunately, we are free to choose θ0(x) in a completely arbitrary manner
without altering the velocity field u, and we can then conclude that the particle
positions themselves must be deterministic. For example, one argument is to take
θ0(x) = xi, the ith coordinate of x in the periodic domain, which implies that each
ith coordinate of ξ̃ ∗t,0(x) must be deterministic. (If the periodic domain has diameter
Li in the ith direction, we can take −Li/2 6 xi < Li/2. Then, θ0(x)= xi is clearly not
continuous at xi = ±Li/2! This technical difficulty can be overcome, if p∗(x0, 0|x, t)
is a measurable function of x0, by choosing sequences of continuous functions θ0(x)
that converge to xi pointwise. A completely different and fully general approach
is to integrate (A 36) over ψ2, or, equivalently, to take h(θ) = θ 2, which gives∫

ddx0θ
2
0 (x0)p∗(x0, 0|x, t) =

∫
ddx0

∫
ddx′0θ(x0)θ(x′0)p∗(x0, 0|x, t)p∗(x0, 0|x, t), and to

use the argument of the preceding appendix A.2.) Since this clearly contradicts the
assumed spontaneous stochasticity of the limiting particle positions, we conclude that
for each strictly convex function h, there indeed must be anomalous scalar dissipation
for some initial data θ0.

Now, we assume instead that there is anomalous scalar dissipation, which means
that the ‘deficit’ in the ideally conserved integral

∆ν,κ(t)≡
∫

h(θ0(x0)) ddx0 −

∫
h(θ ν,κ(x, t)) ddx, t> 0 (A 37)

converges to some limiting value 1(t) > 0 as ν, κ → 0. Here, we have explicitly
indicated the dependence of the solution θ ν,κ(x, t) of the scalar advection–diffusion
equation upon ν, κ . More precisely, let θ0(x0) be continuous on Ω and consider

θ νk,κk(x, t)=
∫
Ω

ddx0 θ0(x0)pνk,κk(x0, 0|x, t), (A 38)

which is measurable in x and with scalar energies uniformly bounded as∫
Ω

ddx|θ νk,κk(x, t)|2 6
∫
Ω

ddx0 |θ0(x0)|
2 (A 39)

by Jensen’s inequality and volume conservation. From (i) of appendix A.1, we see
that

lim
k→∞

∫
Ω

ddx f (x)θ νk,κk(x, t)=
∫
Ω

ddx f (x)θ∗(x, t) (A 40)

for all f ∈C(Ω), where we have defined

θ∗(x, t)≡
∫
Ω

ddx0 θ0(x0)p∗(x0, 0|x, t), (A 41)

which satisfies ∫
Ω

ddx|θ∗(x, t)|2 6
∫
Ω

ddx0|θ0(x0)|
2 (A 42)

again by Jensen’s inequality using (ii) and the volume-conservation property (iii) of
appendix A.1. Because C(Ω) is dense in L2(Ω), the uniform L2-bounds (A 39), (A 42)
and the convergence (A 40) imply that θ νk,κk→ θ∗ weak in L2. Integral functionals

H[θ ] =
∫
Ω

ddxh(θ(x)) (A 43)
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for convex functions h and finite-measure sets Ω are weakly lower-semicontinuous on
L2(Ω) (e.g. Berkovitz (1974) or Braides (2002, § 2.2)), so that one has∫

Ω

ddxh(θ∗(x, t))6 lim inf
k→∞

∫
Ω

ddxh(θ νk,κk(x, t)). (A 44)

Now, we note that if ∆ν,κ(t)→1(t) as ν, κ→ 0, then for all sufficiently small ν, κ,
one has ∆ν,κ(t) >1(t)/2, say, or, in other words,∫

Ω

h(θ ν,κ(x, t)) ddx<
∫
Ω

h(θ0(x0)) ddx0 −
1
2
1(t). (A 45)

Combining this with the above results, we thus obtain∫
Ω

h(θ∗(x, t)) ddx 6
∫
Ω

h(θ0(x0)) ddx0 −
1
2
1(t) <

∫
Ω

h(θ0(x0)) ddx0. (A 46)

There must therefore be at least a positive-measure set (non-zero volume) of points x
for which

h(θ∗(x, t)) <
∫

h(θ0(x0))p∗(x0, 0|x, t) ddx0, (A 47)

since otherwise the inequality (A 46) would be violated. Because the analogue of (4.8)
holds for the limiting transition probability, i.e.

