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Abstract In this paper we consider the existence of a positive solution to boundary-value problems
with non-local nonlinear boundary conditions, the archetypical example being −y′′(t) = λf(t, y(t)),
t ∈ (0, 1), y(0) = H(ϕ(y)), y(1) = 0. Here, H is a nonlinear function, λ > 0 is a parameter and ϕ is a
linear functional that is realized as a Lebesgue–Stieltjes integral with signed measure. By requiring ϕ

to decompose in a certain way, we show that this problem has at least one positive solution for each
λ ∈ (0, λ0), for a number λ0 > 0 that is explicitly computable. We also give a separate result that holds
for all λ > 0.
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1. Introduction

In this paper we consider the boundary-value problem (BVP)

−y′′(t) = λf(t, y(t)), t ∈ (0, 1),

y(0) = H(ϕ(y)),

y(1) = 0,

(1.1)

where λ > 0 is a parameter, H : R → R is a continuous function, and ϕ : C([0, 1]) → R is
a linear functional, which we realize in the form

ϕ(y) =
∫

[0,1]
y(t) dα(t), (1.2)

where α ∈ BV([0, 1]). As is explained later, our results easily extend to more general
problems such as the perturbed Hammerstein integral equation

y(t) = ξ(t)H(ϕ(y)) +
∫ 1

0
K(t, s)f(s, y(s)) ds
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for a suitable function ξ and kernel K, which means that we can easily adapt our results
to treat a variety of nonlinear, non-local boundary conditions in (1.1). In any case, since
α need not be monotone in (1.2), we allow for the possibility that the measure associated
with the integrator α is signed. Due to the presence of the nonlinear boundary condition
(BC) as well as the fact that the measure associated with α is signed, it is unclear
whether (1.1) can admit a non-trivial, positive solution. In addition to this abstract
mathematical interest, BVPs equipped with non-local BCs are of interest in, for example,
modelling the heat flow through a bar when the bar is equipped with heat sources that
respond to the temperature at different locations along the bar (see, for example, [17]).
In this context, the non-local boundary conditions can be interpreted as representing this
temperature control and regulation.

The literature on BVPs with non-local, linear BCs is extensive and culminates with
a paper by Infante and Webb [33], which provides a unified theory for BVPs with lin-
ear non-local boundary conditions wherein the BCs are realized as Lebesgue–Stieltjes
integrals of the form of (1.2). The archetypical BVP considered in [33] can be realized
as

−y′′(t) = f(t, y(t)), t ∈ (0, 1),

y(0) =
∫

[0,1]
y(s) dA(s),

y(1) =
∫

[0,1]
y(s) dB(s),

(1.3)

where the integrators A and B are of class BV([0, 1]) and are not necessarily monotone.
Consequently, the well-studied multipoint BCs, as well as linear, integral BCs, are then
included as special cases. In any case, the particularly clever insight provided by Infante
and Webb [33] was to consider the cone{

y ∈ C([0, 1]) : y(t) � 0, min
t∈[a,b]

y(t) � γ‖y‖,

∫
[0,1]

y(s) dA(s) � 0,

∫
[0,1]

y(s) dB(s) � 0
}

,

where γ ∈ (0, 1] is a constant and 0 < a < b < 1. Proving the existence of a solution
to problem (1.3) by means of the above cone is then quite easy and standard. It turns
out that the introduction of this new cone is useful in a wide variety of non-local BVPs.
Indeed, since the appearance of this result, the ideas of Infante and Webb have been
extended in a number of different directions by numerous authors; see, for example, [1–7,
11,14,15,19,20,23–25,29–32,34,35] and references therein for some of these extensions
as well as other recent advances in non-local BVPs.

Related more closely to problem (1.1), there have been some attempts at combining
the concept of the very general non-locality captured by (1.2) with a nonlinear bound-
ary condition. Some early attempts were provided by Kang and Wei [26] as well as
by Yang [36–39] and some more recent ones by Infante [16], and Infante and Pietra-
mala [17, 18, 21, 22]. Often in these papers, however, somewhat restrictive growth is
imposed on H, e.g. there exist 0 � η1 < η2 such that η1z � H(z) � η2z for all
z ∈ [0, +∞); note that this does not even allow the map z �→ zρ for any ρ �= 1. It
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would be better if the growth assumption on H was allowed, for instance, to be captured
asymptotically, much as is frequently imposed on the nonlinearity f . In addition, each of
these results requires that the integrator α appearing in (1.2) be monotone increasing.

In this paper we wish to provide some extensions of the ideas we initiated in [10],
which we subsequently partially extended to the case of systems in [8,9]. In particular,
a principal assumption we make is that

lim
z→∞

|H(z) − C2z|
z

= 0 (1.4)

for some constant C2 � 0, a condition that we used in [10]. It is perhaps worth noting
that (1.4) implies that if ϕ(y) is sufficiently large, then the BC at t = 0 in (1.1) essentially
‘looks like’ the linear condition y(0) = C∗ϕ(y) for a constant C∗ � 0. In fact, we can
use this sort-of-asymptotic linearity to give a very simple yet general existence proof
(see Theorem 3.3).

A significant problem with the asymptotic relatedness condition of (1.4), however, is
that, in general, (1.4) is meaningless in the context of problem (1.1) because we cannot
deduce that ϕ(y) is large whenever, say, ‖y‖ is large. Indeed, consider, for example, the
functional

ϕ(y) := 1
3y( 2

5 ) − 1
5y( 1

2 ). (1.5)

Then ϕ(y) can be 0 even if ‖y‖ is large; in fact, this is true even if we additionally impose
the typical restriction that y satisfies the Harnack-like inequality mint∈[a,b]y(t) � γ‖y‖
for some 0 < a < 2/5 < 1/2 < b < 1.

