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A UNIFYING APPROACH TO BRANCHING
PROCESSES IN A VARYING ENVIRONMENT
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Abstract

Branching processes (Zn)n≥0 in a varying environment generalize the Galton–Watson
process, in that they allow time dependence of the offspring distribution. Our main
results concern general criteria for almost sure extinction, square integrability of the
martingale (Zn/E[Zn])n≥0, properties of the martingale limit W and a Yaglom-type result
stating convergence to an exponential limit distribution of the suitably normalized pop-
ulation size Zn, conditioned on the event Zn > 0. The theorems generalize/unify diverse
results from the literature and lead to a classification of the processes.
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1. Introduction and main results

Branching processes (Zn)n≥0 in a varying environment generalize the classical Galton–
Watson processes, in that they allow time dependence of the offspring distribution. This natural
setting promises relevant applications (e.g. to random walks on trees, as in [18]) and has
recently received a renewal of interest, see e.g. [2, 4, 13, 20]. Former research on branch-
ing processes in a varying environment was temporarily affected by the appearence of certain
exotic properties, and one could get the impression that it is difficult to grasp some kind of
generic behaviour of these processes. Even so, steps in this direction were taken by Peter
Jagers [15]; in particular, he aimed for a classification into supercritical, critical and subcritical
regimes in the spirit of ordinary Galton–Watson processes. In this paper we take up this line of
research. To this end we prove several theorems reaching from criteria for almost sure extinc-
tion up to Yaglom-type results. We require only mild regularity assumptions, and in particular
we set no restrictions on the sequence of expectations E[Zn], n ≥ 0, thereby generalizing and
unifying a number of individual results from the literature.

In order to define a branching process in a varying environment (BPVE), let the sequence
Y1, Y2, . . . denote random variables with values in N0, and f1, f2, . . . their distributions. Let
Yni, n, i ∈N, be independent random variables such that Yni and Yn coincide in distribution for
all n, i ≥ 1. Define the random variables Zn, n ≥ 0, with values in N0 recursively as

Z0 := 1, Zn :=
Zn−1∑
i=1

Yni, n ≥ 1.
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Branching processes in a varying environment 197

Then the process (Zn)n≥0 is called a branching process in the varying environment v =
( f1, f2, . . .) with initial value Z0 = 1. These processes may be considered as a model for the
development of the size of a population where individuals reproduce independently with off-
spring distributions fn potentially changing among generations. Without further mention we
always require that 0< E[Yn]<∞ for all n ≥ 1.

There is one non-trivial statement on BPVEs requiring no extra assumption. It says that
Zn is almost surely (a.s.) convergent to a random variable Z∞ with values in N0 ∪ {∞}. This
result is due to Lindvall [17] and extends results of Church [5] (for a comparatively short proof
see [14, Theorem 1.4]). It also clarifies under which conditions (Zn)n≥0 may ‘fall asleep’ at a
positive state, meaning that the event {0< Z∞ <∞} occurs with positive probability. Let us
call such a branching process asymptotically degenerate. Thus, for a BPVE it is no longer true
that the process either gets extinct a.s. or else converges a.s. to infinity.

As mentioned above, a BPVE may exhibit extraordinary properties that do not show up
for ordinary Galton–Watson processes. Thus a BPVE may possess different growth rates, as
detected by MacPhee and Schuh [19]. Here we establish a framework which excludes such
exceptional phenomena and elucidates the generic behaviour. As we shall see, this is naturally
done in an L2 setting.

Our main assumption is a uniformity requirement which reads as follows. There is a
constant c<∞ such that for all natural numbers n ≥ 1 we have

E[Y2
n ; Yn ≥ 2] ≤ c E[Yn; Yn ≥ 2] · E[Yn | Yn ≥ 1]. (A)

This regularity assumption is notably mild. As we shall explain in the next section, it is ful-
filled for distributions fn, n ≥ 1, belonging to any common class of probability measures, like
Poisson, binomial, hypergeometric, geometric, linear fractional or negative binomial distribu-
tions, without any restriction on the parameters. It is also satisfied in the case that the random
variables Yn, n ≥ 1, are a.s. uniformly bounded by a constant c<∞. To see this, take into
account that we have E[Yn | Yn ≥ 1] ≥ 1. Since direct verification of (A) may be tedious in
examples, we shall present in the next section a third moment condition which implies (A) and
which can often be easily checked.

