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Subcritical transition and spiral turbulence in
circular Couette flow
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We present new observations of a controlled transition to turbulence in a fundamental
but little-studied regime: circular Couette flow with only the outer cylinder rotating.
Our apparatus consists of an outer cylinder of fixed radius and three inner
cylinders having different radii that are used interchangeably to study the effect of
flow curvature. With the smallest inner cylinder the end-cap configuration (vertical
boundary conditions) may also be varied. The turbulent transition is found to be
sensitive to both gap width and end-cap configuration, with wider gaps transitioning
at higher rotation rates. All configurations are observed to transition with hysteresis
and intermittency. A laser Doppler velocimetry (LDV)-based study of the azimuthal
velocity profile as a function of gap width and rotation rate reveals that turbulence,
once initiated, is confined to regions of significant shear. For wider gap widths,
the radial location of these shear layers is determined by the chosen end-cap
configuration. This, in turn, affects the transition Reynolds number, which we posit
to be radially dependent. The narrow-gap case in particular features spiral turbulence,
whose properties are found to be similar to observations of the phenomenon in related
shear flows. The velocity profile in this case is correlated with overlapping boundary
layers, suggesting a coupling mechanism for the origin of laminar-turbulent banding
phenomena.

Key words: shear layer turbulence, Taylor–Couette flow, transition to turbulence

1. Introduction
Given the large and diverse number of studies on circular Couette flow during the

past century, it is perhaps surprising to note that the case of the transition to turbulence
solely due to outer cylinder rotation has received only occasional attention. It is well
known that the transition to turbulence with the inner cylinder rotating occurs via a
linear (Taylor) instability that sets in above a viscous threshold at Reynolds numbers
(Re) near 102. The Reynolds number Re in this system may be evaluated as

Re= 1ΩR1R

ν
(1.1)

where 1Ω is the difference in rotation rate between the two cylinders (which for the
experiments reported here is just the outer cylinder rotation rate or Ωo), 1R is the
annular gap width (Ro − Ri); R represents either the inner (i) or outer cylinder (o)
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Subcritical transition and spiral turbulence 107

radius (we use the latter), and ν is the kinematic viscosity of the fluid. System
geometry is typically summarized by the radius ratio η = Ri/Ro and aspect ratio
Γ = H/1R, where H is the axial height of the annulus. Supercritical instability
initially takes the form of toroidal vortices which advectively relax the imposed
angular momentum gradient (Taylor 1923). With increasing Re, a fascinating sequence
of bifurcations and modal evolution ensues until a fully turbulent state is ultimately
reached at sufficiently high Re (6106), with the exact value depending on η.

In contrast to the supercritical transition described above, a subcritical transition
may be observed in the case of counter-rotating cylinders. In such flows a radial
region near the inner cylinder is linearly unstable according to the Taylor criterion
but, past a null velocity circumference in radius, one encounters a linearly stable
flow that extends outward in radius to the outer cylinder. Turbulent features seen in
counter-rotating flows may differ greatly from when only the inner cylinder rotates. In
fact, fully developed turbulence can appear abruptly in Re space, leading to the term
‘catastrophic’ transition (Coles 1965). This transitional state has been observed to be
highly intermittent in both space and time. It is presumed that instability in the outer
layer is triggered from unstable motions caused by the linear instability penetrating
outwards past the null point, which serve as finite-amplitude perturbations (Coughlin &
Marcus 1996).

The (Rei,Reo) parameter space explored in Taylor–Couette flow (i.e. Re based on Ωi

and Ωo, respectively) has recently been expanded by Paoletti & Lathrop (2011) and
van Gils et al. (2011), who have independently found momentum flux (torque) scaling
in the strongly turbulent regime corresponding to theory developed by Eckhardt,
Grossmann & Lohse (2007) in analogy to Rayleigh–Bérnard heat convection. This
new work follows Dubrulle et al. (2005) in framing (Rei,Reo) based on independently
rotating cylinders as a single rotation number,

RΩ = (1− η)(Reo + Rei)

ηReo − Rei
(1.2)

which for the experiments presented here, where Rei = 0, reduces to (1 − η)/η. This
expression may also be cast in terms of a Rossby number Ro = (Ωi −Ωo)/Ωo, which
in our experiments, for all three cylinder radii, is a constant Ro = −1. In restricting
this parameter our emphasis is intended to be on the subcritical transition process and
in particular on velocimetry, for which there is a lack of data, although new work is
now filling the gap (e.g. van Gils et al. 2011; van Hout & Katz 2011).

