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Abstract We discuss some questions related to the generation of supersoluble groups. First we prove
that the number of elements needed to generate a finite supersoluble group G with good probability can
be quite a lot larger than the smallest cardinality d(G) of a generating set of G. Indeed, if G is the free
prosupersoluble group of rank d � 2 and dP(G) is the minimum integer k such that the probability of
generating G with k elements is positive, then dP(G) = 2d + 1. In contrast to this, if k − d(G) � 3,
then the distribution of the first component in a k-tuple chosen uniformly in the set of all the k-tuples
generating G is not too far from the uniform distribution.
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1. Introduction

It is well known that a profinite group G, being a compact topological group, can be seen
as a probability space. If we denote by μ the normalized Haar measure on G, so that
μ(G) = 1, the probability that k random elements generate G is defined as

PG(k) = μ({(x1, . . . , xk) ∈ Gk | 〈x1, . . . , xk〉 = G}),

where μ also denotes the product measure on Gk. A profinite group G is said to be
positively finitely generated (PFG) if PG(k) is positive for some natural number k, and
the least such natural number is denoted by dP(G). Not all finitely generated profinite
groups are PFG; for example, if F̂ d is the free profinite group of rank d � 2, then
PF̂d

(t) = 0 for every t � d (see, for example, [8]). However, Mann proved that finitely
generated prosoluble groups are PFG [11]. In [10, 12] it was proved that if F̂ d,sol is
the free prosoluble group of rank d � 2, then dP(F̂ d,sol) = �c(d − 1) + 1�, with c =
log9 48+ 1

3 log9 24+1 � 3.243 the Pálfy–Wolf constant. As a consequence, if G is a finitely
generated prosoluble group with d(G) �= 1, then dP(G) � �c(d(G) − 1) + 1�. For several
prosoluble groups this inequality is far from being sharp. For example, dP(G) � d(G)+1
if G is pronilpotent. The first aim of this paper is to investigate the value of dP(G)
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when G is a finitely generated prosupersoluble group. We will prove that in this case
dP(G) � 2 d(G) + 1, and this result is the best possible. Indeed, we have the following
theorem.

Theorem 1.1. If G is the free prosupersoluble group of rank d � 2, then dP(G) =
2d + 1.

In the second part of the paper we study the bias of group generators in the case of finite
supersoluble groups. Let us first recall some definitions. Given a finite group G, a sequence
of t group elements (g1, . . . , gt) is called a generating t-tuple of G if 〈g1, . . . , gt〉 = G. Let
QG,t be the probability distribution on G of the first components of t-tuples chosen
uniformly from the set ΦG(t) of all generating t-tuples of G. We estimate the bias of
the distribution QG,t considering the variation distance between QG,t and the uniform
distribution UG:

βt(G) = ‖QG,t − UG‖tv = max
B⊆G

|QG,t(B) − UG(B)| = 1
2

∑
g∈G

∣∣∣∣QG,t(g) − 1
|G|

∣∣∣∣.
We have that 0 � βt(G) � 1, and the smaller βt(G) is, the closer is QG,t to the uniform
distribution UG. The invariant βt(G) plays a crucial role when one analyses the efficiency
of the ‘product replacement algorithm’, a practical algorithm to construct random ele-
ments of a finite group, designed by Leedham-Green and Soicher (see [2,14]). For the
product replacement algorithm to generate ‘random’ group elements, it is necessary that
QG,t be close to UG. In [1] Babai and Pak demonstrated a defect in the product replace-
ment algorithm: for certain groups, QG,t is far from UG. We can reformulate their result
in the context of profinite groups. Indeed, let G be a t-generated profinite group: G is the
inverse limit of its finite epimorphic images G/N , where N runs over the set N of the
open normal subgroups of G and for every choice of N ∈ N two probability distributions
QG/N,t and UG/N are defined on the quotient group G/N ; this allows us to consider G as
a measure space obtained as an inverse system of finite probability spaces in two different
ways. One of the two measures obtained in this way is the usual normalized Haar measure
μG. The other measure κG,t has the property that κG,t(X) = infN∈N QG/N,t(XN/N)
for every closed subset X of G. We estimate the bias of the measure κG,t by considering

