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Abstract

The theoretical investigation of shocks and solitary structures in a dense quantum plasma con-
taining electrons at finite temperature, nondegenerate cold electrons, and stationary ions has
been carried out. A linear dispersion relation is derived for the corresponding electron acous-
tic waves. The solitary structures of small nonlinearity have been studied by using the standard
reductive perturbation method. We have considered collisions to be absent, and the shocks
arise out of viscous force. Furthermore, with the help of a standard reductive perturbation
technique, a KdV–Burger equation has been derived and analyzed numerically. Under limit-
ing cases, we have also obtained the KdV solitary profiles and studied the parametric depen-
dence. The results are important in explaining the many phenomena of the laser–plasma
interaction of dense plasma showing quantum effects.

Introduction

Laser-produced plasmas and laser–plasma interactions have been of increased interest these
days. Often lasers of 1022 W/m2 intensity and pulse duration of few picoseconds are used in
these laser–plasma experiments. The density of plasma is what is important here. The density
and temperature of the plasma may exhibit thermal or quantum behavior. The thermody-
namic as well as the physical parameters show significant deviations from the general nature
of the plasma. The ponderomotive force plays an important role. It may produce shocks, dou-
ble layers, solitary profiles, or similar stationary structures under various plasma situations.
Shocks appear when different fluids corresponding to plasma species approach each other
with speed greater than the local acoustic speed known as strong shock. Moreover, there is
another kind of shock which can be formed when two fluids collide a subsonic speed
which is known as weak shock (Zel’dovich and Raizer, 1966; Landau and Sykes, 1959).
Energy dissipation and associated rapid fluctuation of pressure, temperature, and volume
are observed (Jagadeesh, 2008). Such shocks are described by the laser-piston model (Henis
et al., 2019). According to this theory, the double layer structure (often termed as laser piston)
drives a compressive shock wave which moves in the unperturbed dense plasma. The piston
structure and the relation between its velocity and laser intensity were simulated by
Esirkepov et al. (2004), Schlegel et al. (2009), Naumova et al. (2009), Eliezer et al. (2014),
and very recently by Schmidt and Boine-Frankenheim (2016). The mechanism allows the
particle to obtain very high velocities and was reported earlier by Macchi et al. (2013) and
prior to him by Robinson et al. (2009). Hora (2012) has carried out two fluid simulations
of laser–plasma interactions with predominantly nonlinear ponderomotive force. Based on
the place of occurrence, shocks can be observed in space (Saitou et al., 2012) or laboratory-
produced plasmas (Bailung et al., 2011). Our interest is towards plasma–laser interactions.
Based on the interparticle interaction, shocks may be collisional or without collision. In the
former case, the kinetic energy is supplied by Coulomb collision, a binary elastic
collision between two charged particles interacting through their own electric fields. Here,
the shock front is narrower and width is few mean free path of binary collision. On the
other hand, if there is no collisional effects, the shocks experience instabilities due to collective
phenomena (or ionic reflections from the shock front) that provide the excess energy to be
dissipated at the front. Here, the thickness is even narrower and is many times smaller than
the mean free path. Theobald et al. (2006) have reported an instance containing supra-thermal
particles.

Now under extreme densities where the particle de Broglie waves come very close, quantum
tunneling effects are important. We accordingly incorporate the quantum diffraction effects
through the Bohm term (Haas, 2011). The electron experiences a pressure due to its quantum
effects. Such pressure can be of different forms, like Fermi pressure (Haas et al., 2003;
Misra and Bhowmik, 2007; Chandra, 2016), relativistic pressure (Chandra and Ghosh, 2012;
Chandra et al., 2013; Ghosh and Chandra, 2013), or even certain other effects due to
thermal anisotropy (Chandra and Ghosh, 2013), where as a result of such anisotropy violation
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of the incompresibility of the fluid in phase space is theorized
(Shukla and Eliasson, 2010; Chandra and Ghosh, 2013).
Such finite temperature effect incorporated by Elliasson and
Shukla has been used in some works in recent days (Akbari-
Moghanjoughi, 2012; Akbari-Moghanjoughi and Eliasson,
2016). In a laser–plasma interaction, despite the density being
very high and can exhibit Bohm potential effects, the finite
temperature may cause deviation from extreme quantum plasma
situation and the systems need to be formulated accordingly.
Certain authors (Lakhina, 1995; Devanandhan et al., 2011;
Chandra et al., 2012; Goswami et al., 2019) have studied shocks
in many dense astrophysical plasma. But, within our experimental
ambit with dense plasma interacting with intense laser beam, a
proper physical phenomena need to be investigated. Our work
is motivated by the idea of studying certain thermal anisotropy
due to laser beam (or pulse) in a dense quantum plasma. The
results of our study will identify many parametric domains that
can sustain solitary structure or shocks and the conversion
between them.