Let us call a BPVE regular if it fulfils condition (A).

Remark 1. (A property of consistency) Observe that together with a BPVE (Zn)n≥0, any sub-
sequence (Zni)i≥0 with n0 := 0< n1 < n2 < . . . is a BPVE, too. We note that the condition (A)
is then transmitted, i.e. any subsequence of a regular BPVE is regular, too. The proof will be
given after Lemma 6 below.

Before presenting our results, let us agree on the following notational conventions. Let P
be the set of all probability measures on N0. The weights of f ∈P are named f [k], k ∈N0. We
set

f (s) :=
∞∑

k=0

skf [k], 0 ≤ s ≤ 1.

Thus, we denote the probability measure f and its generating function by one and the same
symbol. This facilitates presentation and will cause no confusion. Keep in mind that each oper-
ation applied to these measures has to be understood as an operation applied to their generating
functions. Thus, f1f2 stands not only for the multiplication of the generating functions f1, f2 but
also for the convolution of the respective measures. Also, f1 ◦ f2 expresses the composition of
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198 G. KERSTING

generating functions as well as the resulting probability measure. We shall consider the mean
and second factorial moment of a random variable Y with distribution f ,

E[Y] = f ′(1), E[Y(Y − 1)] = f ′′(1),

and its normalized second factorial moment and normalized variance

ν := E[Y(Y − 1)]

E[Y]2
= f ′′(1)

f ′(1)2
, ρ := Var[Y]

E[Y]2
= ν + 1

E[Y]
− 1.

We shall discuss branching processes in a varying environment along the lines of ordinary
Galton–Watson processes. For n ≥ 1, let

q := P(Z∞ = 0), μn := f ′
1(1) · · · f ′

n(1), νn := f ′′
n (1)

f ′
n(1)2

, ρn := νn + 1

f ′
n(1)

− 1,

and also μ0 := 1. Thus, q is the probability of extinction and μn = E[Zn], n ≥ 0. Note that for
the standardized factorial moments νn we have νn <∞ under Assumption (A). This implies
E[Z2

n ]<∞ for all n ≥ 0 (see Lemma 4 below).
Assumption (A) is a mild requirement with substantial consequences, as seen from the

following diverse necessary and sufficient criteria for almost sure extinction.

Theorem 1. Assume (A). Then the conditions

(i) q = 1,

(ii) E[Zn]2 = o(E[Z2
n]) as n → ∞,

(iii)
∞∑

k=1

ρk
μk−1

= ∞,

(iv)
∞∑

k=1

νk
μk−1

= ∞ or μn → 0

are equivalent. Moreover, the conditions

(v) q< 1,

(vi) E[Z2
n] = O(E[Zn]2) as n → ∞,

(vii)
∞∑

k=1

ρk
μk−1

<∞,

(viii)
∞∑

k=1

νk
μk−1

<∞ and there exists 0< r ≤ ∞ such that μn → r

are equivalent.

These conditions are useful in different ways. Condition (iii)/(vii) appears to be a particulary
suitable criterion for almost sure extinction, whereas conditions (iv) and (viii) will prove help-
ful for the classification of BPVEs. Condition (vi) will allow us to determine the growth rate of
Zn (see Theorem 2). Observe that (ii) can be rewritten as E[Zn] = o(

√
Var[Zn]). Briefly speak-

ing, this means that under (A) we have almost sure extinction if and only if the noise dominates
the average growth in the long run.