In counter-rotating flows a particularly fascinating intermediate subcritical state,
spiral turbulence, has been observed. Featuring alternating oblique bands of laminar
and turbulent flow, this state was first documented by Coles (1965) and van Atta
(1966) and is a rich example of the complexity encapsulated within the Navier–Stokes
equations. Later observations of spiral turbulence by others (such as Andereck, Liu
& Swinney 1986; Hegseth et al. 1989; Prigent et al. 2002) in counter-rotating flows
have added experimental details on this regime, and recent simulation efforts seem to
be closing in on its fine-scale structure and mechanisms (Dong 2009; Meseguer et al.
2009; Dong & Zheng 2011). Recent simulations of the turbulent banding phenomenon
in planar Couette flows are also making significant progress (e.g. Duguet, Schlatter
& Henningson 2010; Tuckerman & Barkley 2011). This phenomenon has been
observed also in two-dimensional Poiseuille flow (Hashimoto et al. 2009), rotating
planar Couette flow (Tsukahara, Tillmark & Alfredsson 2010), and torsional Couette
flow between a rotating and stationary disc (Cros & Le Gal 2002). The underlying
physics describing this banded state has remained elusive, but theoretical progress has
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been promising in recent years, e.g. with the Ginzberg–Landau framework of pattern
formation being successfully applied (Prigent et al. 2002; Rolland & Manneville
2011).

The recent activity and emerging detail on the subcritical transition various wall-
bounded shear flows is in marked contrast to the relatively little information that can
be gleaned from early Taylor–Couette experiments on subcritical transition driven by
pure outer cylinder rotation. Similarities with counter-rotating flows may be reasonably
anticipated a priori, but experimental knowledge is nonetheless lacking.

Early experiments with the inner cylinder held stationary present to us a suggestive
if incomplete picture of a subcritical transition to turbulence for sufficient outer
cylinder speeds or Re (Wendt 1933; Taylor 1936; Couette 1890; Mallock 1896). In
contrast to the supercritical transition described above (as well as to counter-rotating
flows), this regime is understood to be linearly stable throughout the entire annulus
for all Re (Joseph 1976). Thus, the transition to turbulence must be initiated by
finite-amplitude perturbations inherent to the experimental apparatus or otherwise
externally introduced, as in the planar Couette flow studied by Daviaud, Hegseth &
Bergé (1992). In all earlier reports for this experimental arrangement the turbulence
apparently develops immediately over an incremental step in Re. Many of these early
findings are compiled in Richard & Zahn (1999), who noted, along with Zeldovich
(1981), that above a narrow-gap (planar) limit the critical Re for transition (Recr) for
the cyclonic case (i.e. with shear and rotation vectors aligned throughout the bulk
flow, achieved naturally with sole Ωo rotation) appears to scale with the square of
the normalized gap width. Scaling of Recr in the anticyclonic case is still basically
unknown, and it is apparently quite sensitive to end-cap effects (Ji et al. 2006).

Despite these significant early achievements, there remains some uncertainty
inherent in the interpretation of the older data, and calls for modern data detailing
the subcritical transition have been made (Dubrulle et al. 2005). Also, early studies
typically utilized torque as the main diagnostic and, having opaque outer cylinders,
spatial details on the transitioning flow were naturally integrated and went unnoticed.
While Couette (1890) and Mallock (1896) observed the subcritical transition visually,
the more complete studies of Wendt (1933) and Taylor (1936) did not (although Taylor
eventually had a small window installed for viewing through his outer cylinder). On
the other hand the careful study by Schultz-Grunow (1959) using interchangeable inner
cylinders contains fine visual observations but no velocimetry. More recent work by
Yamada & Imao (1986) and Richard (2001) includes both velocimetry and visual
observations, but for only a single geometry. Lastly we note that while the seminal
work on spiral turbulence by Coles (1965) and van Atta (1966) includes reference to
spiral turbulence observations with only the outer cylinder rotating (made by a Mr
Oguro), further details are not given.