θ∗(x, t)=
∫

ddx0 θ0(x0)p∗(x0, 0|x, t), (A 48)

and when h is strictly convex, one can conclude that the limiting transition
probabilities p∗(x0, 0|x, t) obtained along the particular subsequence νn, κn → 0
are not delta distributions of type (3.4). Thus, spontaneous stochasticity must hold
for at least this positive-measure set of space points x. It should be noted that this
direction of the proof did not assume a passive scalar.

Appendix B. Averages of the FDR over random sources and initial data

We derive here the specific consequences of our FDR mentioned in § 2.

B.1. Steady-state relations (2.14) and (2.15)
We begin with our general steady-state formula (2.15). We consider compact space
domains Ω without boundary, although it is worth observing that identical results hold
for wall-bounded domains with no scalar flux through the wall (see Part II). We first
note that the contributions from the initial data θ0 all vanish in the limit t→∞, so
that

〈κ|∇θ |2〉Ω,∞ = lim
t→∞

1
2t

∫ t

0
ds
∫ t

0
ds′ Cov(S(ξ̃t,s(x), s), S(ξ̃t,s′(x), s′)). (B 1)

To see this, we observe that the finite-time FDR (2.12) can be expressed as
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1
t

∫ t

0
ds〈κ|∇θ(s)|2〉Ω =

1
2t
〈Var[θ0(ξ̃t,0(x))]〉Ω

+
1
t

〈
Cov

[
θ0(ξ̃t,0(x)),

∫ t

0
S(ξ̃t,s(x), s) ds

]〉
Ω

+
1
2t

〈
Var
[∫ t

0
S(ξ̃t,s(x), s) ds

]〉
Ω

. (B 2)

For bounded initial data, one has (1/2t)Var[θ0(ξ̃t,0(x))] 6 (max |θ0|)
2/t

t→∞
−→ 0. The

contribution of the covariance between the forcing and the initial term likewise gives
a vanishing contribution, since by the Cauchy–Schwartz inequality,∣∣∣∣1t Cov

[
θ0(ξ̃t,0(x)),

∫ t

0
S(ξ̃t,s(x), s) ds

]∣∣∣∣
6

√
1
t

Var[θ0(ξ̃t,0(x))] ·
1
t

Var
[∫ t

0
S(ξ̃t,s(x), s) ds

]
. (B 3)

Only the final variance term in (B 2) survives in the limit t→∞. Rewriting this using
the bilinearity of the covariance function gives (B 1).

Next, using the symmetry in s, s′ of the integrand, we can restrict the integration
range in (B 1) to s′ < s,

〈κ|∇θ |2〉Ω,∞ = lim
t→∞

1
t

∫ t

0
ds
∫ s

0
ds′ Cov(S(ξ̃t,s(x), s), S(ξ̃t,s′(x), s′)). (B 4)

We then divide the triangular region R= {(s, s′) : 0< s′ < s< t} into three subregions,

RI = {(s, s′) : 0< s′ < s< t− nτ },
RII = {(s, s′) : 0< s′ < t− 2nτ , t− nτ < s< t},

RIII = R\(RI ∪ RII),

 (B 5)

where τ is the scalar mixing time and n is a positive integer. Region RIII gives a
contribution that is O(n2τ 2/t) and can be neglected in the limit t→∞. In region RII ,
we can write

Cov(S(ξ̃t,s(x), s), S(ξ̃t,s′(x), s′))