In order to solve this dilemma we use a novel insight whose origins can be traced to [10]
but which must be modified suitably in order to work in the context presented in this
paper. This insight is to require that ϕ decompose in a special way, namely, that there
are linear functionals ϕ1 and ϕ2 such that

ϕ(y) = ϕ1(y) + ϕ2(y), (1.6)

where ϕ2 satisfies ϕ2(y) � C0‖y‖ for some constant C0 > 0 and all y in a suitable
cone K, and ϕ1 essentially captures the signed part of ϕ. Since this cone K, much as the
one introduced by Infante and Webb, permits us to assume that ϕ1(y), ϕ2(y) � 0, we
obtain from (1.6) that ϕ(y) � C0‖y‖, which then affords us the control necessary to make
the asymptotic relatedness condition (1.4) meaningful in the context of problem (1.1).

This decomposition is easily applicable (see the examples at the end of § 3) and it
is worthwhile to note that it need not be the case that ϕ is originally written in the
decomposed form (1.6). Indeed, (1.5) is clearly not in the decomposed form. However, as
will be shown in Example 3.10 at the end of this paper, if we merely write

ϕ(y) = 99
300y( 2

5 ) − 1
5y( 1

2 )︸ ︷︷ ︸
:=ϕ1(y)

+ 1
300y( 2

5 )︸ ︷︷ ︸
:=ϕ2(y)

, (1.7)

then we can show that ϕ is realized in an admissible decomposition form. This simple
insight then allows us to prove the existence of solutions of problem (1.1) under much
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weaker assumptions on H than previously used. Furthermore, it allows the measure
associated with α to be signed.

We comment next on the relationship of our results here to those we recently gave
in [10]. One of the improvements we give here is to show that problem (1.1) can admit
at least one positive solution for λ > 0 small. By contrast, in [10] we only considered
the case where either λ = 1 or λ was large. Furthermore, in [10] the admissible values of
λ were somewhat technical to calculate. In contrast, this calculation is simpler here. In
addition, we also weaken the requirements on the nonlinearity f . In fact, we only require
f to satisfy a growth condition for either small y or large y but not both. Even in the
case when λ = 1, our results improve those of [10] by greatly weakening the growth
hypotheses. We also believe that our method of proof (i.e. computing an appropriate
Fréchet derivative at +∞) is interesting. In this latter case, we even improve, in certain
cases, the results of [12] (see Remark 3.5). Finally, none of the results in [16–18,21,36–
39] can treat the type of problems here, for each either assumes very restrictive growth on
the equivalent of our H and/or does not allow the non-locality to be signed. Furthermore,
these works, in general, suppose more complicated and/or restrictive growth assumptions
on the nonlinearity f than we do.

Let us conclude this section by remarking that although we treat problem (1.1) with
relatively simple boundary conditions, it is clear from the proofs of our existence the-
orems that our results can be easily modified to accommodate much more complicated
boundary conditions. Moreover, we believe that the techniques used here could be applied
successfully in other types of BVPs such as the semipositone problem and higher-order
problems. In particular, although we illustrate our techniques with the simple BCs in
problem (1.1), their use is not limited to this special case. Nonetheless, we do not explic-
itly write the numerous results that follow.

2. Preliminaries

We begin this section by observing that the operator T : C([0, 1]) → C([0, 1]) defined by

(Ty)(t) := (1 − t)H(ϕ(y)) + λ

∫ 1

0
G(t, s)f(s, y(s)) ds (2.1)

may be studied as a means of deducing the existence of positive solutions to problem (1.1).
Indeed, it is the case that a fixed point of T is simultaneously a solution to (1.1). Note
(see [27]) that the function G : [0, 1]× [0, 1] → R in (2.1) is the Green function associated
with the conjugate problem, namely,

G(t, s) :=

{
t(1 − s), 0 � t � s � 1,

s(1 − t), 0 � s � t � 1.
(2.2)

We assume here and throughout that [a, b] is a given fixed subinterval of (0, 1). Then
there exists a constant γ := min{a, 1 − b} such that

min
t∈[a,b]

G(t, s) � γ max
t∈[0,1]

G(t, s) = γG(s, s) (2.3)
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for each s ∈ [0, 1]; observe that γ also satisfies 1 − t � γ for each t ∈ [a, b]. Finally, recall
both that maxt∈[0,1]G(t, s) = G(s, s), for each s ∈ [0, 1], and that γ ∈ (0, 1).

In contrast to the author’s earlier works [10, 12, 13] we do not appeal to the well-
known Krasnosel′skĭı fixed-point theorem. Rather, we shall use two different approaches,
one involving classical degree theory and a second involving the concept of Fréchet dif-
ferentiability at +∞, and demonstrate that we can achieve more general results with
these approaches. We first recall the Leray–Schauder degree; the reader is referred to
Zeidler [40] for more information on classical degree theory.

Lemma 2.1 (Zeidler [40, Definition 12.3]). Let V(G, X ) denote the set of all
mappings f of the following form.

(1) f : Ḡ ⊂ X → X is compact, where G is an open bounded set in a Banach space X .

(2) f has no fixed points on ∂G.