βt(G) = ‖κG,t − μG‖tv = sup
B∈B(G)

|κG,t(B) − μG(B)| = sup
N∈N

βt(G/N),

where B(G) is the set of measurable subsets of G. The result of Babai and Pak implies
that if F̂ 2 is the free profinite group of rank 2 and t � 4, and then βt(F̂ 2) = 1. In [14]
Pak proposed the following problem: can one exhibit the bias for a sequence of finite
soluble groups? In other words, can we produce a sequence of t-generated finite soluble
groups Hn such that βt(Hn) → 1 as n → ∞? Equivalently, does there exist a t-generated
prosoluble group G with βt(G) = 1? It is not difficult to give an affirmative answer in
the particular case when t = d(G). For example, in [3] it was proved that there exists a
2-generated metabelian profinite group G with the property that

μG({x ∈ G | 〈x, y〉 = G for some y ∈ G}) = 0.
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A more important and intriguing question is whether we can find a finitely generated
prosoluble group G with the property that βt(G) = 1 for some integer t significantly larger
than d(G). It follows from [14, Proposition 1.5.1] that if G is a t-generated profinite group,
then βt(G) � 1 − PG(t), and so we can have βt(G) = 1 only if t < dP(G). In particular,
if G is a t-generated prosoluble group with βt(G) = 1, then t < c(d(G) − 1) + 1, c being
the Pálfy–Wolf constant, and therefore the ratio between t and the smallest cardinality
d(G) of a generating set of G cannot be arbitrarily large. However, in [3] examples are
given of prosoluble t-generated groups G with βt(G) = 1 where the difference t − d(G)
tends to infinity as d(G) → ∞: if d � 3 and 2k � d − 3, then there exists a sequence
of d-generated finite soluble groups Jn such that limn→∞ βd+k(Jn) = 1. The groups
described in [3] have a quite intricate structure and one would like to produce easier
examples. These cannot be obtained just by considering pronilpotent groups, as in this
case dP(G) � d(G) + 1. But by Theorem 1.1, if G is the free prosupersoluble group of
rank d � 2, then dP(G) − d(G) = d + 1, so one could expect to have βd+k(G) = 1 for k

significantly larger than d. However, we will prove that this is not what occurs. In fact
we have the following theorem.

Theorem 1.2. If G is a non-cyclic finite supersoluble group and k � 3, then

βd(G)+k(G) � 6
10 .

This shows that, given a t-generated profinite group G, the condition PG(t) > 0 is
sufficient to have βt(G) < 1, but is quite far from being necessary. Indeed, the inequality
βt(G) � 1 − PG(t) is not sharp; in particular, we prove the following theorem.

Theorem 1.3. For every positive real number ε there exist a positive integer t and a
t-generated prosupersoluble group G such that PG(t) = 0 and βt(G) � ε.

2. Proof of Theorem 1.1

Let G be the free prosupersoluble group of rank d � 2. In this section we want to
compute the probability PG(t) that t randomly chosen elements of G generate G. Let
{pn}n∈N be the sequence of the prime numbers in increasing order and for each m ∈ N

let πm = {p1, . . . , pm}. For every n ∈ N, G has a unique π′
n-Hall subgroup, say Kn

(see, for example, [13, Proposition 3.5]). Let Gn = G/Kn and Hn = Gn/Frat(Gn).
By [11, Theorem 1], we have

PG(t) = lim
n→∞

PGn(t) = lim
n→∞

PHn(t). (2.1)

The group Hn is finite [13, Theorem 3.8] and metabelian [13, Proposition 3.5]. We
compute PHn(t) using a formula due to Gaschütz [5, Satz 4]. Let X be a finite soluble
group and let A be an irreducible X-module. The number δX(A) of complemented factors
X-isomorphic to A in a chief series of X is independent of the choice of the chief series
and

PX(t) =
∏
A

( ∏
0�i�δX(A)−1

1 − |EndX(A)|i|A|θX(A)

|A|t

)
, (2.2)
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where A runs over the set of the X-irreducible modules and θX(A) = 0 or 1 according to
whether A is the trivial X-module or not. In the supersoluble group Hn any chief factor
is cyclic of prime order, so we have

PHn
(t) =

∏
p∈πn

( ∏
|A|=p

( ∏
0�i�δHn (A)−1

1 − |EndHn
(A)|i|A|θHn (A)

|A|t

))
.