=E[(E(S(ξ̃t,s′(x), s′)|ξ̃t,s(x))−E(S(ξ̃t,s′(x), s′)))S(ξ̃t,s(x), s)], (B 6)

where E(·|ξ̃t,s(x)) is the conditional average over the Brownian motion given the value
of ξ̃t,s(x). In region RII , both t− s′ > 2nτ and s− s′ > nτ , so that for n� 1 one may
use the ergodicity of the Lagrangian flow in physical space to obtain

E(S(ξ̃t,s′(x), s′)|ξ̃t,s(x))' 〈S(s′)〉Ω, E(S(ξ̃t,s′(x), s′))' 〈S(s′)〉Ω, (B 7)

which give nearly cancelling contributions in (B 6). Thus, this region makes an
arbitrarily small contribution for sufficiently large n. Finally, in region RI , we instead
write
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Cov(S(ξ̃t,s(x), s), S(ξ̃t,s′(x), s′))

=E[S(ξ̃t,s(x), s)S(ξ̃s,s′(ξ̃t,s(x)), s′)] −E(S(ξ̃t,s(x), s))E(S(ξ̃t,s′(x), s′)) (B 8)

using ξ̃t,s′ = ξ̃s,s′ ◦ ξ̃t,s. Since t − s′ > t − s > nτ in region RI , the random variables
ξ̃t,s(x), ξ̃t,s′(x) are nearly uniformly distributed over the domain Ω for n� 1, by the
ergodicity of the stochastic Lagrangian flow. By the strong Markov property, one thus
obtains in region RI that

Cov(S(ξ̃t,s(x), s), S(ξ̃t,s′(x), s′))' 〈S(s)E(S(ξ̃s,s′, s′))〉Ω − 〈S(s)〉Ω〈S(s′)〉Ω . (B 9)

The right-hand side can rewritten more compactly as a ‘truncated correlation function’

〈S(s)E(S(ξ̃s,s′, s′))〉Ω − 〈S(s)〉Ω〈S(s′)〉Ω
= 〈S̃L(s, s)S̃L(s, s′)〉E,Ω − 〈S̃L(s, s)〉E,Ω〈S̃L(s, s′)〉E,Ω
:= 〈S̃L(s, s)S̃L(s, s′)〉TE,Ω, (B 10)

where we have defined the Lagrangian source field S̃L(x, s, s′) = S(ξ̃s,s′(x), s′) as
sampled along stochastic trajectories for s′ < s and we have also introduced the
notation 〈·〉E,Ω for the joint average over Brownian motion and the space domain.
When the difference of the two sides of (B 9) is a function integrable over infinite
ranges and vanishing as n→∞, dominated convergence gives

〈κ|∇θ |2〉Ω,∞ = lim
n→∞

lim
t→∞

1
t

∫ t−nτ

0
ds
∫ s

0
ds′〈S̃L(s, s)S̃L(s, s′)〉TE,Ω . (B 11)

This non-vanishing contribution from region RI can be combined with vanishing
contributions from regions RII , RIII by the reverse of the preceding argument, to give

〈κ|∇θ |2〉Ω,∞ = lim
t→∞

1
t

∫ t

0
ds
∫ s

0
ds′〈S̃L(s, s)S̃L(s, s′)〉TE,Ω . (B 12)

To obtain the final result, we make the change of variables s′→ σ = s′− s, giving

〈κ|∇θ |2〉Ω,∞ = lim
t→∞

1
t

∫ t

0
ds
∫ 0

−s
dσ 〈S̃L(s, s)S̃L(s, s+ σ)〉TE,Ω

= lim
t→∞

1
t

∫ 0

−t
dσ
∫ t

−σ

ds〈S̃L(s, s)S̃L(s, s+ σ)〉TE,Ω (B 13)

after switching the order of integration. This can be rewritten as

〈κ|∇θ |2〉Ω,∞ = lim
t→∞

∫ 0

−t
dσ
(

1+
σ

t

)
〈〈S̃L(0, 0)S̃L(0, σ )〉TE,Ω〉[−σ ,t], (B 14)

where we have introduced the time average over the interval [−σ , t], σ < 0,

〈 f (0)〉[−σ ,t] :=
1

t+ σ

∫ t

−σ

ds f (s). (B 15)
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Assuming that the integrand in (B 14) is absolutely integrable uniformly in t, then the
dominated convergence theorem applies and we obtain

