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A wideband power divider with bandpass
response

cong tang, xianqi lin, yong fan and kaijun song

In this paper, a new configuration embedded with two filters and one resistor is proposed, which has the dual function of
power splitting and filtering. The filter is based on stepped impedance ring resonator. All the even- and odd-mode resonant
frequencies and transmission zeroes of the stepped impedance ring resonator are derived based on the even- and odd-mode
analysis. Three interdigital-coupled lines are applied at the input port and output ports to achieve a bandpass response and
suppress the second harmonic. For verification, a sample operating at the central frequency of 2 GHz is fabricated and tested.
The measured results show the power divider has good performance on impedance matching, frequency selectivity, and
isolation over the operating band.
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I . I N T R O D U C T I O N

Power dividers are key element used for combing and dividing
power in microwave systems. In the past decades, a great
many attentions have been paid on multi-ways [1–3], wide-
band [4], dual-band [5–7], and harmonic suppression [8].
Bandpass filters are also essential devices in radio frequency
(RF) and microwave front-ends. Recently many designs
about compact size [9], wideband [10, 11], tunable passband
[12] and multiband [13, 14] have been presented. These two
components are indispensable in many RF and microwave cir-
cuits. However, large size and high insertion loss cannot be
avoided when these two devices are connected together.
Thus, it is meaningful to design a device integrated with the
dual functions of power dividing and filtering.

Nowadays, some designs with the capabilities of filtering
and power splitting were proposed. A power divider based
on a stub-loaded ring resonator is presented in [15], three
coupled-line sections are installed at the input and output
ports to improve the selectivity and suppress the harmonic.
In [16–20], filters are used as the impedance transformers to
replace the quarter-wavelength in the traditional Wilkinson
power divider, where the impedances of the two ports are
both matched to 70.7 V rather than 50 V. A power divider
based on five resonators which are combined to realize the
function of power splitting and filtering is presented in [21].
In [22], composite right-/left-handed transmission lines are
applied to reduce the size of the power divider. Two power
dividers with arbitrary power division ratios are presented
in [23, 24]. In [23], the proposed power divider can be

modeled as a low-pass filter with series L and shunt C. In
[24], coupling structure is utilized to replace the quarter-
wavelength microstrip line in the power divider to realize arbi-
trary power-splitting ratios and filtering responses. But the
operating bandwidths of these proposed circuits are narrow.
Recently, two ultra-wideband power divider with bandpass
response are presented in [25, 26], but the performances of
isolation in band are bad.

In this paper, a new configuration embedded with two
filters and one resistor is proposed. The analysis of the
stepped impedance ring resonator based on the even- and
odd-mode method is proposed in Section II. All the even-
and odd-mode resonant frequencies and transmission zeroes
are derived. Three interdigital-coupled lines are applied at
the input port and output ports to achieve a bandpass
response and suppress the second harmonic. For verification,
a sample operating at the central frequency of 2 GHz is fabri-
cated and tested in Section III. Good performances on imped-
ance matching, frequency selectivity, and isolation over the
operating band are obtained. The conclusion is presented in
Section IV.

I I . D E S I G N O F T H E P O W E R D I V I D E R

A) Analysis of the power divider
The schematic of the power divider is shown in Fig. 1. It is
based on two stepped impedance ring resonators and one
resistor. Zi (i ¼ 1, 2, 3) is the characteristic impedance of
each transmission line section. All the transmission lines
have the same electrical length of u which is one quarter of
the wavelength specified at the central frequency. Since the
power divider is symmetrical, so the even- and odd-mode
method can be used to analysis the circuit. When the power
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divider is under even-mode, the symmetrical plane is magnetic
wall. The whole circuit can be symmetrical bisected. Looking
from port 1, the circuit in the dash line is open since the

electrical length of the transmission lines are 908. So the
circuit can be simplified as depicted in Fig. 2(a). Assuming
perfect impedance matching is achieved, the following equa-
tions can be obtained.

Z1 = Z0, (1)

Zp1 =
Z0

2
, (2)

when the power divider in Fig. 1 is under odd-mode excita-
tion, the voltage along the symmetrical plane is zero. We
can bisect the circuit by grounding the symmetrical plane.
Looking from port 2, the circuit in the dash line is open
because the electrical length of transmission is 908. So the
circuit can be simplified as depicted in Fig. 2(b). To achieve
impedance matching, the following equation must be met.

R = 2Z1
2

Z0
= 2Z0, (3)

It can be found that Z2 and Z3 have no influence on the
matching of port 1, but the transmission poles and zeroes

Fig. 1. Schematic of the proposed power divider.