Then, to each f ∈ V(G, X ), an integer i(f, G), called the fixed-point index of f on G,
may be assigned so that the following hold.

(1) If f(x) = x0 for all x ∈ Ḡ and some fixed x0 ∈ G, then i(f, G) = 1.

(2) If i(f, G) �= 0, then there exists x ∈ G such that f(x) = x.

(3) It holds that

i(f, G) =
n∑

j=1

i(f, Gj)

whenever f ∈ V(G, X ) and f ∈ V(Gj ,X ) for each 1 � j � n, where {Gj}n
j=1 is a

regular partition of G.

(4) If ∂G : f ∼= g, then i(f, G) = i(g, G).

Note that in (4) the notation ∂G : f ∼= g means that f and g are compactly homotopic
on ∂G in the sense that there is a compact map H : Ḡ× [0, 1] → X such that H(x, t) �= x

for each (x, t) ∈ ∂G × [0, 1] and both H(x, 0) = f(x) and H(x, 1) = g(x) on Ḡ.

Next we recall a perhaps less frequently used fixed-point theorem for asymptotically
linear operators. In order to state this result we recall first a definition of the existence
of the Fréchet derivative at +∞ of a suitable operator T . Since we will use this result in
the context of an order cone K, we state the result in that form; see [40, § 7.9] for more
details.

Definition 2.2 (Zeidler [40, Definition 7.32 b]). Let X and Y be Banach spaces
over R. Set

U(+∞, r) := {x ∈ X : ‖x‖ � r},

where r > 0. Let T : X → Y be an operator. If X has an order cone K, then the operator
T ′(+∞) ∈ L(X ,Y), where L(X ,Y) is the collection of all linear transformations between
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X and Y, is called the positive Fréchet derivative of T at +∞ along the cone if and only
if there is a fixed r > 0 such that, for all x ∈ U(+∞, r) ∩ K, it holds that

Tx = T ′(+∞)x + o(‖x‖), ‖x‖ → +∞,

that is,
‖Tx − T ′(+∞)x‖

‖x‖ → 0 as ‖x‖ → +∞.

Lemma 2.3 (Zeidler [40, Corollary 7.34]). Suppose that the following hold.

(1) T : K ⊆ X → K is a compact operator on the Banach space X with order cone K.

(2) T ′(+∞) exists as a positive Fréchet derivative of T at +∞ and its spectral radius,
denoted by r(T ′(+∞)), satisfies r(T ′(+∞)) < 1.

Then T has a fixed point.

In § 3 we shall make use of a cone K ⊆ C([0, 1]) defined by

K :=
{

y ∈ C([0, 1]) : y(t) � 0, min
t∈[a,b]

y(t) � γ‖y‖, ϕ1(y) � 0, ϕ2(y) � 0
}

. (2.4)

We have previously used this cone in some of our recent work on nonlinear, non-local
BVPs (see [10,13]). The cone K is a slight modification of a cone originally introduced
by Infante and Webb [33], as mentioned in § 1. Note that K �= ∅ since, due to condition
(H4), it holds that 1 − t ∈ K.

Let us conclude this section by stating the conditions that we impose on problem
(1.1). We first provide the conditions that we impose on the non-locality ϕ and the
nonlinearity H. These structure assumptions, which we label (H0)–(H4), enable us to
obtain the correct control over ϕ, as discussed in § 1. We point out that while we use
(H0), (H1), (H3) and (H4) in each existence theorem, condition (H2) is only used in the
first existence theorem. Note that we shall provide examples at the end of § 3 illustrating
the use of each of these conditions in the context of non-local BVPs.

(H0) Assume that there are two linear functionals ϕ1, ϕ2 : C([0, 1]) → R such that

ϕ(y) = ϕ1(y) + ϕ2(y).

Moreover, assume that there exists a constant C0 � 0 such that

ϕ2(y) � C0‖y‖

holds for each y ∈ K. Note that since ϕ is continuous, there is another constant,
say C1 � 0, such that

|ϕ(y)| � C1‖y‖

for each y ∈ C([0, 1]). Henceforth, C1 shall denote this constant.
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(H1) The functionals ϕ(y), ϕ1(y) and ϕ2(y) are linear and, in particular, have the form

ϕ(y) :=
∫

[0,1]
y(t) dα(t),

ϕ1(y) :=
∫

[0,1]
y(t) dα1(t),

ϕ2(y) :=
∫

[0,1]
y(t) dα2(t),

where α, α1, α2 : [0, 1] → R satisfy α, α1, α2 ∈ BV([0, 1]).

(H2) The function H : R → R is continuous, satisfies H([0, +∞)) ⊆ [0, +∞), and either

(1) there exists +∞ > M � 1 such that the number M satisfies that M > 1/γC0,
limz→0+(H(z)/z) exists, limz→0+(H(z)/z) > M , or

(2) limz→0+(H(z)/z) = +∞.

(H3) There is a C2 � 0 such that

lim
z→+∞

|H(z) − C2z|
z

= 0 (2.5)

holds.

(H4) Both ∫
[0,1]

(1 − t) dα1(t),
∫

[0,1]
(1 − t) dα2(t) � 0 (2.6)

and ∫
[0,1]

G(t, s) dα1(t),
∫

[0,1]
G(t, s) dα2(t) � 0 (2.7)

hold, where the latter holds for each s ∈ [0, 1].

We next list the conditions on the nonlinearity f . Once again, condition (H5) is used
only in the first existence theorem, whereas condition (H6) is used only in the second
existence theorem. We remark that, throughout, we assume that f : [0, 1]×R → [0, +∞)
is continuous and ϑ : [0, 1] → [0, +∞).