We need to know how many pairwise non-Hn-isomorphic Hn-modules of order p are there
and, for each of these, to estimate the value of δHn(A). Firstly, A is isomorphic to the
cyclic group Cp of order p ∈ πn, so EndHn(A) is a field with p elements. Any action of
Hn over Cp is identified by a homomorphism φ : Hn → Aut(Cp) ∼= Cp−1. Any generator
of Hn can be sent to any element of Cp−1, so there are (p − 1)d choices for φ. We are
sure that two modules obtained by two different homomorphisms φ1 and φ2 are not
Hn-isomorphic. Indeed, in this case we should have an automorphism α ∈ Aut(Cp) such
that (xhφ1 )α = (xα)hφ2 for every x ∈ Cp and h ∈ Hn. This implies that hφ1α = αhφ2 for
every h, and then φ1 = φ2 because Aut(Cp) ∼= Cp−1 is abelian. It remains to estimate
δHn

(A). Let YA = Hn/CHn
(A) � Aut(A) and for any positive integer t consider the semi-

direct product LA,t = At
� YA, where YA acts in the same way on each of the t direct

factors. Since A ∼= Cp with p ∈ πn and YA is cyclic of order dividing p−1, LA,t is a finite
supersoluble πn-group. Moreover, it follows from (2.2) that LA,t is d-generated if and
only if t � d − θHn(A). But then LA,t is an epimorphic image of the free prosupersoluble
group G of rank d (and consequently of Hn) if and only if t � d − θHn(A). On the other
hand, it follows from the results proved by Gaschütz [6] that LA,t is an epimorphic image
of Hn if and only if t � δHn

(A). By these two observations we have δHn
(A) = d−θHn

(A).
So

PHn(t) =
∏

p∈πn

( ∏
|A|=p

( ∏
0�i�δHn (A)−1

1 − |EndHn
(A)|i|A|θHn (A)

|A|t

))

=
∏

p∈πn

(( d−2∏
i=0

1 − pi+1

pt

)αp
( d−1∏

i=0

1 − pi

pt

))

=
∏

p∈πn

(( d−1∏
i=1

1 − pi

pt

)αp
( d−1∏

i=0

1 − pi

pt

))
,

where αp = (p−1)d −1; the first factor involves all non-trivial Hn-submodules A of order
p, and the second factor regards the trivial Hn-submodule. But then, by (2.1), we obtain

PG(t) =
∏
p

(( d−1∏
i=1

1 − pi

pt

)αp
( d−1∏

i=0

1 − pi

pt

))
.

We are looking for the minimum integer t such that PG(t) > 0. Since the factors in
this product lie between 0 and 1, writing the product as

∏
n(1 + xn), its convergence is

equivalent to the convergence of the sum
∑

n xn. Hence, PG(t) is positive if and only if
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the sum ∑
p

( d−1∑
i=1

(
(p − 1)d − 1

)
pi

pt
+

d−1∑
i=0

pi

pt

)
∼

∑
p

p2d−1

pt

is convergent, i.e. if and only if t � 2d + 1.

3. Some properties of βt(G)

Given a finite group G and a subset X of G, for any positive integer t let φG(X, t)
denote the number of ordered t-tuples (g1, . . . , gt) of group elements such that G =
〈X, g1, . . . , gt〉. The number

PG(X, t) =
φG(X, t)

|G|t

is the probability that t randomly chosen elements generate G together with the elements
of the subset X. We will write PG(g, t) instead of PG({g}, t) and PG(t) instead of PG(∅, t).

Now let t be a positive integer with d(G) � t. Let QG,t be the probability distribution
of the first component of (g1, . . . , gt), where (g1, . . . , gt) is selected uniformly at random
from among all the t-tuples that generate G. So if X ⊆ G, then QG,t(X) is the probability
that g1 ∈ X given that 〈g1, . . . , gt〉 = G. In particular,

QG,t(X) =
∑

x∈X |ΦG(x, t − 1)|
|ΦG(t)| =

∑
x∈X PG(x, t − 1)

PG(t)|G| .

We estimate the bias of the distribution QG,t considering the variation distance between
QG,t and UG:

‖QG,t − UG‖tv = max
B⊆G

|QG,t(B) − UG(B)| = 1
2

∑
g∈G

∣∣∣∣QG,t(g) − 1
|G|

∣∣∣∣.
We will use the notation

βt(G) := ‖QG,t − UG‖tv and σG,t(g) :=
PG(g, t − 1)

PG(t)
.