The paper is organized in the following pattern. In the “Basic
equation” section, we set our governing equations and with
proper normalization we have simplified them. In the next
two sections, we obtain the linear dispersion relations and
analyze the results from them. In “Derivation of the KdV–
Burger’s equation and Shocks and solitary formation” sections,
we derive the structure for shocks and solitons and finally
discuss the result with associated figures. Lastly, we conclude
with the probable applications of our findings and scope for
future work.

Basic equation

We consider nonlinear propagation of electron acoustic waves in
an unmagnetized two component quantum plasma experiencing
viscous effects consisting electrons at finite temperature and
Boltzmann distributed ions.

Based on the three-dimensional equilibrium Fermi–Dirac dis-
tribution for electrons at an arbitrary temperature, Shukla and
Eliasson (2010) derived a set of fluid equation which are valid
at both extremely low temperature and finite temperature limits.
A plane longitudinal electrostatic wave propagates in quantum
plasma without collision and leads to adiabatic compression,
thereby causing temperature anisotropy in the electron distribu-
tion. Due to quantum mechanical tunneling, the classical com-
pressibility of the electron phase fluid is violated. Furthermore,
the nonequilibrium dynamics of the plasma particles are consid-
ered with the assumption that the chemical potential (μ) remains
constant. Under such assumptions, the nonequilibrium particle
density is given by the following equation:

n0 = 1
2p2

2m
h−

( )3/2∫1
0

E1/2 dE
eb(E−m) + 1

= − 1

2p2b3/2

2m
h−

( )3/2

G
3
2

( )
Li3/2(− ebm)

(1)

where m is the electron mass, h− is the reduced Plank‘s constant,
n0 is the equilibrium number density, β = 1/kBTe0, Te0 is the back-
ground temperature of electron, μ is the chemical potential, and
Liν(x) is the polylogarithmic function in x of order ν. When
β→∞, that is, cold temperature of electron, we have μ→ EF,
where EF is the Fermi energy. Accordingly, the Fermi energy is

given by the following equation:

EF = (3p2n0)
2/3 h−

2

2m
(2)

Now, using the zeroth and first moments of the higher equations
with Fermi–Dirac distribution function and assuming that the
Bohm potential is independent of thermal fluctuations in such
finite temperature situation, we derive the continuity and momen-
tum equations in the following form:
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= 0 (3)
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where ne and ue are the electron density and electron fluid veloc-
ity, respectively; w is the electrostatic potential and
vTe =

�����������
kBTTe/me

√
is the thermal speed, F is the ratio of two poly-

logarithmic functions given by Akbari-Moghanjoughi and
Eliasson (2016),

F = Li5/2(− ebm)
Li3/2(− ebm)

(5)

and corresponds to the finite temperature anisotropic distribu-
tion. The second last term in the momentum [Eq. (4)] corre-
sponds to the Bohm potential. η is the viscosity coefficient.

The system is closed by the Poisson’s equation,

∂2w

∂x2
= 4pe(ne − ni) (6)

Here, we made use of the standard normalization condition which
are �x � x/lDe, �t � vpet, �w � ew/Te, �ue � ue/vTe ,
�h � h/lDevTe and obtained the equations in the dimensionless
form given by,

∂�ne
∂�t

+ ∂�ne�ue
∂�x

= 0 (7)
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∂2�w

∂�x2
= �ne − �ni (9)

where x = (VFe/VTe )2and H = h− vpe/2kBTFe .
The ions follow the Boltzmann distribution as ni = ni0 e