(H5) There exists a number r2 > 0 and a measurable function ϑ : [0, 1] → R such that

f(t, y) � r2ϑ(t)

for almost every t ∈ [0, 1] and each y ∈ [0, r2/C0], where r2 must satisfy the
following condition: there exists a ε > 0 such that ε and r2 satisfy each of

1 > (C2 + ε)
∫ 1

0
(1 − t) dα(t), (2.8)
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r2 � 1
C1

sup
{

z ∈ [0, 1) :
H(x)

x
> M for all x ∈ (0, z]

}
and

r2 � inf
{

z ∈ [0, +∞) :
|H(x) − C2x|

x
� ε for all x ∈ [z, +∞)

}
.

Here, M is the constant from condition (H2). If limz→0+(H(z)/z) = +∞, then M

can be any number satisfying M > 1/γC0.

(H6) Assume that

lim
y→+∞

f(t, y)
y

= 0

uniformly for t ∈ [0, 1].

Remark 2.4. Note that, as discussed in some sense in § 1, condition (H3) implies that,
for ‖y‖ large, it holds that the boundary condition y(0) = H(ϕ(y)) essentially ‘looks like’
the simpler condition y(0) = C∗ϕ(y) for a constant C∗ � 0. This is precisely the sort
of ‘asymptotic linearity’ that was referred to in § 1 and is used in our second existence
theorem.

Remark 2.5. Instead of imposing condition (H2), it is possible to require that, for
each t ∈ [a, b], it holds that f(t, y) � ρψ(t), for some measurable function ψ and some
number ρ > 0, on a set of the form [ργ/C1, ρ/C1]. But we do not explicitly write out this
alternative formulation in the existence theorems of § 3.

We conclude by recalling that the following lemma was already proved in [10] so we
do not repeat the proof here.

Lemma 2.6 (Goodrich [10, Lemma 3.4]). Let T be the operator defined in (2.1).
Provided that conditions (H0), (H1) and (H4) hold, T (K) ⊆ K.

3. Proofs of theorems and discussion

We begin by presenting our first existence result, which uses Lemma 2.1. In order to
facilitate the proof of Theorem 3.1 we introduce the following notation, where r > 0 is
assumed:

Ωr := {y ∈ K : ‖y‖ < r},

Vr :=
{

y ∈ K : min
t∈[a,b]

y(t) < r
}

.
(3.1)

Note that the idea of using sets of the form Vr rather than merely Ωr appears to have
first been introduced by Lan [28]. Furthermore, it is trivial to show that

Ωr ⊂ Vr ⊂ Ωr/γ .

Theorem 3.1. Suppose that conditions (H0)–(H5) hold. If, for each i = 1, 2, it holds
that ∫

[0,1]
dαi(t) � 0, (3.2)
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then problem (1.1) has at least one positive solution for each λ satisfying

0 < λ

<

(
1 − (C2 + ε)

∫
[0,1]

(1 − t) dα(t)
)[ ∫ 1

0

∫
[0,1]

G(t, s)ϑ(s) dα(t) ds

]−1

,
(3.3)

where we assume that ∫ 1

0

∫
[0,1]

G(t, s)ϑ(s) dα(t) ds > 0

and that the number ε appearing in (3.3) is from condition (H5).

Proof. Recall that T : K → K is a compact operator. By condition (H2) we may
select a number r1 sufficiently small such that H(z) > Mz whenever 0 < z � r1;
without loss of generality, it may be assumed that r1 < 1. In the case in which it holds
that limz→0+(H(z)/z) = +∞, we may choose some finite M sufficiently large such that
M > 1/γC0 and proceed as in the previous sentence. In any case, we note that by
condition (H0) it follows that ϕ(y) � r1 whenever ‖y‖ � r1/C1. Since it holds that
∂Vr1γ/C1 ⊆ Ω̄r1/C1 , it follows that H(ϕ(y)) > Mϕ(y) whenever y ∈ ∂Vr1γ/C1 .

We claim that
iK(T, Vr1γ/C1) = 0. (3.4)

To prove (3.4), we shall show that y �= Ty + μe for all y ∈ ∂Vr1γ/C1 and μ > 0, where
e(t) ≡ 1. Note that e ∈ K, due, in part, to condition (3.2). To this end, suppose for
contradiction that there exists y ∈ ∂Vr1γ/C1 and μ > 0 such that y = Ty + μe. Since
y ∈ ∂Vr1γ/C1 ∩ Ω̄r1/C1 , it holds that r1γ/C1 � y(t) � r1/C1 for each t ∈ [a, b]. Then, for
each t ∈ [a, b], we estimate

y(t) = (Ty)(t) + μe(t)

= (1 − t)H(ϕ(y)) + λ

∫ 1

0
G(t, s)f(s, y(s)) ds + μ

� Mγϕ(y) + μ

� Mγϕ2(y) + μ

� MγC0‖y‖ + μ

� MγC0
γr1

C1
+ μ

>
γr1

C1
,

(3.5)

which contradicts the fact that y ∈ ∂Vr1γ/C1 ; here we have used the fact that, since y ∈ K,
ϕ(y) = ϕ1(y) + ϕ2(y) � ϕ2(y), as well as the fact that MγC0 > 1. Note, furthermore,
that (3.5) actually demonstrates that Ty �= y whenever y ∈ ∂Vr1γ/C1 . Consequently, (3.4)
holds, as desired.