In what follows we illustrate some features of the subcritical transition in cyclonic
circular Couette flow using three different gap widths (or degrees of curvature, η). We
then discuss the significance of localized shearing and the distinctive context of spiral
turbulence.

2. Apparatus
Figure 1 shows a schematic of our experimental device. The large outer cylinder has

a 20.95 cm inner diameter, while the three interchangeable inner cylinders (composed
of anodized aluminum and with radii 11.43, 15.24 and 20.32 cm) have been chosen
to span a range of curvature, yielding radius ratios of η = 0.55, 0.73 and 0.97
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FIGURE 1. Experimental apparatus and its support structure. Dimensions are in millmetres.
Inset (a) details the rotating vessel while inset (b) presents two possible end-cap
configurations for the smallest inner cylinder (η = 0.55).

respectively. The working volume is about 60 cm tall, yielding aspect ratios (Γ ) of
6, 10 and 92. Potentially high flow speeds necessitate somewhat thick (1.9 cm) acrylic
walls to withstand relatively high dynamical pressures (up to 5 atmospheres).

The outer cylinder and vertical end plates of the apparatus are composed of a
transparent cast acrylic to allow for both horizontal and vertical optical diagnostic
access. Our current diagnostics include digital imaging (with 2–4 % Kalliroscope
added by volume) and laser Doppler velocimetry (LDV). We used a Canon 7D CMOS-
based camera adjacent to the apparatus for imaging. For LDV, the probe head is
located on top of the apparatus on a radial traverse pointed downward (i.e. parallel to
the axis of rotation), allowing for straightforward radial profiles of azimuthal velocity.

Both the inner and outer cylinders of the new apparatus are powered by one
horsepower (0.75 kW) DC motors and can reach rotation rates near 15 rev s−1.
Combined with the relatively large dimensions of the device, Re of order 106

(using water at room temperature) can thus be reached using the smallest inner
cylinder/largest gap (η = 0.55). In the experiments discussed here Re is increased
in increments of 60.3 Hz. This increment is considered adequately quasi-static in that
smaller increments did not appear to affect the flow, but larger increments sometimes
introduced observable perturbations, even turbulence, usually emanating from the end-
caps.

With few exceptions, the end-caps of most similar devices are permanently
connected to the outer cylinder. The design of this apparatus is intended to be more
versatile, and features independent end-caps that may be split when in use with
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the smallest inner cylinder. That is, they are composed of two annular sections that
may be coupled to either cylinder, individually or coupled together. This versatility
has a purpose: boundary-driven secondary flows may perturb the primary flow
and inadvertently trigger instability (Lesur & Longaretti 2005). By varying end-cap
conditions, the role of such secondary flows may be assessed and mitigated, as in
Burin et al. (2006) and Schartman, Ji & Burin (2009).

There are two possible sources of uncertainty in Re that are potentially significant.
First, the apparatus was initially designed for high-speed operations and the controls
are not optimized for lower speeds. As a consequence, at the lowest Re reported
here (≈2000) there is an approximate 4–8 % uncertainty due to rotation fluctuations.
This uncertainty is only an issue using the largest inner cylinder or smallest gap size
(η = 0.97), and by Re = 4500 (near where we observe transition) it is down to 1–2 %,
which is the maximum level of rotational uncertainty in Re when using the other
two cylinders (i.e. with wider gaps) for all Re reported here. Second, the fluid is
not actively temperature controlled, allowing for viscosity to be affected. Temperature
was monitored during typical run times (62 h) and changes to the water temperature
were observed to be <2◦C, leading to an additional uncertainty in Re of <4 %. Such
mild heating at relatively high Re is perhaps counterintuitive. We suppose it is due to
two causes: the first is that the inner cylinder of the apparatus is hollow and filled
with water, which acts as a temperature ballast; the other is that shearing (and thus
heating) largely takes place in a localized region and not throughout the whole annulus
(discussed below). Considering these effects jointly, the Re reported in the following
observations are usually understood to be <5 % unless otherwise noted.