−σw.
Here, σ = Ti/Te. As the equation is normalized by the frame of
the electron, we can write this simple distribution of ions consid-
ering the fact that the electrons and the ions have the different
temperatures (El-Taibany et al., 2019).
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Derivation of linear dispersion relation

In order to investigate the linear and nonlinear behavior of elec-
tron acoustic wave in this two-component electron–ion plasma,
we make the following perturbation expansion for the field quan-
tities ne, ue, and w about their equilibrium values:

ne
ue
w

⎡
⎣

⎤
⎦ =

1
u(0)
w0

⎡
⎣

⎤
⎦+ 1

n(1)e
u(1)e
w(1)

⎡
⎣

⎤
⎦+ 12

n(2)e
u(2)e
w(2)

⎡
⎣

⎤
⎦+ · · · (10)

We assumed that all field variables varying as exp[i(kx− ωt)] and
accordingly for normalized wave frequency (ω) and wave number
(k) [which contains both real and imaginary part], the linear

dispersion relation. Here, the viscous term plays a very pivotal
role. The dispersion equation has an exponentially decaying com-
plex part in addition to the real dispersion relation. In this case if
we substitute the wave number with a real plus imaginary parts
(given by k = kr + iki), we obtain the two dispersion relations
given by,

v′ = kru0

+

������������������������������������������������������
k2ru

2
0 −

(s− s2w0 + k2r )
3F
x
k2r + H2k4r

4 − k2ru
2
0

( )
+ k2r

s− s2w0 + k2r
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(11)

Fig. 2. Real dispersion relation for different finite temperature electron degeneracy parameter (F ) with u0 = 0.5, σ = 0.5, H = 2, and χ = 0.5.

Fig. 1. Real dispersion relation for different quantum diffraction parameter (H ) with u0 = 0.5, σ = 0.5, F = 1.5, and χ = 0.5.
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and

v′′ =
−k2i h+

������������������������������������
k4i h+ 12Fki

x +H2k3i − 4k3i
(sw0−s)(1−k4i )

√
2

(12)

Result and discussions of linear dispersion relation

The parametric variations of linear dispersion expressions for this
problem have been carried out numerically. Keeping all the
parameters in the range that correspond to laser–plasma interac-
tions at such temperature and density conditions, the plots have
been carried out with the quantum diffraction parameter (H ) in

the classical and quantum ranges and the finite temperature elec-
tron degeneracy parameter (F) corresponding to different temper-
ature ranges. The electron to ion temperature ratio (σ), the ratio of
electron Fermi velocity to electron thermal velocity (χ), the viscos-
ity constant (η), and the streaming velocity (u0) are among the
other parameters whose variations have been studied here.

The dispersion relation consists of real and imaginary seg-
ments. The real dispersion relation corresponds to standard elec-
tron acoustic waves. When we consider the complex part of
viscosity (i.e., η), it corresponds to dynamic viscosity. The real
part of η therefore is no interest as we consider the wave in
motion. With reference to Eq. (11), we have plotted the real dis-
persion relations in Figures 1–4. Here, we find that other param-
eters remaining constant the real dispersion curve becomes more

Fig. 3. Real dispersion relation for different Fermi velocity and thermal velocity ration squared (χ) with u0 = 0.5, σ = 0.5, F = 1.5, and H = 2.

Fig. 4. Real dispersion relation for different streaming velocity (u0) with H = 2, σ = 0.5, F = 1.5, and χ = 0.5.
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steep and shows an upward trend (Fig. 1); the effect of degeneracy
parameter (F) is somehow difficult. Here, there is a cutoff value
for wave number to show dispersive effects. But, in the short
wavelength limit, the dispersion curve shows almost negligible
dependence on F (Fig. 2).

The dependence of Fermi velocity and thermal velocity ration
squared (χ) shows opposite effect to F. Here as χ increases, the
cutoff value of wave number recedes towards origin (Fig. 3).
The streaming motion (u0) shows (Fig. 4) both effects. An
increase in the streaming speed lowers the cutoff in wave number
but increases the slope. The results are in accordance with the
understanding of the basic physics of plasma or fluids.