Fig. 2. (a) Equivalent even-mode circuit of the power divider (b) equivalent odd-mode circuit of the power divider (c) equivalent even-mode circuit of the circuit
in (a) (d) equivalent odd-mode circuit of the circuit of the circuit in (a).
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are affected by them. The circuit in Fig. 2(a) is a filter, the
transmission poles can be determined if the circuit is excited
by the even- and odd-mode sources, respectively.

In the even mode case, the open stub is divided in half
along the symmetrical plane so the characteristic impedance
is 2Z3, as shown in Fig. 2(c). The resonance frequencies can
be derived and it can be simply expressed as follows [10]:

ZL
e + ZR

e = 0, (4)

where

ZL
e = Z1

j tan u
, (5)

ZR
e = jZ2

RZ tan u− 2RS cot u
RZ + 2RS

, (6)

RZ = Z2

Z1
, (7)

RS =
Z3

Z1
. (8)

In the odd mode case, the open stub is shorted; the equiva-
lent circuit is shown in Fig. 2(d). The resonance frequencies
can be obtained and can be expressed as [10]:

Zo
L + Zo

R = 0, (9)

where

ZL
o = jZ1 tan u, (10)

ZR
o = jZ2 tan u. (11)

Based on the transmission line theory described in [9, 10],
the transmission zeroes can be obtained when Y21 ¼ Y12 ¼ 0,
where the Y-parameters are the admittance matrices of the
two propagation paths between port 1 and 2 in Fig. 2(a),
such that

sin 2u+ 2RZ sin u cos u− RZ
2

RS
sin2u tan u = 0 (12)

According to the analysis above, all the even- and
odd-mode resonant frequencies and transmission zeroes of
the ring can be calculated by (4)–(12). Figure 3 plots the
first three normalized resonant frequencies fo1/fo1, fe1/fo1, fe2/
fo1 and first two normalized transmission zeroes fz1/fo1, fz2/
fo1 versus RZ under different values of RS. fo1 is the first reson-
ant frequency when the resonator in Fig. 2(a) is excited by the
odd-mode source.

As depicted in Fig. 3, the three resonant frequencies are dis-
tributed in the range of the two transmission zeroes and the
transmission zeroes are very close to the even-mode resonant
frequencies, this means the roll-off skirts near the cut-off

Fig. 3. Normalized resonant frequencies and transmission zeroes versus RZ
under different values of RS.

Table 1. Physical dimensions of the fabricated power (unit: mm).

w1 w2 w3 w4 w5 w6 w7 w8

1.1 0.27 1.1 3.1 0.2 0.6 0.2 0.1
l11 l12 l21 l22 l23 l31 l32 lp1
24.97 19.3 20.73 24.97 1.13 5.1 18.5 21.5
lp2 d1 d2 d3 d4 k1 lr
26.2 0.7 0.6 0.6 0.6 1.45 21.9

Fig. 4. (a) Simulated results of port 1 (b) simulated results of port 2
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frequencies are very sharpe. It can be obtained when RZ is
fixed, the smaller the RS is, the bigger is fe2/fo1 2 fe1/fo1.
When RS is fixed, the bigger the RZ is, the bigger is fe2/fo1 2

fe1/fo1. These characteristics of the ring resonator can be
applied to design a wideband filter with good selectivity.

B) Design of interdigital-coupled feed lines
To achieve a bandpass response and suppress the second har-
monic, three interdigital-coupled lines are applied at the input
port and output ports. As depicted in (2), the input impedance
of the circuit under the even-mode excitation equals to Z0, so
the input impedance of the whole circuit under even-mode
excitation is Z0/2. To realize good impedance matching at
port 1, an impedance transition from Z0 to Z0/2 need to be
designed. The layout and dimensions of the ports are shown
in Fig. 7 and Table 1, respectively. The length of interdigital-
coupled feed line is about quarter-wavelength at the central
frequency f0. According to the analysis in [27], by adjusting
the length of the interdigital-coupled feed line, the first har-
monic of the stepped ring resonator can be suppressed and
the stopband can be improved. A commercial software
HFSS is used in this design and the simulated results of the
interdigital-coupled lines are shown in Fig. 4.

C) Design procedure of the power divider
Z1 and R can be calculated by (1) and (3). But there are not
explicit design equations to calculate Z2 and Z3. We can esti-
mate their values according to Fig. 3 if the fractional band-
width is given. The design procedure of the power divider is
given as follows:

(1) Calculate Z1 and R according to (1) and (3).
(2) According to the given fractional bandwidth, estimate

their approximate values of RZ and RS in Fig. 3. Maybe
there are several combination values with the same band-
width, choose the proper one.

Fig. 5. Layout and photograph of the fabricated power divider.