On the other hand, we next show that for the number r2 of condition (H5) it holds
that

iK(T, Ωr2/C0) = 1. (3.6)
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To prove (3.6) we shall show that Ty �= μy for each μ � 1 and each y ∈ ∂Ωr2/C0 . To
this end, fix a number λ satisfying inequality (3.3), letting ε be the fixed number from
condition (H5). Then (3.3) implies that

1 − (C2 + ε)
∫
[0,1](1 − t) dα(t)∫ 1

0

∫
[0,1] G(t, s)ϑ(s) dα(t) ds

> λ > 0. (3.7)

Condition (H3) implies the existence of a number r∗
2 > 0 such that H(z) − C2z � εz

whenever z � r∗
2 . From condition (H5) it holds that

r2 � 1
C1

sup
{

z ∈ [0, 1) :
H(x)

x
> M for all x ∈ (0, z]

}
� r1

C1
. (3.8)

Note that the supremum on the right-hand side of (3.8) must be finite by virtue of
condition (H2). In addition, (H5) implies that

r2 � inf
{

z ∈ [0, +∞) :
|H(x) − C2x|

x
� ε for all x ∈ [z, +∞)

}
= r∗

2 (3.9)

since we may assume without loss of generality that r∗
2 is equal to the infimum in (3.9).

By condition (H0) it follows that

ϕ(y) � ϕ2(y) � C0‖y‖, (3.10)

from which it follows that, whenever ‖y‖ � r2/C0, it holds that ϕ(y) � r2 � r∗
2 . Thus,

for each y ∈ ∂Ωr2/C0 , it holds that

H(ϕ(y)) − C2ϕ(y) � εϕ(y). (3.11)

Moreover, note that, for each y ∈ ∂Ωr2/C0 , it holds that

0 � y(t) � r2

C0
, (3.12)

whence condition (H5) implies that f(t, y) � r2ϑ(t) for almost every t ∈ [0, 1].
Now, suppose for contradiction that there exists a number μ > 1 and a function

y ∈ ∂Ωr2/C0 , such that Ty = μy. Then it holds that

μy(t) = (1 − t)H(ϕ(y)) + λ

∫ 1

0
G(t, s)f(s, y(s)) ds (3.13)

for each t ∈ [0, 1]. Integrating both sides of (3.13) yields

μϕ(y) = H(ϕ(y))
∫

[0,1]
(1 − t) dα(t) + λ

∫ 1

0

∫
[0,1]

G(t, s)f(s, y(s)) dα(t) ds, (3.14)

where Fubini’s theorem has been invoked since α1, α2, α ∈ BV([0, 1]). Using (3.11), we
deduce from (3.14) that

μϕ(y) � [C2ϕ(y)+εϕ(y)]
∫

[0,1]
(1−t) dα(t)+λ

∫ 1

0

∫
[0,1]

G(t, s)f(s, y(s)) dα(t) ds. (3.15)
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Finally, solving inequality (3.15) for λ and using the fact that ϕ(y) � r2, we obtain

λ �
[μ − (C2 + ε)

∫
[0,1](1 − t) dα(t)]ϕ(y)∫ 1

0

∫
[0,1] G(t, s)f(s, y(s)) dα(t) ds

>
[1 − (C2 + ε)

∫
[0,1](1 − t) dα(t)]ϕ(y)∫ 1

0

∫
[0,1] G(t, s)f(s, y(s)) dα(t) ds

�
[1 − (C2 + ε)

∫
[0,1](1 − t) dα(t)]r2∫ 1

0

∫
[0,1] G(t, s)r2ϑ(s) dα(t) ds

=
1 − (C2 + ε)

∫
[0,1](1 − t) dα(t)∫ 1

0

∫
[0,1] G(t, s)ϑ(s) dα(t) ds

, (3.16)

but this contradicts inequality (3.7). Since, in fact, we have shown that Ty �= y whenever
y ∈ ∂Ωr2/C0 , it follows that (3.6) holds, as desired. It should be noted that in inequal-
ity (3.16) we have used the fact that, because condition (2.7) holds for each s ∈ [0, 1], we
may estimate

0 <

∫ 1

0

∫
[0,1]

G(t, s)f(s, y(s)) dα(t) ds

=
∫ 1

0

[ ∫
[0,1]

G(t, s) dα(t)
]
f(s, y(s)) ds

�
∫ 1

0

[ ∫
[0,1]

G(t, s) dα(t)
]
r2ϑ(s) ds.

In addition, note that it is not possible that∫ 1

0

∫
[0,1]

G(t, s)f(s, y(s)) dα(t) ds < 0

since condition (H4) is in force; in particular, inequality (2.7), together with the non-
negativity of the function f , obviates this possibility.

Finally, we have shown that iK(T, Vr1γ/C1) = 0 and that iK(T, Ωr2/C0) = 1. Clearly,
we have that V̄r1γ/C1 ⊂ Ωr1/C1 ⊂ Ωr2/C0 and that, in fact, Ωr2/C0 \ V̄r1γ/C1 �= ∅. The
properties of the fixed-point index then imply that

1 = iK(T, Ωr2/C0)

= iK(T, Ωr2/C0 \ V̄r1γ/C1) + iK(T, Vr1γ/C1)

= iK(T, Ωr2/C0 \ V̄r1γ/C1), (3.17)

from which it follows that there exists y0 ∈ Ωr2/C0 \ V̄r1γ/C1 such that Ty0 = y0. Since
this function y0 is a non-trivial, positive solution of problem (1.1), the proof is thus
complete. �
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We now present the second existence theorem by using Lemma 2.3 instead of
Lemma 2.1. First we need a preliminary technical lemma. Its proof is simple, but we
state it for completeness since the result is very important in the proof of Theorem 3.3.
Let us also note that Lemma 3.2 can be easily extended to the case in which we replace g

by a continuous function f : [0, 1]×[0, +∞) → [0, +∞) satisfying limy→+∞(f(t, y)/y) = 0
uniformly for t ∈ [0, 1]; it is this latter form that we shall use in Theorem 3.3 even though
we prove Lemma 3.2 in the slightly simpler version below.