The correspondence of the effects of F and χ is related by the
thermal motion. However, the effect of σ is not significant and it

can be concluded that at such plasma regimes, electron and ion
temperature, as well as the wave phase velocity, become insignif-
icant. If we now consider dynamic viscosity (which is incorpo-
rated by the η term), we get a dispersion curve which
corresponds to the collision-less damping, thus violating energy
conservation principal characterized by Vlasov/Landau damping.
In Figures 5–8, we plot the parametric dependence of the disper-
sion curves corresponding to such wave modes. There is a mini-
mum value of frequency which corresponds to zero wave number
and such a case has very common origin in plasma physics. The
quantum diffraction shows very prominent effects in a higher
wave number region (Fig. 5). In Figure 6, we find low k variations
which ultimately merge into one as k-value is increased. These are
similar to Figures 1 and 2.

Fig. 5. Imaginary dispersion relation for different quantum diffraction parameter (H ) with σ = 0.5, F = 1.5, and χ = 0.5.

Fig. 6. Imaginary dispersion relation for different finite temperature electron degeneracy parameter (F ) with σ = 0.5, H = 2, and χ = 0.5.
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In Figure 7, we find that χ has both effects of controlling the
zero wave number frequency as well as the slope of dispersion
curve. This is due to the interplay of density and thermal agita-
tion. Figure 8 shows a rather anomalous behavior when viscosity
parameter (η) is the tuning element. The results can be explained
due to the dynamic nature of viscosity which indirectly depends
on density, streaming motion, temperature, etc. All these are com-
piled and a new plot (Fig. 9) depicts the quantum and classical
cases corresponding to the presence (η≠ 0) and absence (η = 0)
of viscosity in the system.

Derivation of the KdV–Burger’s equation

In order to derive the equation of motion for the nonlinear elec-
tron acoustic wave, we employ the reductive perturbation

technique and define the following stretched variables,

c = 11/2(x −Mt) (13)

t = 13/2t (14)

h = 11/2h0 (15)

where ε is a small parameter which characterizes the strength of
nonlinearity, and M is the phase velocity of the wave. The stretch-
ing in η is due to the small variations in perpendicular directions.

Now, Eqs (7–9) are written in terms of the stretched coordi-
nates ψ, τ, and η and substituting of perturbation expansion

Fig. 7. Imaginary dispersion relation for different Fermi velocity and thermal velocity ration squared (χ) with σ = 0.5, F = 1.5, and H = 2.

Fig. 8. Imaginary dispersion relation for different viscosity coefficient (η) with H = 2, σ = 0.5, F = 1.5, and χ = 0.5.
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given in Eq. (10). From these equations, lowest orders in ε (i.e., ε)
with the boundary conditions that all variables, that is, n(1)e , u(1)e ,
and w(1), tend to zero as ψ→ ±∞, the first-order terms are

u(1)e = (M − u0)n
(1)
e

and

u(1)e = x(M − u0)

3F − x(M − u0)
2 w

(1) (16)

or

n(1)e = x

3F − x(M − u0)
2 w

(1) (17)

Going to next higher order terms in ε, that is, ε5/2th term, we
get

(M − u0)
∂n(2)e

∂c
= ∂n(1)e

∂t
+ ∂(n(1)e u(1)e )

∂c
+ 1

(M − u0)
∂u(1)e

∂t

+ 1
2(M − u0)

∂u(1)
2

e

∂c
− 1

(M − u0)
∂w(2)

∂c

+ 3F
2(M − u0)c

∂n(1)
(2)

e

∂c
+ 3F

(M − u0)c
∂n(2)e

∂c

− H2

4(M − u0)
∂3n(1)e

∂c3 − h0

(M − u0)
∂2u(1)e

∂c2

(18)

Fig. 9. Imaginary dispersion relation for quantum and classical cases.