〈κ|∇θ |2〉Ω,∞ =

∫ 0

−∞

dσ 〈〈S̃L(0, 0)S̃L(0, σ )〉TE,Ω〉∞. (B 16)

Expression (B 16) is equivalent to formula (2.15) in the main text.
We now derive as a special case of (B 16) the result (2.14) for a statistical steady

state maintained by a random scalar source, delta-correlated in time. In addition to the
delta-in-time covariance (2.13), the source is assumed to satisfy the condition that the
ensemble average is zero and also that the space integral is zero in every realization,∫

Ω

ddx S̃(x, t)= 0 a.s. (B 17)

This latter condition means that there is no net input of scalar by the source. As a
consequence, the truncation terms in (B 16) vanish identically. Averaging the formula
(B 16) over the random source, the delta covariance (2.13) then implies that

κ〈|∇θ |2〉Ω,∞,S =
1
V

∫
Ω

ddx CS(x, x), (B 18)

where integration of the delta function δ(σ ) over σ ∈ [−∞, 0] gives a factor of 1/2.

B.2. Free decay relation (2.17)
Next, we derive from our general FDR the relation (2.17) of Sawford et al. (2005)
and Buaria et al. (2016) for a decaying passive scalar with a random initial linear
profile satisfying the statistical isotropy condition (2.16). To obtain this result, we note
that for any random variable X̃, Var(X̃) = E|X̃(1)

− X̃(2)
|
2/2, where X̃(1), X̃(2) are two

independent random variables identically distributed as X̃. Therefore, our FDR (2.12)
in the case of vanishing scalar sources and random scalar initial values can be re-
expressed as

κ

∫ t

0
ds〈|∇θ̃ (s)|2〉Ω =

1
4
〈E|θ̃0(ξ̃

(1)
t,0 )− θ̃0(ξ̃

(2)
t,0 )|

2
〉Ω . (B 19)

Assuming that θ̃0(x)= G̃ · x and averaging over random initial data using (2.16) gives

κ

∫ t

0
ds〈|∇θ̃ (s)|2〉Ω,θ0 =

1
4

G2
〈E1,2
|ξ̃
(1)
t,0 − ξ̃

(2)
t,0 |

2
〉Ω, (B 20)

which is (2.17).
The interest of this relation is that it directly connects the temporal evolution of the

mean scalar dissipation to two-particle dispersion of stochastic Lagrangian trajectories.
For example, it relates dissipative anomalies of scalar fluctuations and kinetic energy
if the Prandtl number is fixed and if the dispersion on the right-hand side of (B 20)
exhibits a Richardson scaling ∼εt3 with ε independent of ν. This relation can be used
to establish equivalence of spontaneous stochasticity and anomalous scalar dissipation
for situations that satisfy the specific assumptions under which it is derived. One can
obtain such a relation for more general initial data than linear profiles by instead

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

56
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.567


184 T. D. Drivas and G. L. Eyink

assuming only that the initial scalar field is smooth and that its second-order structure
function satisfies the pair of inequalities for all x, x′ ∈Ω that

cθ0 |x− x′|2 6 〈|θ̃0(x)− θ̃0(x′)|2〉θ0 6 Cθ0 |x− x′|2, (B 21)

for some constants 0 < cθ0 < Cθ0 <∞. Averaging (B 19) over such initial data then
yields

1
4

cθ0〈E|ξ̃
(1)
t,0 − ξ̃

(2)
t,0 |

2
〉Ω 6 κ

∫ t

0
ds〈|∇θ̃ (s)|2〉Ω,θ0 6

1
4

Cθ0〈E|ξ̃
(1)
t,0 − ξ̃

(2)
t,0 |

2
〉Ω . (B 22)

This gives upper and lower bounds for the cumulative scalar dissipation directly in
terms of the two-particle dispersion, which again relate anomalous scalar dissipation
to spontaneous stochasticity. If there is a smooth random scalar source whose structure
function satisfies bounds similar to (B 21), then one can obtain analogous bounds
relating cumulative scalar dissipation to the time-integrated two-particle dispersion.