Moreover, let

Δ+
G(t) = {g ∈ G | PG(g, t − 1) � PG(t)}, Δ−

G(t) = {g ∈ G | PG(g, t − 1) < PG(t)}.

We have

βt(G) =
1

2|G|
∑
g∈G

|σG,t(g) − 1| =
1

2|G|

( ∑
g∈Δ+

G(t)

(σG,t(g) − 1) +
∑

g∈Δ−
G(t)

(1 − σG,t(g))
)

.

On the other hand, ΦG(t) is the disjoint union of the subsets ΦG(g, t − 1), g ∈ G, and
hence

∑
g∈G σG,t(g) = |G|, and therefore( ∑

g∈Δ+
G(t)

(σG,t(g) − 1)
)

+
( ∑

g∈Δ−
G(t)

(σG,t(g) − 1)
)

= 0
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and

βt(G) =
1

|G|

( ∑
g∈Δ+

G(t)

(σG,t(g) − 1)
)

=
1

|G|

( ∑
g∈Δ−

G(t)

(1 − σG,t(g))
)

. (3.1)

Assume that N is a normal subgroup of the finite group G. We want to compare
βt(G) and βt(G/N). First we need to study the relation between the two probability
distributions QG,t and QG/N,t. Let Ḡ = G/N and, for any g ∈ G, denote by ḡ the
element gN of Ḡ.

Lemma 3.1 (Crestani and Lucchini [3, Lemma 4]). QG,t(gN) = QḠ,t(ḡ).

Proposition 3.2. If N � G and t � d(G), then βt(G) � βt(G/N). Equality holds if
and only if (σG,t(g1) − 1)(σG,t(g2) − 1) � 0 whenever g1 and g2 are in the same coset of
N in G.

Proof. Let g1, . . . , gm be a transversal of N in G. We have

βt(G) = 1
2

( ∑
g∈G

∣∣∣∣QG,t(g) − 1
|G|

∣∣∣∣
)

= 1
2

( ∑
1�i�m

( ∑
n∈N

∣∣∣∣QG,t(gin) − 1
|G|

∣∣∣∣
))

� 1
2

( ∑
1�i�m

∣∣∣∣ ∑
n∈N

(
QG,t(gin) − 1

|G|

)∣∣∣∣
)

= 1
2

( ∑
1�i�m

∣∣∣∣QG,t(giN) − |N |
|G|

∣∣∣∣
)

= 1
2

( ∑
1�i�m

∣∣∣∣QḠ,t(gi) − 1
|Ḡ|

∣∣∣∣
)

= βt(Ḡ).

To conclude, notice that the equality holds if and only if for each i ∈ {1, . . . , m} we have

∑
n∈N

∣∣∣∣QG,t(gin) − 1
|G|

∣∣∣∣ =
∣∣∣∣ ∑

n∈N

(
QG,t(gin) − 1

|G|

)∣∣∣∣
or, equivalently, ∑

n∈N

|σG,t(gin) − 1| =
∣∣∣∣ ∑

n∈N

(σG,t(gin) − 1)
∣∣∣∣.

This is equivalent to saying that (σG,t(gin1)−1)(σG,t(gin2)−1) � 0 for every n1, n2 ∈ N .
�

If f ∈ Frat(G), the Frattini subgroup of G, then PG(g, t) = PG(gf, t) for each g ∈ G.
This implies that σG,t(g1) = σG,t(g2) whenever g1 Frat(G) = g2 Frat(G), and therefore,
by the previous proposition, βt(G) = βt(G/N) whenever N � FratG.
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4. Proofs of Theorems 1.2 and 1.3

Before we start with the proof of Theorem 1.2, we need to recall some results that make
it possible to compute PG(x, t − 1) and consequently σG,t(g).

Let R be the ring of Dirichlet polynomials P (s) =
∑

n an/ns with integer coefficients.
As was noticed by Hall [7], applying the Möbius inversion formula we obtain

φG(X, t) =
∑

X⊆H�G

μ(H, G)|H|t, (4.1)

where μ is the Möbius function associated with the subgroup lattice of G. In view of
(4.1) we may write

PG(X, t) =
∑

X⊆H�G

μ(H, G)
|G : H|t . (4.2)

By rearranging the summands in (4.2) we obtain a Dirichlet polynomial as follows:

PG(X, s) :=
∑
n∈N

an

ns
where an :=

∑
|G:H|=n,
X⊆H�G

μ(H, G).