Fig. 10. Shock fronts for different quantum diffraction parameter (H ) with M = 0.7, u0 = 0.5, σ = 0.5, F = 1.5, η0 = 0.5, and χ = 0.5.
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and

∂ue(2)
∂c

= 1
(M − u0)

∂u(1)e

∂t
+ 1

2(M − u0)
∂u(1)

2

e

∂c
− 1

M − u0

∂w(2)

∂c

+ 3F
2(M − u0)c

∂n(1)
2

e

∂c
+ 3F

(M − u0)c
∂n(2)e

∂c

− H2

4(M − u0)
∂3n(1)e

∂c3 − h0

(M − u0)
∂2u(1)e

∂c2

(19)

The second-order perturbation of the Poisson’s equation can be

equated as

∂2w(1)

∂c2 = n(2)e − n(2)i = n(2)e − s2

2
w(1)2 + s(1− sw0)w

(2) (20)

Differentiating both sides of Eq. (20) by ψ and carrying out a
detailed algebraic treatment with Eqs (18) and (19), the nonlin-
ear KdV–Burger’s equation is given by the following equation:

∂w

∂t
+ Aw

∂w

∂c
+ B

∂3w

∂c3 − C
∂2w

∂c2 = 0 (21)

Fig. 11. Shock fronts for different finite temperature electron degeneracy parameter (F ) with M = 0.7, u0 = 0.5, σ = 0.5, H = 1.5, η0 = 0.5, and χ = 0.5.

Fig. 12. Shock front for different Mach number (M ) with F = 1.5, u0 = 0.5, σ = 0.5, H = 2, η0 = 0.5, and χ = 0.5.
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Here, w = w(1), where,

A = 3(x(M − u0)+ 3F)

2(M − u0)(3F − x(M − u0)
2)
+ s2(3F − x(M − u0))

2

2(M − u0)x

[ ]

(22)

B = 4(3F − x(M − u0))
2 −H2x2

2(M − u0)x2
(23)

C = −h0

2
(3F − x(M − u0)

2) (24)

It is clearly seen that if viscous coefficient η0 = 0, then Eq. (21)

reduces to KdV equation with C = 0. The dissipation is taken
into account due to the viscous coefficient C.

The nonlinear equation obtained from Eq. (21) is the cele-
brated KdV–Burger’s equation representing the spatio-temporal
evolution of solitary structure and its transformation into shocks
under limiting situation. Obtaining the solution of KdV–B, we use
the standard method of hyperbolic tangent method which is often
used. Using the transformation equation, ξ = ψ− Vτ and the
boundary condition as ξ→ 0 then w(1)→ 0 and ∂w(1)/∂ξ→ 0,
the KdV–B equation can be written as

− V
dw(1)

dj
+ Aw(1) dw

(1)

dj
+ B

d2w(1)

dj2
+ C

d3w(1)

dj3
= 0. (25)

Now using the transformation s = tanhξ and assuming a series

Fig. 13. Shock fronts for different ratio of electron Fermi velocity to electron thermal velocity (χ) with F = 1.5, u0 = 0.5, σ = 0.5, H = 2, η0 = 0.5, and M = 0.7.

Fig. 14. Shock fronts for different electron to ion temperature ratio (σ) with F = 1.5, u0 = 0.5, χ = 0.5, H = 2, η0 = 0.5, and M = 0.7.
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solution given by Wazwaz (2008) as w(1)(s) = ∑n
j=0 ajs

j, we arrive
to the solution given by

w1 =
12B
A

[1− tanh2(j)]− 36C
15A

tanh(j) (26)

Here w1 = w(1). As in Eq. (21) when C = 0, the equation becomes
the KdV equation. Using the same transformation, we get the sol-
ution of the reduced KdV–B (standard KdV) equation given by

w = w0sech
2 j

D
(27)

where w0 = 3V/A and D = 2
�����
V/C

√
.

In the next section, we study the parametric dependence of the
electrostatic shock waves and solitary formation and discuss the
results with special reference to space and astronomical plasma
phenomena.

Shocks and solitary formation

In the previous section, we came out with nonlinear analysis,
which provided expressions for shock wave formation as well as
solitary structures. Here, we have studied the parametric depen-
dence and provide figures corresponding quantum and classical
regimes. Firstly, in Figure 10, we show the variation in the quan-
tum diffraction parameter H on shocks the higher the value of H,
smaller will be the potential gaps. The dependence of shock fronts

Fig. 15. Shock fronts for different streaming velocity (u0) with F = 1.5, σ = 0.5, χ = 0.5, H = 2, η0 = 0.5, and M = 0.7.