3. Observations
3.1. Visual observations

All flow configurations are observed to undergo a turbulent transition by increasing
Re via outer cylinder rotation, although details of the transition differ significantly
with gap width or η. We first address Recr for increasing Re with respect to
normalized gap width. Figure 2 presents our transition results for the three different
inner cylinders along with historical data, incorporating the datasets from both Wendt
(1933) and Taylor (1936) in addition to other observations having pure outer cylinder
rotation. Where possible we include hysteresis measurements, where the (higher)
transition Re upon increasing (Recr) is distinguished from the inverse transition
(i.e. relaminarization) upon decreasing Re. The new transition data is seen to fit
well with previous observations and their inferred quadratic scaling above 1R/R > 0.1.

The scatter of transition Re values seen in figure 2 has some significance. Owing
to the finite-amplitude nature of the subcritical instability, perturbations of larger
amplitude may trigger instability at lower Re. In our experiments, turbulence was
sometimes inadvertently triggered prematurely for increasing Re in instances where the
flow was noticeably perturbed, e.g. due to a sudden acceleration, or the wake of a
stray bubble. Similarly, we can see from the work of R. A. Bagnold (as summarized
by Hunt et al. 2002) that the subcritical transition occurred at less than half of
the expected Recr based on gap width, from which we infer there were significant
perturbations in his wide gap apparatus. Conversely, the careful work by Schultz-
Grunow (1959) demonstrated that a precisely controlled experiment could achieve
laminar flow at exceptionally high Re, extending Recr by an order of magnitude
or more. This result is analogous to pipe flow experiments that, through careful
minimization of initial perturbations, can achieve laminar flow up to order 105 instead
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FIGURE 2. Transition Re as function of normalized gap width using both new and historical
data. Note that 1R/Ro = 1 − η. Square data are from Couette (1890), Yamada & Imao
(1986), Richard (2001) and Borrero-Echeverry, Schatz & Tagg (2010). Vertical lines represent
hysteresis observations and the dashed trend-line denotes a squared dependence. For η = 0.55
the transition values are given using three different end-cap configurations.

(b) (c)(a)

FIGURE 3. Transition imagery for the narrow gap case (η = 0.97) for Re increasing. Onset of
turbulence is near Re = 4500. A mixed helicity phase at onset (not shown) eventually yields
to a steady state of spiral turbulence (a). As Re increases further, turbulence spreads from the
spiral bands; (b) is at Re= 6500. A fully turbulent state is reached by Re= 7500 (c).

of the usual 2–3000 (Pfenniger 1961). Interestingly, the transition values of Schultz-
Grunow are in line with the others presented in figure 2 when he utilized an eccentric
(m= 1) inner cylinder.

One of the useful features of the present apparatus is its transparent outer cylinder,
allowing for spatiotemporal imaging of the subcritical transition. Figure 3 gives a
sequence of time-independent images depicting the transition to turbulence for the
η = 0.97 (i.e. narrow gap) case. Here we observe laminar flow until the onset of
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(b) (c)(a)

FIGURE 4. Transition imagery for the narrow gap case (η = 0.97) for Re decreasing, where
turbulent spots (sometimes extended) and single spirals (of either helicity) may be observed:
(a–c) at Re= 2500, just above the relaminarization threshold Re≈ 2000.

spiral turbulence from a laminar state near Recr = 4500. Onset of the turbulence is
typically initiated from the end-caps of the device and proceeds to create angled
turbulent patches that eventually evolve (at the same Re) into spiral turbulence after
about 61 min. The final helicity of the spiral bands appears to be random with
both states being observed with apparent equal probability. By further increasing Re
the turbulence spreads from the oblique bands until the flow is fully turbulent near
Re ≈ 7500. This process of becoming fully turbulent through an expansion of already-
turbulent domain(s), as well as the observation of helicity switching, was reported in
Coles (1965) and Andereck et al. (1986) for the case of counter-rotating cylinders,
although these studies drove turbulence via Ωi.