We point out that conditions (iii), (iv), (vii) and (viii) access not only the expectations μn

but also the second moments. This is a novel aspect in comparsion to ordinary Galton–Watson
processes and also to Agresti’s classical criterion on BPVEs [1, Theorem 2]. Agresti’s result
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provides almost sure extinction if and only if
∑

k≥1 1/μk−1 = ∞. He could do so by virtue
of his stronger assumptions, which exclude, e.g., asymptotically degenerate processes. In our
setting there is the possibility that we have both

∑
k≥1 ρk/μk−1 = ∞ and

∑
k≥1 1/μk−1 <∞,

and also the other way round. This is shown by the following examples.

Example 1. Let Yn take just the values n + 2 and 0, with P(Yn = n + 2) = n−1. Then E[Yn(Yn −
1)] ∼ n, E[Yn] = 1 + 2/n, E[Yn − 1 | Yn ≥ 1] ∼ n, and thus (A) is fulfilled. Also, μn ∼ n2/2 and
ρn ∼ n, hence

∑
k≥1 1/μk−1 <∞ and

∑
k≥1 ρk/μk−1 = ∞.

Example 2. Let Yn take just the values 0, 1 and 2, with P(Yn = 0) = P(Yn = 2) = 1/(2n2). Then
E[Yn(Yn − 1)] ∼ n−2, E[Yn] = 1 and E[Yn − 1 | Yn ≥ 1] ∼ 1/(2n2), and thus (A) is fulfilled.
Also, μn = 1 and ρn ∼ n−2, hence

∑
k≥1 1/μk−1 = ∞ and

∑
k≥1 ρk/μk−1 <∞.

The last example exhibits an asymptotically degenerate branching process, as seen from
Corollary 1 below.

Next we turn to the normalized population sizes

Wn := Zn

μn
, n ≥ 0 .

Clearly, (Wn)n≥0 constitutes a non-negative martingale, and thus there exists an integrable
random variable W ≥ 0 such that we have Wn → W a.s. as n → ∞. With (A), the random
variable W exhibits the dichotomy known for Galton–Watson processes.

Theorem 2. For a regular BPVE we have:

(i) If q = 1 then W = 0 a.s.

(ii) If q< 1 then E[W] = 1, E[W2]<∞ and P(W = 0) = q.

In particular, in the case of q< 1 the martingale (Wn)n≥0 is convergent in L2, implying

Var[W] =
∞∑

k=1

ρk

μk−1
. (1)

This formula goes back to Fearn [10]. We point out that Assumption (A) excludes the pos-
sibility of P(W = 0)> q and, in particular, of different rates of growth as in the examples
constructed by MacPhee and Schuh [19] (see also [6, 7]). By means of Theorem 2(ii) we also
gain further insight into asymptotically degenerate processes. Under Assumption (A) they are
just those processes which fulfil the properties q< 1 and 0< limn→∞ μn <∞. Also, taking
Theorem 1(v) and (viii) into account we obtain the following corollary.

Corollary 1. A regular BPVE is asymptotically degenerate if and only if both
∑∞

k=1 νk <∞
and the sequence (μn)n≥0 has a positive, finite limit. Then Z∞ <∞ a.s.

Now we address the behaviour of the random variables Zn conditioned on the events that
Zn > 0. The next theorem shows that their values largely follow the corresponding conditional
expectations E[Zn | Zn > 0]. For n ≥ 0 let

an := 1 +μn

n∑
k=1

νk

μk−1
.
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200 G. KERSTING

Theorem 3. For a regular BPVE, the sequence of random variables Zn/an conditioned on
Zn > 0, n ≥ 0, is tight, i.e. for any ε > 0 there is a u<∞ such that, for all n ≥ 0,

P

(
Zn

an
> u | Zn > 0

)
≤ ε; (2)

moreover, there exist numbers θ > 0 and u> 0 such that, for all n ≥ 0,

P

(
Zn

an
> u | Zn > 0

)
≥ θ . (3)

Also, we have

γ an ≤ E[Zn | Zn > 0] ≤ an (4)

with some constant γ > 0, so that we may replace an by E[Zn | Zn > 0] in (2) and in (3).