Fig. 16. Shock fronts for different viscous coefficient (η0) with F = 1.5, σ = 0.5, χ = 0.5, H = 2, u0 = 0.5, and M = 0.7.
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on F in the classical and quantum regime is shown in Figure 11.
Figures 12–14 show corresponding parametric dependence of
wave phase velocity (M ), electron to ion temperature ratio (σ),
and electron Fermi speed to thermal speed ration squared (χ).

In Figure 12, the phase speed shows contrasting effects on
either side of the shock front and are difficult in the quantum
and classical domain. Analogous effect is shown by σ (Fig. 13)
but hence the potential profile difficult in height and width.
However, the classical and quantum cases do not show much
change. In Figure 14, the shock front at either side do not show
much variation with χ, but the amplitude of the shock profile
at ψ = 0 decreases with increase in the value of χ. Quantum and
classical regimes show similar shape and formations. In

Figure 15, we study the dependence on streaming velocity (u0),
which has a positive effect before the shock formation and a neg-
ative effect afterwards. The dependence of the viscosity parameter
(η) is shown in Figure 16. In the quantum range, η shows a pos-
itive effect before shock formation and a negative effect after that.
In the classical range, the effect is almost similar. In Figure 17, we
study the weak and strong shock front by changing the wave
phase velocity. In Eq. (12) we have already studied the variation
of shock front for different wave phase velocity, but in this case
we have studied for subsonic and supersonic speed of the wave
phase (Zel’dovich and Raizer, 1966; Landau and Sykes, 1959).

If we now ignore the viscous effect (i.e., η0 = 0), the KdV–
Burger equation [Eq. (21)] reduces to the standard KdV equation

Fig. 17. Weak and strong shock front in the quantum regime (H = 2).

Fig. 18. Solitary structures for different quantum diffraction parameter (H ) with M = 0.7, u0 = 0.5, σ = 0.5, F = 1.5, and χ = 0.5.
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showing the solitary wave formation. We now study the paramet-
ric dependence of the KdV solitary structures. We see that quan-
tum diffraction (H ) cannot alter the solitary profile amplitude but
can shrink the width (Fig. 18); the electron degeneracy parameter
(F) increases both height and width of the profile (Fig. 19).
Figure 20 shows that above a certain value M > 1.4, the amplitude
remains constant but the width shrinks. An electron to ion tem-
perature ratio (σ) cannot alter the width but decreases the ampli-
tude (Fig. 21). The streaming speed decreases the amplitude and
widens the profile (Fig. 22). There is no effect of the ratio Fermi
and thermal velocity squared (χ) on the solitary profile.

The conclusions that we can now draw from these figures that
H is a function of density which shows serious dispersive effects

along with nonlinearity, but the effective potential is invariant
once the density crosses certain limit (i.e., in quantum range).

Thermal degeneracy effect (shown by F) is rather an important
parameter where the statistical effect interferences are strong so as
to mitigate quantum tunneling effects. The streaming speed if
stays below the critical value of Mc = 1.4 can have certain effect
in the nonlinear behavior, but once above it, the correlation effects
come into play due to the extreme dynamic compactness that the
potential remains peaked at the same value, much like the effect of
H. Depending upon the thermal inhomogeneity of electrons and
ions and the nonequilibrium exchange of energy, the parameter σ
can decrease the peak potential slightly but the width remains
invariant, implying no dispersion losses.

Fig. 19. Solitary structures for different finite temperature electron degeneracy parameter (F ) with M = 0.7, u0 = 0.5, σ = 0.5, H = 2, and χ = 0.5.

Fig. 20. Solitary structures for different Mach number (M ) with F = 1.5, u0 = 0.5, σ = 0.5, H = 2, and χ = 0.5.
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Conclusion

To sum up, we have investigated the parametric dependence of
linear dispersion characteristics and nonlinear shocks and solitary
profiles on various plasma parameters. The effects and the
absence of some have been discussed with explanation why they
are influential or not in certain ranges. We also found which
parameter should be taken care of, if we need to obtain a solitary
profile to form an electrostatic shock.

The result obtained here will be helpful in understanding the
many laser plasma interaction and space phenomenon experimental
situations and help design our equipments to take into consider-
ations of the many situations that the laser-produced plasma thus
might undergo. In our coming work, we also plan to incorporate
electronic exchange interaction and discussed about the influences.