Fig. 6. (a)Simulated results of S21and S11 (b) simulated results of S22 and S33.
‘A’ represents the simulated results with 0.05 and 0.2 mm decrease in w1, w2,
w3 and l11, l21, l32, lp1, lp2. ‘B’ represents the simulated results using the
parameters listed in Table 1. ‘C’ represents the simulated results with 0.05
and 0.2 mm increase in w1, w2, w3, and l11, l21, l32, lp1, lp2.
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(3) Design the input and output interdigital-coupled feed
lines. Tune the length of interdigital-coupled feed lines
to suppress the harmonic frequency.

(4) Integrate the two filters, input port and output port.
The resistor is used as isolation element. Since the
coupled-lines are connected to the ring resonator, the
bandwidth will be widened. So we need to optimize
the values of Z2 and Z3.

I I I . E X P E R I M E N T A L R E S U L T S

In order to investigate the effect of the fabrication tolerances
on the RF performance of the proposed power divider, a
power divider designed using ideal circuit elements is simu-
lated. Z1, Z2, Z3 and R are chosen as 50, 100, 50 and 100 V,
respectively. The tolerance of the manufacturing process is
0.02 mm. The layout of the power divider is shown in Fig. 5
and the dimensions of the power divider are listed in
Table 1. According to the simulated results by HFSS, the para-
meters l11, w1, l21, w2, l32, w3, lp1, lp2 are more sensitive to
the response of the power divider than other parameters.
Figure 6 shows the simulated results of the power divider
versus variations in the parameters above with fixed
R ¼ 100 V. “B” represents the simulated results using the
parameters listed in Table 1. “A” represents the simulated

results with 0.05 and 0.2 mm decrease in w1, w2, w3 and
l11, l21, l32, lp1, lp2. “C” represents the simulated results
with 0.05 and 0.2 mm increase in w1, w2, w3 and l11, l21,
l32, lp1, lp2. The simulated frequency responses of the
power divider versus R (+10%) with fixed Z1 ¼ 50 V, Z2 ¼

100 V, Z3 ¼ 50 V are shown in Fig. 7.
In Fig. 6, when the widths and lengths of the transmission

lines decrease, the operating band shifts upward. This is
because the corresponding operating central frequency
increases when the lengths of the transmission line decrease.
On the contrary, the corresponding operating central fre-
quency decreases when the lengths of the transmission line
increase. In Fig. 7, the operating band almost unchanges
when the value of R changes, this is because the resistor is
irrelevant with the bandwidth of the power divider, as ana-
lyzed above. In a word, the performance of the proposed
power divider is not severely affected by the tolerance of the
manufacturing process.

To validate the proposal, a power divider is designed and
fabricated on a RF-35 substrate. The data of the substrate
are 1r ¼ 3.5, tand ¼ 0.003, thickness of the dielectric layer is
0.508 mm, and the conductor thickness is 0.018 mm. The
characteristic impedances of the transmission line in this
design are Z1 ¼ 50 V, Z2 ¼ 100 V, Z3 ¼ 50 V. One of the pic-
tures of the fabricated power divider is shown in Fig. 5.
Figure 8 shows the simulated and measured results. There

Fig. 7. (a) Simulated S21 and S23 (b) simulated S11 and S22 Fig. 8. Simulated and measured results. (a) S11 and S21. (b) S22 and S23.
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are in good agreement between the simulated and measure-
ment results. The measured return loss is greater than
11.1 dB and the insertion loss is less than 4.1 dB in the pass
band ranges from 1.27 to 2.8 GHz, with 75.2% fractional
bandwidth. The bandpass bandedges’ skirts of the insertion
loss are sharpened by the two transmission zeroes located at
1.16 and 2.9 GHz. The measured upper-stopband rejection
is better than 16 dB from 3.1 to 5.3 GHz. The isolation in
the passband is higher than 20 dB. Comparisons between
the proposed and the previous ones are listed in Table 2. It
can be found that the proposed one has much wider operating
bandwidth than the ones in [15–24]. Although the power
divider in [25, 26] has wider operating bandwidth than the
proposed one, the isolation in band are bad. The proposed
circuit has wider upper stop band compared with [15, 17,
18, 21, 25, 26] and better performance on in band isolation
compared with [15, 16, 18, 19, 21, 23–26].

I V . C O N C L U S I O N

A power divider which has the dual function of power splitting
and filtering embedded with two filters and one resistor is
presented in this paper. The filter is based on stepped imped-
ance ring resonator. Transmission-line theory is employed to
obtain the even- and odd-mode resonant frequencies and
transmission zeroes of the stepped impedance ring resonator.
In order to achieve a bandpass response and suppress the
second harmonic, three interdigital-coupled lines are applied
at the input port and output ports. A sample operating at
the central frequency of 2 GHz is fabricated and tested to val-
idate the proposed idea. The measured results show the power
divider has good performance on impedance matching, fre-
quency selectivity, and isolation over the operating band.
Later on, much effort will be made to miniaturize the size
and extend the upper-stopband.
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