Let 1 = Nl � · · · � N0 = G be a chief series of G. In [9] it is proved that to each
chief factor Ni−1/Ni one can associate a Dirichlet polynomial PG/Ni,Ni−1/Ni

(X, s) with
integer coefficients with the property that

PG(X, s) =
∏

1�i�l

PG/Ni,Ni−1/Ni
(X, s). (4.3)

In particular, if N is a normal subgroup of G, then there exists PG,N (X, s) ∈ R with
PG(X, s) = PG/N (XN/N, s)PG,N (X, s). More precisely, we have (see [9, Proposition 16])

PG,N (X, t) =
∑

X⊆H, NH=G

μ(H, G)
|G : H|t . (4.4)

When G is soluble the factorization of PG(X, s) given by (4.3) is particularly simple.
It was studied when X = ∅ by Gaschütz [5], and in [9] it is noted that Gaschütz’s
arguments can be generalized for arbitrary choices of X. The Dirichlet polynomial
PG/Ni,Ni−1/Ni

(X, s) corresponding to the chief factor Ni−1/Ni can be easily described
via

PG/Ni,Ni−1/Ni
(X, s) = 1 − ci

|Ni−1/Ni|s
,

where ci is the number of complements of Ni−1/Ni in G/Ni containing XNi/Ni. In
particular, PG/Ni,Ni−1/Ni

(s) = 1 if there is no complement of Ni−1/Ni in G/Ni containing
XNi/Ni (in this case we will say that Ni−1/Ni is an X-Frattini factor of G).

We are going to apply the previous consideration to the proof of Theorem 1.2. Let J

be a finite supersoluble group with d = d(G) � 2. Clearly, J is an epimorphic image of
the free prosupersoluble group G of rank d, which was studied in § 2. Using the same
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notation, there exists n ∈ N with the property that all the prime divisors of |J | belong to
πn, so J is indeed an epimorphic image of Gn, and therefore J/FratJ is an epimorphic
image of Hn = Gn/Frat(Gn). It follows from Proposition 3.2 that

βd+k(J) = βd+k(J/FratJ) � βd+k(Hn),

and therefore in order to prove Theorem 1.2 it suffices to show that βd+k(Hn) � 0.6 if
k � 3.

Notice that Hn has the following structure. Let tn := lcm{p(p − 1) | p ∈ πn}. There
are αp = (p − 1)d − 1 non-trivial homomorphisms ρp,1, . . . , ρp,αp from Y = (Ctn)d to
Aut(Cp) ∼= Cp−1 and we have

Hn
∼=

( ∏
p∈πn

( ∏
1�j�(p−1)d−1

W d−1
p,j

))
� Y,

where Wp,j
∼= Cp and, for each y ∈ Y and w ∈ Wp,j , wy = wyρp,j . For any pair

(p, j) ∈ πn × {1, . . . , αp} let Up,j = W d−1
p−1 and let W =

∏
p,j Up,j . We will denote by πp,j

the projection πp,j : W → Up,j .

Lemma 4.1. Let h = wy ∈ Hn with w ∈ W and y ∈ Y . Define

Γp,h = {j ∈ {1, . . . , αp} | y ∈ ker ρp,j}, γp,h = |Γp,h|,
Λp,h = {j ∈ Γp,h | w ∈ ker πp,j}, λp,h = |Λp,h|,

εp,y =

{
0 if y /∈ Y p,

1 otherwise.

We have

σHn,d+k(h) =
∏

p∈πn

(1 − εp,y/pk)
(1 − 1/pd+k)

(1 − 1/pk)λp,h

(1 − 1/pd+k−1)γp,h
.

Proof. We have

σHn,d+k(h) =
PHn(h, d + k − 1)

PHn(d + k)
=

PY (y, d + k − 1)
PY (d + k)

PHn,W (h, d + k − 1)
PHn,W (d + k)

.