Hysteresis is clearly evident in the subcritical transition. Turbulent features are
generally maintained below Recr, but they become more intermittent in both time and
space. The dominant spiral pattern tends to break up, allowing for both helicities of
bands as well as for unconnected turbulent patches of varying degrees of pitch and
elongation. This transition from spirals to patches for decreasing Re has been seen in
counter-rotating flow (Goharzadeh & Mutabazi 2001) and torsional Couette flow (Cros
& Le Gal 2002), and more recently in rotating planar Couette flow (Tsukahara et al.
2010). Turbulent patches may occasionally join to form what appears to be a single
spiral, and in some cases tend to form on one side of the previous turbulent patch in
a process reminiscent of turbulent spot spreading over a flat plate (Elder 1960). This
can happen a few times in succession, such that an oblique band is seen in piecemeal
fashion over time. Representative images from this hysteretic regime for the narrow
gap case are seen in figure 4. Complete relaminarization occurs near Re≈ 2000.

In contrast to the narrow gap transition, the subcritical transition for wider gaps
(η = 0.55 and 0.73) does not contain spiral turbulence, or even a similarly distinct
intermediate phase for increasing Re. For the wider gaps the transition is usually
observed to originate from the midplane of the cylinders, i.e. where the Ekman flows
converge. For the narrow gap case turbulence always starts from one or both of the
end-caps (although turbulence may start from the end-caps in wider gap flows as well
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(b) (c)(a)

FIGURE 5. Transition imagery highlights from the widest gap case (η = 0.55). Near
Re = 70 000 turbulence breaks out from a midplane layer (a). The flow is fully turbulent
near Re = 100 000 (b). Hysteresis is evident down to Re near 50 000 (c) with relatively large
patches of intermittent turbulence. The radial location of the turbulence is dependent on the
chosen end-cap configuration.

if the acceleration between flow speeds is not sufficiently quasi-static). After onset,
and at the same Re, turbulence progresses to fill the entire annulus vertically, although
not entirely in radius, as we discuss further below. As with the narrow gap case,
hysteresis with turbulent patchiness is observed below Recr. Highlights of a transition
sequence for the widest gap case (η = 0.55) are shown in figure 5.

Figure 6 (a) presents an integrated picture of the development of turbulence with
Re for the η = 0.97 case, using a spatially integrated parameter (γ ) representing the
fraction of the flow that appears turbulent. This fraction is estimated from an average
of time-independent photographs of the illuminated side of the flow as depicted in
figures 3 and 4. Note that adjusting the contrast of the photos, or other settings,
does not significantly change the pixel count representing laminar and turbulent
regions. Hysteresis is most evident below the Recr of 4500 where the turbulence is
generally patchy and not coherent as spirals. As discussed above, for increasing Re the
turbulence onset normally appears abruptly as spirals (after a transitory mixed helicity
phase). These results may be compared with experimental results in both circular
(Colovas & Andereck 1997; Goharzadeh & Mutabazi 2001) and planar Couette flows
(Bottin & Chaté 1998), as well as to recent simulations (Dong & Zheng 2011).

We note that while our initial observations of hysteresis phenomena appear
qualitatively similar to observations from other subcritical flows, additional data is
needed to investigate the statistics associated with relaminarization, the boundary of
which should be probabilistic (Borrero-Echeverry et al. 2010). Also much longer wait
times are necessary: the viscous decay time, τν ≈ (1R)2 /ν (Czarny & Lueptow 2007),
is near 1 and 3 hours (respectively) for the η = 0.73 and 0.55 cases considered.
However, initial hysteresis observations made with η = 0.73, allowing for a full
viscous time, are similar to observations with significantly shorter wait times. We
hope to address hysteresis and transition statistics more fully in a future study.
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FIGURE 6. (a) Integrated turbulent fraction with Re for the narrow-gap case (η = 0.97), with
evident hysteresis; (b) displays two basic properties of the spiral pattern: representative tilt
angle (θc) and azimuthal rotation rate (ωs), given as a percentage of outer cylinder rate (Ωo).