Lemma 3.2. Suppose that g : [0, +∞) → [0, +∞) is a continuous function satisfying

lim
y→+∞

g(y)
y

= 0.

Let N : [0, +∞) → [0, +∞) be the function defined by

N(r) := max
y∈[0,r]

g(y). (3.18)

It then holds that

lim
r→+∞

N(r)
r

= 0. (3.19)

Proof. Suppose for contradiction that (3.19) fails. Then there would exist a sequence
of numbers {ri}∞

i=1 ⊆ [0, +∞) satisfying ri → +∞ as i → +∞ such that

N(ri)
ri

� η > 0 (3.20)

for some constant η and each i ∈ N. By the definition of N , there exists a sequence
{yi}∞

i=1 ⊆ [0, +∞), which satisfies yi ∈ [0, ri] for each i ∈ N, such that, for each i ∈ N, it
holds that

N(ri) = g(yi). (3.21)

That is, g is maximal on [0, ri] at yi. Without loss of generality we may assume that g is
unbounded at +∞ or else the result is trivial. Under this assumption it must hold that

lim
i→∞

yi = +∞. (3.22)

Finally, since it is evident that ri � yi, we estimate

g(yi)
yi

=
N(ri)

yi
� N(ri)

ri
� η > 0 (3.23)

for each i ∈ N. But since (3.23) implies that limy→+∞(g(y)/y) �= 0, we have arrived at a
contradiction. This completes the proof. �

Theorem 3.3. Suppose that conditions (H0), (H1), (H3), (H4) and (H6) hold. Fur-
thermore, assume that the constants C1 and C2 from, respectively, conditions (H0) and
(H3) satisfy

C1C2 < 1. (3.24)

If it holds that H(0) �= 0, then problem (1.1) has at least one positive solution for each
λ > 0.
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Proof. Define the operators T : K → K and T ′(+∞) : K → C([0, 1]) by

(Ty)(t) := (1 − t)H(ϕ(y)) + λ

∫ 1

0
G(t, s)f(s, y(s)) ds (3.25)

and
(T ′(+∞)y)(t) := C2(1 − t)ϕ(y), (3.26)

respectively. Clearly, the operator T ′(+∞) is linear since ϕ is linear. We claim first that
T ′(+∞) is the Fréchet derivative of T at +∞. To prove this claim, we show that Defini-
tion 2.2 is satisfied. In particular, we show that ‖Ty−Ty′(+∞)‖ is o(‖y‖) as ‖y‖ → +∞,
that is, that ‖Ty − T ′(+∞)y‖/‖y‖ → 0 as ‖y‖ → +∞.

To this end, fix a λ > 0 and let ε > 0 be given. Henceforth, let N be the function
defined by N(r) := max(t,y)∈[0,1]×[0,r]f(t, y); this is a simple extension of the function
stated in Lemma 3.2, and the lemma still applies to this slightly more general function.
In any case, choose r0 > 0 sufficiently large such that

N(r0) � ε

3λ
∫ 1
0 G(s, s) ds

r0. (3.27)

Furthermore, by choosing r0 even larger if necessary, in addition to (3.27) we can ensure
that

|H(ϕ(y)) − C2ϕ(y)| � ε

3C1
ϕ(y) (3.28)

holds whenever ‖y‖ � r0 and that

f(t, y) � ε

3λ
∫ 1
0 G(s, s) ds

y (3.29)

holds whenever y � r0, where inequality (3.29) is true for each t ∈ [0, 1]. Note
that (3.29) is possible due to condition (H6), whereas (3.27) follows from the conclu-
sion of Lemma 3.2. On the other hand, inequality (3.28) holds due to condition (H0),
just as in the proof of Theorem 3.1; consequently, we do not repeat the argument here.
Note that, by the definition of N , it holds that

0 � f(t, y) � N(r0) (3.30)

for each (t, y) ∈ [0, 1] × [0, r0]. For the remainder of the proof r0 is now fixed such
that (3.27)–(3.29) hold.

Now, let y ∈ U(+∞, r0) := {y ∈ K : ‖y‖ � r0} be fixed but otherwise arbitrary. Define
the measurable sets N and [0, 1] \ N by

N := {s ∈ [0, 1] : 0 � y(s) � r0} (3.31)

and
[0, 1] \ N := {s ∈ [0, 1] : y(s) > r0}. (3.32)

https://doi.org/10.1017/S0013091514000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091514000108