Acknowledgments. We would like to thank Prof. A. Roy Chowdhury for his
inspiration and support. The authors would like to thank Physics Departments
of Jadavpur University and Government General Degree College at
Kushmandi for providing facilities to carry this work.

References

Akbari-Moghanjoughi M (2012) Shukla-Eliasson attractive force: revisited.
Journal of Plasma Physics 79, 189–196.

Akbari-Moghanjoughi M and Eliasson B (2016) Hydrodynamic theory of
partially degenerate electron–hole fluids in semiconductors. Physica
Scripta 91, 105601.

Bailung H, Sharma S, Bhagoboty N and Nakamura Y (2011) Shock wave
propagation in a dusty plasma crystal. AIP Conference Proceedings 1397,
287–288.

Fig. 21. Solitary structures for different electron to ion temperature ratio (σ) with F = 1.5, u0 = 0.5, χ = 0.5, H = 2, and M = 0.7.

Fig. 22. Solitary structures for different streaming velocity (u0) with F = 1.5, σ = 0.5, χ = 0.5, H = 2, and M = 0.7.

Laser and Particle Beams 37

https://doi.org/10.1017/S0263034619000764 Published online by Cambridge University Press

https://doi.org/10.1017/S0263034619000764


Chandra S (2016) Propagation of electrostatic solitary wave structures in dense
astrophysical plasma: effects of relativistic drifts and relativistic degeneracy
pressure. Advances in Astrophysics 1, 187–200.

Chandra S and Ghosh B (2012) Modulational instability of electron-acoustic
waves in relativistically degenerate quantum plasma. Astrophysics and Space
Science 342, 417–424.

Chandra S and Ghosh B (2013) Non-linear propagation of electrostatic waves
in relativistic fermi plasma with arbitrary temperature. Indian Journal of
Pure and Applied Physics 51, 627.

Chandra S, Paul SN and Ghosh B (2012) Linear and non-linear propagation
of electron plasma waves in quantum plasma. Indian Journal of Pure and
Applied Physics 50, 314–319.

Chandra S, Paul SN and Ghosh B (2013) Electron-acoustic solitary waves in a
relativistically degenerate quantum plasma with two-temperature electrons.
Astrophysics and Space Science 343, 213–219.

Devanandhan S, Singh SV, Lakhina GS and Bharuthram R (2011) Electron
acoustic solitons in the presence of an electron beam and superthermal elec-
trons. Nonlinear Processes in Geophysics 18, 627–634.

Eliezer S, Nissim N, Raicher E and Martínez-Val JM (2014) Relativistic
shock waves induced by ultra-high laser pressure. Laser and Particle
Beams 32, 243–251.

El-Taibany WF, El-Siragy NM, Behery EE, El-Bendary AA and Taha RM
(2019) Dust acoustic waves in a dusty plasma containing hybrid Cairns–
Tsallis-distributed electrons and variable size dust grains. Chinese Journal
of Physics 58, 151–158.

Esirkepov T, Borghesi M, Bulanov S, Mourou G and Tajima T (2004)
Highly efficient relativistic-ion generation in the laser-piston regime.
Physical Review Letters 92, 175003.

Ghosh B and Chandra S (2013) Nonlinear surface waves on a quantum
plasma half-space with arbitrary temperature. International Journal of
Systems Algorithms and Applications 3, 1.

Goswami J, Chandra S and Ghosh B (2019) Shock waves and the formation
of solitary structures in electron acoustic wave in inner magnetosphere
plasma with relativistically degenerate particles. Astrophysics and Space
Science 364, 65. doi:10.1007/s10509-019-3555-7.

Haas F (2011) A fluid model for quantum plasmas. In Quantum Plasmas.
New York, NY: Springer, pp. 65–93. https://link.springer.com/book/10.1007/
978-1-4419-8201-8

Haas F, Garcia LG, Goedert J and Manfredi G (2003) Quantum ion-acoustic
waves. Physics of Plasmas 10, 3858–3866. arXiv: https://doi.org/10.1063/1.
1609446.

Henis Z, Eliezer S and Raicher E (2019) Collisional shock waves induced by
laser radiation pressure. Laser and Particle Beams 37, 268–275.