Appendix C. Numerical methods
C.1. Methods for § 3

In order to integrate backward Itô stochastic differential equations (SDEs) (2.3) of the
form

d̂ξ̃(s)= u(ξ̃(s), s) ds+
√

2κ d̂W̃(s), (C 1)

we use a reflected time ŝ = tf − s which converts them into forward Itô stochastic
differential equations SDEs. The latter are integrated with the standard Euler–
Maruyama scheme (Kloeden & Platen 1992). We solved (C 1) with the Euler–
Maruyama scheme, which for additive noise is first order in both the weak and strong
senses (Kloeden & Platen 1992). The turbulent velocity field in (C 1) was retrieved
from the Johns Hopkins Turbulence Database with the getVelocity function, which
returns velocities at requested points interpolated in space by sixth-order Lagrange
polynomials and in time by piecewise-cubic Hermite polynomials. We used a time
step of 1s = 6.6 × 10−4, or one-third of the time between database frames. We
calculated statistics with averages over independent solutions of (C 1) and, to test
for weak convergence in the time integration, we doubled 1s, with relative change
<0.1 %.

To estimate particle dispersions and transition probability densities py(y′, 0|x, tf ), we
used N-sample ensembles of stochastic trajectories ξ̃n(s), n = 1, . . . , N, solving the
above SDE. The particle dispersions were calculated by the unbiased estimators

E1,2
[|ξ̃ (1)(s)− ξ̃ (2)(s)|2] .=

2
N(N − 1)

∑
n<m

|ξ̃n(s)− ξ̃m(s)|2

=
2

N − 1

N∑
n=1

|ξ̃n(s)− ξN(s)|
2, (C 2)

with ξN(s)= (1/N)
∑N

n=1 ξ̃n(s) as the sample mean. For large N, these are nearly the
same as

E1,2
[|ξ̃ (1)(s)− ξ̃ (2)(s)|2] .=

2
N

N∑
n=1

|ξ̃n(s)−E[ξ̃(s)]|2, (C 3)
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FIGURE 2. (Colour online) The L1-differences of PDF estimates for successive bandwidths
hj are plotted for Pr= 0.1 (green, dot, · · · · · ·), 1.0 (blue, dash–dot, — · —) and 10 (red,
dash, – – –). The optimum bandwidths correspond to the local minima at the smallest hj
values, marked with a filled star (?) on the plots.

which is twice the sample average over N independent random variables each with
the same distribution as |ξ̃(s) − E[ξ̃(s)]|2. Our error bars for the particle dispersion
are thus taken to be twice the s.e.m. for this N-sample average.

To estimate the position PDFs, we used kernel density estimator methods (Silverman
1986). For the y-coordinate at time 0 of the particle ξ̃(0)= (ξ̃ (0), η̃(0), ζ̃ (0)) started
at x at time tf , one has for a grid y′i of possible y-values

p̃h(y′i, 0|x, tf )
.
=

1
N

N∑
n=1

Kh(η̃n(0)− y′i), (C 4)