434 C. S. Goodrich

Then, for any t ∈ [0, 1], we estimate

|(Ty)(t) − (T ′(+∞)y)(t)|

� |H(ϕ(y)) − C2ϕ(y)| + λ

∫ 1

0
G(s, s)f(s, y(s)) ds

� ε

3C1
ϕ(y) + λ

∫
N

G(s, s)f(s, y(s)) ds + λ

∫
[0,1]\N

G(s, s)f(s, y(s)) ds

� ε

3
‖y‖ + λ

∫
N

G(s, s)N(r0) ds +
ελ

3λ
∫ 1
0 G(s, s) ds

∫
[0,1]\N

G(s, s)y(s) ds

� ε

3
‖y‖ + λ

∫ 1

0
G(s, s)N(r0) ds +

ελ

3λ
∫ 1
0 G(s, s) ds

‖y‖
∫ 1

0
G(s, s) ds

� ε

3
‖y‖ +

(
N(r0) +

ε

3λ
∫ 1
0 G(s, s) ds

‖y‖
)

λ

∫ 1

0
G(s, s) ds

� ε

3
‖y‖ +

(
ε

3λ
∫ 1
0 G(s, s) ds

r0 +
ε

3λ
∫ 1
0 G(s, s) ds

‖y‖
)

λ

∫ 1

0
G(s, s) ds

�
[
ε

3
+

2ε

3
∫ 1
0 G(s, s) ds

∫ 1

0
G(s, s) ds

]
‖y‖

= ε‖y‖, (3.33)

where in the second-to-last inequality we have used the fact that ‖y‖ � r0. But then (3.33)
implies that, whenever y ∈ U(+∞, r0),

‖Ty − T ′(+∞)y‖
‖y‖ � ε, (3.34)

which, by the arbitrariness of ε > 0, implies that

Ty = T ′(+∞)y + o(‖y‖), ‖y‖ → +∞. (3.35)

So, by Definition 2.2, we conclude that T ′(+∞) is the Fréchet derivative of T at +∞, as
claimed.

Now we apply the fixed-point theorem provided by Lemma 2.3. As remarked in the
proof of Theorem 3.1, it is standard to argue that T : K → K is a compact operator
on K. Consequently, we shall show, in particular, that the spectral radius of the Fréchet
derivative T ′(+∞), namely r(T ′(+∞)), is less than unity. In fact, we shall show that this
operator cannot possess an eigenvalue greater than or equal to unity.

Indeed, suppose for contradiction that there exists an eigenvalue μ ∈ [1, +∞) and an
associated eigenvector y ∈ K such that T ′(+∞)y = μy. Since y is an eigenvector, it
satisfies ‖y‖ > 0. For each t ∈ [0, 1] we thus have the equality

μy(t) = C2(1 − t)ϕ(y). (3.36)

https://doi.org/10.1017/S0013091514000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091514000108


On nonlinear BCs involving decomposable linear functionals 435

Let t0 ∈ [0, 1] be a point at which y attains its maximum, i.e. y(t0) = ‖y‖. Suppose
that t0 �= 1. Then, by condition (H0), we estimate from (3.36) that

0 < ‖y‖ � μ‖y‖ = μy(t0) = C2(1 − t0)ϕ(y) � C1C2(1 − t0)‖y‖, (3.37)

from which it follows that
1 � C1C2(1 − t0), (3.38)

since ‖y‖ �= 0. But then, since (3.38) implies that

C1C2 � 1, (3.39)

we obtain a contradiction to (3.24). On the other hand, if t0 = 1, then (3.37) implies
that ‖y‖ � 0, which contradicts the strict positivity of ‖y‖. Thus, in either case we obtain
a contradiction and so it holds that the operator T ′(+∞) has no eigenvalue greater than
or equal to unity. Hence, Lemma 2.3 implies the existence of a function y0 ∈ K such
that Ty0 = y0.

Finally, it cannot hold that y0 is the zero element of K. Indeed, if y0 ≡ 0 then, since y0

satisfies problem (1.1), it must hold that 0 = y(0) = H(ϕ(y)) = H(0), contradicting the
fact that H(0) > 0. Consequently, we conclude that ‖y0‖ > 0 and so y0 is a non-trivial
positive solution of BVP (1.1). And this completes the proof. �

Having presented two different existence theorems for problem (1.1), we would like to
point out that it is easy to extend our results to the more general setting of the perturbed
Hammerstein integral equation

y(t) = ξ1(t)H1(ϕ1(y)) + ξ2(t)H2(ϕ2(y)) +
∫ 1

0
K(t, s)f(s, y(s)) ds,

where ξ1, ξ2 : [0, 1] → [0, +∞) and K : [0, 1] × [0, 1] → [0, +∞) satisfy, roughly speak-
ing, the same general properties as the maps t �→ 1 − t and (t, s) �→ G(t, s) above,
respectively. This generalization permits us to equip the differential equation appearing
in (1.1) with a variety of nonlinear, non-local boundary conditions. Indeed, by suitably
choosing ξ1 and ξ2 above we could consider the boundary conditions y′(0) = H1(ϕ1(y)),
y(1) = H2(ϕ2(y)), for instance. But we do not state the multitude of individual results
that thus follow.

We conclude with some discussion regarding these results, as well as two numerical
examples in order to clarify the application of the results.