We also have
PY (y, d + k − 1)

PY (d + k)
=

PV (v, d + k − 1)
PV (d + k)

,

where V = Y/FratY ∼=
∏

p∈πn
Cd

p and v = y FratY . Let ω be the set of the prime
divisors of |v|. Then

PV (v, d + k − 1) =
∏
p∈ω

( ∏
0�u�d−2

(1 − pu/pd+k−1)
) ∏

p∈πn\ω

( ∏
0�u�d−1

(1 − pu/pd+k−1)
)

.
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It follows that

PV (v, d + k − 1)
PV (d + k)

=

∏
p∈ω(

∏d−2
0=u(1 − pu/pd+k−1))

∏
p∈πn\ω(

∏d−1
0=u(1 − pu/pd+k−1))∏

p∈πn
(
∏d−1

0=u(1 − pu/pd+k))

=
( ∏

π∈ω

1
1 − p−(d+k)

)( ∏
p∈πn\ω

1 − p−k

1 − p−(d+k)

)
.

Since p ∈ ω if and only if y /∈ Y p, we conclude that

PY (y, d + k − 1)
PY (d + k)

=
PV (a, d + k − 1)

PV (d + k)
=

∏
p∈πn

(1 − εp,y/pk)
(1 − p−(d+k))

.

The Y -modules Wp,j are pairwise non-Y -isomorphic and not Y -isomorphic to any non-
Frattini chief factor of Y . It follows from [9, Theorems 19 and 20] that this implies
that

PHn,W (h, d + k − 1)
PHn,W (d + k)

=
∏
p,j

PHn,Up,j (h, d + k − 1)
PHn,Up,j (d + k)

.

The value of PHn,Up,j (h, d+k−1)/PHn,Up,j
(d + k) can be determined using [3, Lemmas 5

and 6]. We have

PHn,Up,j
(h, d + k − 1)

PHn,Up,j
(d + k)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if j /∈ Γp,h,

1 − 1/pk

1 − 1/pd+k
if j ∈ Λp,h,

1
1 − 1/pd+k

if j ∈ Γp,h \ Λp,h,

and from this our formula can be immediately deduced. �

Now it follows from Lemma 4.1 that for every h ∈ Hn we have

σHn,d+k(h) �
∏

p∈πn

(
1 − 1

pd+k

)−1(
1 − 1

pd+k−1

)−αp

�
∏

p∈πn

(
1 − 1

pd+k−1

)−(p−1)d

�
∏

p∈πn

(
1 − 1

pd+k−1

)−pd

=
∏

p∈πn

((
1 − 1

pd+k−1

)−pd+k−1)p1−k

.

Assume that k � 3. Since (1 − 1/n)−n is a decreasing function, we obtain(
1 − 1

pd+k−1

)−pd+k−1

�
(

1 − 1
24

)−24

= a � 2.8084.

https://doi.org/10.1017/S0013091515000504 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091515000504


908 E. Crestani, G. De Franceschi and A. Lucchini

Given n ∈ N, let Nn =
∑

p 1/pn. We have

σHn,d+k(h) �
∏
p

ap1−k � a
∑

p 1/pk−1 � aNk−1 � aN2 . (4.5)

Since (see, for example, [4, p. 95])

N2 =
∑

p

1
p2 =

∞∑
k=1

μ(k)
k

ln(ζ(2k)) = 0.4522474200 · · · ,

we have
σHn,d+k(h) � aN2 � 16

10 .

But then, by (3.1), we conclude that

βd+k(Hn) =
1

|Hn|

( ∑
h∈Δ+

Hn
(d+k)

(σHn,d+k(h) − 1)
)

�
|Δ+

Hn
(d + k)|

|Hn|
6
10

� 6
10

and this finishes the proof of Theorem 1.2.
With the same argument we obtain that

βd+k(Hn) =
1

|Hn|

( ∑
h∈Δ+

Hn
(d+k)

(σHn,d+k(h) − 1)
)

� aNk−1 − 1.

Now let ε be a positive real number. Since limm→∞ Nm = 0, there exists mε ∈ N such
that aNmε − 1 � ε. Let d = mε, t = 2mε and consider the free prosupersoluble group of
rank d: dP(G) = 0, by Theorem 1.1, while

βt(G) = inf
n∈N

βt(Hn) � aNmε − 1 � ε,

and this proves Theorem 1.3.
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