In figure 6 we also present a basic summary of spiral properties (b), including
average pitch angle and the azimuthal rotation rate of the spiral pattern (ωs) as a
function of Re. Both values appear to trend mildly upwards and approximately linearly
with Re. Since pitch angle has been seen previously to vary significantly with axial
distance from the end-caps (Hegseth et al. 1989), the data here is evaluated in just
the central portion of the imaged area to emphasize its trend over Re. No significant
hysteresis is observed in the spiral pitch with Re. In counter-rotating flow, ωs has been
observed to be approximately the mean of the two cylinder rotation rates (Ωm) below
a Re of 10 000 (van Atta 1966). When normalized by Ωo, Andereck et al. (1986)
found no dependence of this rate on Ωi. Similar results were obtained by Prigent
(2001) who found ωs ≈Ωm for a wide range of Ωi and Ωo values in counter-rotating
flow. Our ωs results also are near Ωm, which is just 50 % of Ωo, but also show a
slight increase with Ωo. This increase may be due to the turbulent energy migrating
outward in radius as it develops when Re is increased, as has been seen in recent
simulations (Dong & Zheng 2011). Spiral turbulence was typically not seen in earlier
circular Couette experiments due to the relatively large wavelength of the bands,
λz ≈ 40–601R. A similar geometrical relation was discovered empirically by Prigent
et al. (2002, 2003), who found λz ≈ 20–401R. We discuss this geometric relationship
below after reviewing velocimetry results.

3.2. Velocimetry
In figure 7 we present time-averaged velocimetry results using LDV. A representative
laminar and turbulent profile over normalized radius is given for each configuration.
The difference between the narrow and wider gap cases is clear in a few respects.
First, the departure from the laminar analytic solution increases with gap size, due
to end effects upon the bulk flow. The shape of the turbulent profile also changes
with gap size, though is similar for the η = 0.55 and 0.73 cases. The departure of
the profiles from of the analytic Couette solution (Joseph 1976), which is significant
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FIGURE 7. Velocimetry contrasting velocity distributions of mean azimuthal velocity over
radius for different gap widths. Measurements are taken at z = 6 cm (depth, i.e. from the top
of the apparatus) although are independent of height. Theoretical laminar (Couette) profiles
are also given for comparison. Approximate Re for the profiles (based on (1.1)) are: 2800 and
6800 for η = 0.97; 50 000 and 65 000 for η = 0.73; 100 000 and 130 000 for η = 0.55 (outer);
and 65 000 and 100 000 for η = 0.55 (inner).

for wider gaps or shorter Γ , is discussed in Coles & Atta (1966) along with their z
independence, which can be maintained in short Γ flows via stronger, although still
thin, end-cap boundary (Ekman) layers.

In general the shape of the profiles for each gap width (whether laminar or
turbulent) do not change up to 2Recr, which is the approximate maximum Re of
this study. The profile for the intermediate case of spiral turbulence in the η = 0.97
case is also nearly indistinguishable from more fully turbulent profiles at higher Re.
We note that this narrow gap case is unique in having an inflection point due to the
proximity of the sidewalls to each other, an issue we will return to in the discussion
below. Different end-cap conditions (unique to the η = 0.55 case) also clearly affect
the flow profile and consequently Recr.

The radial distribution of turbulent fluctuation energy (as reflected in the time-
averaged azimuthal root mean square velocity) varies considerably with gap width,
as can be seen in figure 8. The narrow-gap case features turbulent fluctuations near
10 % filling most of the annular domain for both spiral turbulence and fully developed
turbulence. The wider gap cases on the other hand contain relatively less fluctuation
energy, being ∼10 % only near the inner cylinder and then decaying outward, reaching
low levels (≈1 %) near the outer cylinder. Indeed, visualization with Kalliroscope
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FIGURE 8. Radial distributions of normalized fluctuations. Here Re and z are the same as
in figure 7, with additional Re shown for η = 0.97 (Re = 4500) for spiral turbulence and for
η = 0.73 (Re= 75 000, 100 000 and 125 000) to illustrate Re independence once turbulent.

indicates that an outer layer of fluid in these cases is apparently laminar. This radial
decay is most pronounced when the outer end-caps rotate with the outer cylinder. For
η = 0.55, when end-caps that are wholly coupled to the inner cylinder are used, there
is more absolute fluctuation energy at larger radii, but the same trend of outward
decay prevails upon normalization due to very small mean speeds throughout the inner
half of the gap for this configuration. Once turbulent, both the radial distribution and
magnitude of the relative fluctuations do not appear to change significantly with Re for
any gap size.