Hora H (2012) Fundamental difference between picosecond and nanosecond
laser interaction with plasmas: ultrahigh plasma block acceleration links
with electron collective ion acceleration of ultra-thin foils. Laser and
Particle Beams 30, 325–328.

Jagadeesh G (2008) Fascinating world of shock waves. Resonance 13, 752–767.
Lakhina G (1995) Excitation of plasma sheet instabilities by ionospheric O+

ions. Geophysical Research Letters 22, 3453–3456.
Landau LD and Lifshitz EM (1959) Fluid Mechanics. Translated from Russian

by J. B. Sykes and W. H. Reid. Oxford, New York, Toronto, Sydney, Paris,
Braunschweig: Pergamon Press (reprinted 1975).

Macchi A, Borghesi M and Passoni M (2013) Ion acceleration by superin-
tense laser-plasma interaction. Reviews of Modern Physics 85, 751–793.

Misra A and Bhowmik C (2007) Nonplanar ion-acoustic waves in a quantum
plasma. Physics Letters A 369, 90–97.

Naumova N, Schlegel T, Tikhonchuk V, Labaune C, Sokolov I and
Mourou G (2009) Hole boring in a dt pellet and fast-ion ignition with
ultraintense laser pulses. Physical Review Letters 102, 025002.

Robinson APL, Gibbon P, Zepf M, Kar S, Evans RG and Bellei C (2009)
Relativistically correct hole-boring and ion acceleration by circularly polar-
ized laser pulses. Plasma Physics and Controlled Fusion 51, 024004.

Saitou Y, Nakamura Y, Kamimura T and Ishihara O (2012) Bow shock for-
mation in a complex plasma. Physical Review Letters 108, 065004.

Schlegel T, Naumova N, Tikhonchuk V, Labaune C, Sokolov I and Mourou G
(2009) Relativistic laser piston model: ponderomotive ion acceleration in dense
plasmas using ultraintense laser pulses. Physics of Plasmas 16, 083103.

Schmidt P and Boine-Frankenheim O (2016) A gas-dynamical approach to
radiation pressure acceleration. Physics of Plasmas 23, 063106. https://doi.
org/10.1063/1.4952623

Shukla PK and Eliasson B (2010) Nonlinear aspects of quantum plasma phys-
ics. Physics-Uspekhi 53, 51–76.

Theobald W, Akli K, Clarke R, Delettrez JA, Freeman RR, Glenzer S, Green J,
Gregori G, Heathcote R, Izumi N, King JA, Koch JA, Kuba J, Lancaster K,
MacKinnon AJ, Key M, Mileham C, Myatt J, Neely D, Norreys PA,
Park HS, Pasley J, Patel P, Regan SP, Sawada H, Shepherd R, Snavely R,
Stephens RB, Stoeckl C, Storm M, Zhang B and Sangster TC (2006) Hot
surface ionic line emission and cold K-inner shell emission from
petawatt-laser-irradiated Cu foil targets. Physics of Plasmas 13, 043102.

Wazwaz AM (2008) The tanh method for travelling wave solutions to the
Zhiber–Shabat equation and other related equations. Communications in
Nonlinear Science and Numerical Simulation 13, 584–592.

Zel’dovich Ya and Raizer Yu (1966) Physics of Shock Waves and
High-Temperature Hydrodynamic Phenomena, Vol. 1. Mineola,
New York: Dover Publication, pp. 45–68.

38 J. Goswami et al.

https://doi.org/10.1017/S0263034619000764 Published online by Cambridge University Press

https://link.springer.com/book/10.1007/978-1-4419-8201-8
https://link.springer.com/book/10.1007/978-1-4419-8201-8
https://doi.org/10.1063/1.1609446
https://doi.org/10.1063/1.1609446
https://doi.org/10.1063/1.1609446
https://doi.org/10.1063/1.4952623
https://doi.org/10.1063/1.4952623
https://doi.org/10.1063/1.4952623
https://doi.org/10.1017/S0263034619000764

	Collision-less shocks and solitons in dense laser-produced Fermi plasma
	Introduction
	Basic equation
	Derivation of linear dispersion relation
	Result and discussions of linear dispersion relation
	Derivation of the KdV--Burger's equation
	Shocks and solitary formation
	Conclusion
	Acknowledgments
	References