Remark 3.4. Regarding Theorem 3.1 we point out that this result provides improve-
ments to the results presented recently by Goodrich [10], as already intimated in § 1.
In particular, Theorem 3.1 gives conditions under which a non-trivial positive solution
of (1.1) may be guaranteed for λ > 0 small, which contrasts with the results of [10].
Moreover, the upper bound on λ is easy to compute. Finally, it is worth noting that
Theorem 3.1 does not require any growth assumption on f at +∞ and, furthermore, the
growth assumption we do impose (i.e. (H5)) is weak. This also distinguishes this result
from those presented in [10].
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Remark 3.5. Regarding Theorem 3.3, we point out that a direct comparison of this
result to the results given recently by Goodrich [10] indicates that we need not make any
growth assumptions on the map (t, y) �→ f(t, y) for y small. This is a direct improvement
of [10, Theorem 3.7]. In fact, it is also a direct improvement of [12, Theorem 3.4] in the
special case where the nonlinear non-locality is realized in the form H ◦ ϕ. Finally, as
mentioned in § 1, previous results of other authors are not applicable in this setting due
to the fact that the integrator α in (1.2) does not have to be monotone here. The same,
of course, may be said about Theorem 3.1.

Remark 3.6. Observe that for the case in which C2 = 0, as will be the case if H

is sublinear at +∞, it follows that condition (3.24) of Theorem 3.3 is trivially satisfied.
Moreover, in this case Theorem 3.3 guarantees existence even if C1 is very large, for (H4)
need not hold in Theorem 3.3. This is rather more general than the corresponding results
of [10], wherein there is always a restriction on the size of C1. In fact, Theorem 3.3 shows
that this is unnecessary, even under very weak growth assumptions on f and H. Once
again, previous results of other authors are not applicable in this setting due to the fact
that the integrator α in (1.2) does not have to be monotone here.

Remark 3.7. It is possible to allow for H(z) < 0 for some z � 0; see [6] for how this
might be pursued.

Remark 3.8. It is worth noting that our results reveal that it is possible for H to be
linear at +∞, whereas f is sublinear (see [11, Remark 3.3]). In particular, these functions
need not have the same asymptotic behaviour at +∞.

Example 3.9. Let us consider the functional

ϕ(y) := 2
5y( 1

2 ) − 1
10y( 1

3 )︸ ︷︷ ︸
:=ϕ1(y)

+ 1
20y( 2

3 )︸ ︷︷ ︸
:=ϕ2(y)

. (3.40)

Let us also set [a, b] := [14 , 3
4 ] so that γ = 1

4 . In particular, here we may select C0 :=
1
20γ = 1

80 and C1 := 11
20 . Note that C0 may be so selected since, due to the cone property,

we calculate
1
20y( 2

3 ) � 1
20γ‖y‖ = 1

80‖y‖,

since 2/3 ∈ [a, b]. In any case, straightforward computations indicate that each of condi-
tions (H0), (H1), (H4) and (H5) are satisfied. It is also easy to check that condition (3.2)
holds.

On the other hand, suppose that H : R → R is defined by

H(z) := z1/3 + z. (3.42)

Note that H([0, +∞)) ⊆ [0, +∞). Furthermore, it holds that both

lim
z→0+

H(z)
z

= +∞ and lim
z→+∞

|H(z) − z|
z

= 0. (3.43)
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Thus, (3.43) implies that we may select M as large as we like, in particular, sufficiently
large so that M > 1/γC0. Furthermore, (3.43) demonstrates that (2.5) holds with C2 = 1,
say.

Finally, suppose that we select ε = 5 in (2.8), which is easily checked and seen to be
admissible. If we assume, for the sake of simplicity, that ϑ ≡ ϑ0 ∈ (0, +∞), then we
calculate that

0 < λ <
2.571
ϑ0

(3.44)

must hold to three decimal places of accuracy. Furthermore, it must hold both that

r2 � inf
z∈[0,+∞)

{x−2/3 � 5 for all x ∈ [z, +∞)} (3.45)

and that

r2 � 1
C1

sup
z∈[0,1)

{
H(x)

x
> 20 for all x ∈ (0, z]

}
, (3.46)

say, where we have chosen the minimal admissible value of M . An easy calculation shows
that (3.45) and (3.46) imply that r2 must satisfy the inequality r2 � 0.089, again to three
decimal places of accuracy.

For example, we can conclude from Theorem 3.1 that problem (1.1) has at least
one positive solution provided that λ satisfies (3.44) and f(t, y) � 0.089ϑ0 for
(t, y) ∈ [0, 1] × [0, 7.152]. In particular, if, say, ϑ0 = 100, then problem (1.1) has at least
one positive solution for each

0 < λ < 0.0257

with f(t, y) � 8.9 for (t, y) ∈ [0, 1] × [0, 7.152].

Example 3.10. Let us consider the functional

ϕ(y) := 1
3y( 2

5 ) − 1
5y( 1

2 ), (3.47)

which was mentioned in § 1 (see (1.5)). Let us suppose, once again, that [a, b] = [14 , 3
4 ].

This functional is not initially written in an admissible decomposition form. However, as
indicated in § 1, if we instead write

ϕ(y) = 99
300y( 2

5 ) − 1
5y( 1

2 )︸ ︷︷ ︸
:=ϕ1(y)

+ 1
300y( 2

5 )︸ ︷︷ ︸
:=ϕ2(y)

, (3.48)

then we can now show that this functional satisfies the required structure conditions.
Indeed, it is easy to check that each of conditions (H0), (H1) and (H5) is satisfied; here
we select C0 = 1

300γ = 1
200 and C1 = 8

15 .
Define H : R → [0, +∞) by

H(z) :=
1

1 + e−z
. (3.49)

Then H(0) > 0 and condition (2.5) is satisfied with C2 = 0. Consequently, inequal-
ity (3.24) is trivially satisfied. Hence, for any function f that satisfies (H6), we conclude
by Theorem 3.3 that problem (1.1) has at least one positive solution for all λ > 0.
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