4. Discussion
In conclusion we briefly discuss two of the principal results of our initial study. The

first concerns the localized nature of the shear and the role played by the end-caps.
The second concerns spiral turbulence, which is observed only using a narrow gap.

4.1. On the importance of localized shear

Figures 7 and 8 considered together suggest that turbulent fluctuations originate and
are confined to regions of sufficient shear. This correlation is seen in figure 9. Note
that the narrow gap case features significantly higher rates of shear along with double-
peaked fluctuation and shear profiles, which are due to the overlapping sidewall
boundary layers. This profile shape was observed in earlier measurements (Yamada
& Imao 1986) and also inferred in recent simulations of spiral turbulence in counter-
rotating flow (Dong & Zheng 2011). The wider gap cases by contrast are monotonic
due to their shear profile having only one maximum, which is found near the inner
cylinder when the end-caps are coupled to the outer cylinder.
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FIGURE 9. Radial distribution of mean shear (smoothed line) and azimuthal velocity
fluctuations (diamonds) showing correlation. These distributions are derived directly from
the turbulent profiles given in figures 7 and 8.

Our results with the widest gap case (η = 0.55; see (c, d) of figures 7 and 9) make
it clear that the end-cap conditions can significantly affect the bulk flow, primarily
by determining the radial location of the shear layer(s). End-caps that rotate with the
outer cylinder produce a more stable flow (Recr ≈ 120 000) than when they are coupled
to the inner cylinder (Recr ≈ 60 000). A split configuration will transition at even lower
Re, with Recr ≈ 30 000. (We conjecture that the split configuration is the most unstable
of the three configurations due to its shear layer being free, away from the viscous
boundaries.) We note that this disparity of Recr for differing end-cap conditions was
not noticed by Wendt (1933); but this is understandable given that his flows had a free
upper surface, and were thus less subject to end-effects.

The difference in apparent stability between the outer and inner end-cap
configurations can be understood in light of the radius of curvature at the shear layer.
Shearing is localized near the inner cylinder in the former case, i.e. at the location of
highest curvature, a condition generally associated with a larger stabilizing influence
(So & Mellor 1973). In fact, if we replace Ro with the approximate radial location of
the shear layer in the numerator of Re in (1.1) we find that the inner and outer end-cap
configurations transition at nearly the same Re≈ 60–70 000. A systematic investigation
of this coincidence (e.g. by incrementally moving the shear layer location in radius) is
unfortunately not possible with our apparatus.

Considering the localized nature of the shear and turbulence in the wider gaps, it
seems appropriate to revisit the notion of a global Reynolds number for this system.
Besides current data we recall similar experiments by Dunst (1972) in a very wide
gap (η = 0.1, with a free surface), who observed shear flow only very near the inner
cylinder, with the rest of the flow moving as a solid body. This large unsheared region
found in large gaps is not dynamically important to the shear-driven transition, which
is understood to be local in nature.
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FIGURE 10. Localized Reynolds numbers over normalized radius (4.2) and (4.3) for
turbulent profiles with Recr < Re< 1.5Recr.

A Reynolds number based on the shear averaged over the gap width is given by
Barkley & Tuckerman (2007) as

ReTC = (RiΩi − ηRoΩo)

(1+ η)d
d2

ν
(4.1)

where d =1R/2; a similar formulation was given by Manneville (2004). If we modify
this expression to account for the local shear rate r dΩ/dr, we may arrive at either

Rel1 = η

1+ η
r2(dΩ/dr)d

ν
(4.2)

or

Rel2 = η

1+ η
r(dΩ/dr)d2

ν
(4.3)

where Rel1 emphasizes the local radius r while Rel2 emphasizes the half gap d. Either
equation is permissible, at least from a dimensional standpoint.