where Kh(y) = (1/h)K(y/h) is a filter kernel with bandwidth h. We take K to be
a Gaussian with unit variance and we choose the bandwidth h by the ‘principle
of minimal sensitivity’ from renormalization-group theory (Stevenson 1981). The
latter procedure is based upon the observation that, when the number N of samples
is sufficiently large for the average in (C 4) to be converged to the convolution
(Kh ∗ p)(y′i, 0|x, tf ), then the result will be independent of h for any value less than
the scale of variation of the limit PDF. Since this is an exact invariance property of
the limiting result, the ‘principle of minimal sensitivity’ selects the optimal bandwidth
h∗ for finite N so that varying the bandwidth has minimal effect on the PDF estimate.
Precisely, one picks h∗ by considering a decreasing sequence of candidate values hj,
computing the L1-difference 1p̃(hj) := ‖p̃hj − p̃hj−1‖L1 for successive bandwidths, and
picking h∗ where 1p̃(hj) is most nearly flat. This procedure is illustrated in figure 2
for the particle position PDFs that were presented in figure 1( f ), but using N = 1024
samples. The L1-differences are plotted versus hj in figure 2 for the three choices
of Prandtl number. The bandwidths chosen correspond to the local minima for each
curve at the smallest hj value indicated by the star (?) on the graph, i.e. h∗/η ≈ 16
for Pr = 0.1, h∗/η ≈ 26 for Pr = 1, h∗/η ≈ 39 for Pr = 10. In some cases, we did
not observe local minima as in figure 2, and in those instances our procedure was
to select as ‘optimal’ bandwidth h∗ the smallest hj in an interval where the plot of
1p̃(hj) versus hj had a slope of magnitude less than 0.01.
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Finally, after selecting the optimal bandwidth h∗, we obtained the sample-size error
for the PDF estimate as the s.e.m. for the sample average (C 4) over N independent
random variables identically distributed as Kh∗(η̃(0)− y′i), with bandwidth h∗ fixed. In
addition to this statistical error, an additional source of error arises from the choice of
h∗. To assess this, we recalculated the kernel density estimator with a 10 % increase
in bandwidth, or 1.1h∗, and took the absolute difference in the two PDF estimates as
a measure of the error associated with small variations in bandwidth. The two types
of errors were found to have more or less comparable magnitudes, and the error bars
in figure 1(e, f ) represent the total error obtained from their sum.

REFERENCES

ALBEVERIO, S. & BELOPOLSKAYA, YA. 2010 Generalized solutions of the Cauchy problem for the
Navier–Stokes system and diffusion processes. Cubo (Temuco) 12 (2), 77–96.

BATCHELOR, G. K. 1951 Pressure fluctuations in isotropic turbulence. Math. Proc. Camb. Phil. Soc.
47 (2), 359–374.

BERG, J., LÜTHI, B., MANN, J. & OTT, S. 2006 Backwards and forwards relative dispersion in
turbulent flow: an experimental investigation. Phys. Rev. E 74, 016304.

BERKOVITZ, L. D. 1974 Lower semicontinuity of integral functionals. Trans. Am. Math. Soc. 192,
51–57.

BERNARD, D., GAWȨDZKI, K. & KUPIAINEN, A. 1998 Slow modes in passive advection. J. Stat.
Phys. 90, 519–569.

BIFERALE, L., BOFFETTA, G., CELANI, A., LANOTTE, A. & TOSCHI, F. 2005 Particle trapping in
three-dimensional fully developed turbulence. Phys. Fluids 17 (2), 021701.

BIFERALE, L., LANOTTE, A. S., SCATAMACCHIA, R. & TOSCHI, F. 2014 Intermittency in the
relative separations of tracers and of heavy particles in turbulent flows. J. Fluid Mech. 757,
550–572.

BITANE, R., HOMANN, H. & BEC, J. 2013 Geometry and violent events in turbulent pair dispersion.
J. Turbul. 14 (2), 23–45.

BOFFETTA, G. & SOKOLOV, I. M. 2002 Relative dispersion in fully developed turbulence: the
Richardson’s law and intermittency corrections. Phys. Rev. Lett. 88, 094501.

BRAIDES, A. 2002 Gamma-Convergence for Beginners. Oxford University Press.
BUARIA, D., YEUNG, P. K. & SAWFORD, B. L. 2016 A Lagrangian study of turbulent mixing:

forward and backward dispersion of molecular trajectories in isotropic turbulence. J. Fluid
Mech. 799, 352–382.
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