The localized expressions for Re above are given over normalized radius in figure 10
for turbulent profiles just above the transition threshold (Recr < Re < 1.5Recr). Several
aspects of the data are worth noting. Considering first Rel1, we see that near the
inner cylinder the values are quite similar (50 000–90 000). The contrast with Re
as commonly defined (1.1) is greatest for η = 0.97, where a larger shear rate and
inner cylinder radius compensates for the small gap width. Near the outer cylinder
we find that η = 0.97 has the largest Rel1, while η = 0.55 has the smallest; this
apparent reversal in stability is sensible given the low shear rates and fluctuation
levels found in the outer layers of the larger gap flows. Values of Rel2 near the inner
cylinder are similar in value (and ordering in η) to those found in figure 2 which
uses (1.1).
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The η = 0.97 case given in figure 10 corresponds to spiral turbulence. Here
ReTC = 1000, while it can be seen that within the central gap Rel2 ≈ 200. Interestingly,
a radial average from 0.1 6 (r − Ri)/1R 6 0.9 yields Rel2 = 335, a value consistent
with the average of ReTC given in Barkley & Tuckerman (2007) in their comparison of
spiral turbulence limits in various shear flows. A local evaluation of Re may thus be
preferable even for narrow gaps.

4.2. On the origin of spiral turbulence
The qualitative difference between the transition sequences in the narrow and wider
gaps seems especially significant considering the presence of spiral turbulence in
the former. Though all wall-bounded shear flows can produce intermittent turbulent
structures, the regular alternating bands of spiral turbulence appear to be unique to
quasi-two-dimensional shear flows, including planar, circular, and torsional Couette
flow, in addition to Poiseuille channel flow. The turbulent patches observed in pipe
flows (puffs, slugs) and single boundary layers (Emmons spots) apparently do not form
the oblique banded pattern.

In the experiments by Cros & Le Gal (2002) between a stationary and rotating disc,
the pattern shifts from turbulent spots to turbulent spirals for the same Re (based on
disc radius) if the spacing between the discs is reduced. If one instead assumes that
the proper Re for this experiment should include the inter-disc spacing as a length
scale, then the transition from spots to spirals occurs for decreasing Re, i.e. opposite
the normal direction. Either consideration hints at the possible role of an interaction
between opposing boundary layers in producing the banding. The interaction process
that produces spiral turbulence, presumably between the largest scales of the outer
boundary layers, could be similar in nature to the phase locking that occurs at the
sheared interface between coaxial jets (Dahm, Frieler & Tryggvason 1992).

In any case, in light of our results, the empirical requirement H�1R may perhaps
be understood not only as a necessary removed distance of the end-caps (Γ →∞),
but as a necessary closeness of the sidewalls of the cylinders, the boundary layers of
which appear to overlap somewhat under the conditions of spiral turbulence. That is,
we consider the geometrical relation that allows for spiral wavelengths (H > λz) to be
a necessary but not sufficient condition for shear-driven spiral turbulence.

In wider gap flows, where intermittent turbulence can be seen, but the regular
banding associated with spiral turbulence is never observed (as with single boundary
layers) the bulk flow remains largely unaffected. We suppose then that spiral
turbulence could be formed through an interaction between opposing boundary layers,
and propose a rudimentary banding criterion 1R ≈ 2δ, where δ is the approximate
boundary layer thickness. When 1R � 2δ viscous processes overcome shear, and
when 1R � 2δ a relatively inviscid core effectively separates boundary layers,
preventing interaction. An experimental test of this conjecture would be to generate
shear-driven turbulence in a Taylor–Couette apparatus that has a velocity profile
dominated by a single shear layer (as in the η = 0.55 or 0.73 profiles seen in figure 7).
If the apparatus can be made adequately tall, with H > 401R (noting that a change
in H leaves Re unaffected), one may see whether spiral turbulence depends only on
sufficient shear and apparatus height.
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PRIGENT, A., GRÉGOIRE, G., CHATÉ, H. & DAUCHOT, O. 2003 Long-wavelength modulation of

turbulent shear flows. Physica D 174, 100–113.
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