For q< 1 we do not learn anything new from this theorem; here, Theorem 2(ii) gives much
preciser information. Thus, let us focus on the case q = 1, the situation of almost sure extinc-
tion. At first sight one might expect that the constant θ in (3) can be chosen arbitrarily close
to 1, if only u gets sufficiently small. This will apply to many interesting cases, but it is not
always true. The following example gives an illustration.

Example 3. For n ≥ 1 let

f2n−1[1] = 2−n, f2n−1[0] = 1 − 2−n and f2n[2n+1 − 1] = f2n[1] = 1

2
.

It is easy to check that (A) is valid (as well as the conditions (B) and (C) below). We have
f ′
2n−1(1) = 2−n and f ′

2n(1) = 2n, hence

μ2n−1 = 2−n and μ2n = 1

for all n ≥ 1. In particular, we have Z2n−1 → 0 in probability, which entails q = 1. Also,
ν2n−1 = 0 and ν2n ∼ 2 as n → ∞, implying

2n∑
k=1

νk

μk−1
∼

n∑
k=1

2k+1 ∼ 2n+2 and
2n−1∑
k=1

νk

μk−1
=

2n−2∑
k=1

νk

μk−1
∼ 2n+1,

and
a2n−1 ∼ 3 and a2n ∼ 2n+2.

From Theorem 3 it follows that there is a z<∞ such that

P(Z2n−1 > z | Z2n−1 > 0) ≤ 1

2

for all n ≥ 1. Therefore,

P(Z2n ≤ z | Z2n > 0) = P(Z2n ≤ z | Z2n−1 > 0)

≥ P(Z2n−1 ≤ z | Z2n−1 > 0)f2n[1]z

≥ 2−z−1

for all n ≥ 1, and for any u> 0,

P(Z2n/a2n > u | Z2n > 0) ≤ 1 − 2−z−1 (5)
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if a2n ≥ z/u. Since a2n → ∞, the constant θ from (3) cannot take a value above 1 − 2−z−1 in
this example.

This example suggests that quite different scenarios may occur for BPVEs with q = 1, and
that their behaviour may abruptly change from one subsequence to the next. We point out that
Assumption (A) does not put (e.g. for Poisson distributions) any restrictions on the expectation
μn, n ≥ 1, allowing a variety of examples. Of special interest is the case that the numbers an

are uniformly bounded. Here, Theorem 3 reads as follows.

Corollary 2. Under Assumption (A) the conditions

(i) the sequence of random variables Zn conditioned on the events that Zn > 0, n ≥ 0, is
tight,

(ii) supn≥0 E[Zn | Zn > 0]<∞,

(iii)
n∑

k=1

νk
μk−1

= O
(

1
μn

)
as n → ∞,

are equivalent.

For an ordinary Galton–Watson process these three conditions apply just in the subcriti-
cal regime, and then the conditioned random variables Zn have a limiting distribution. It is
easy to see that such a feature will not hold in general for a BPVE. Indeed, there are two off-
spring distributions f̂ and f̃ such that the limiting distributions ĝ and g̃ for the corresponding
conditional Galton–Watson processes differ from each other. Choose an increasing sequence
0 = n0 < n1 < n2 < · · · of natural numbers and consider the BPVE (Zn)n≥0 in the varying envi-
ronment v = ( f1, f2, . . .), where fn = f̂ for n2k < n ≤ n2k+1, k ∈N0, and fn = f̃ otherwise. Then
it is obvious that Zn2k+1 given the event Zn2k+1 > 0 converges in distribution to ĝ, and Zn2k

given the event Zn2k > 0 converges in distribution to g̃, provided that the sequence (nk)k≥0 is
increasing sufficiently fast.

Thus, it may come as a surprise that in the opposite situation, μ−1
n = o(

∑n
k=1

νk
μk−1

), we
encounter a distinctive behaviour of the conditional-limit distributions of Zn, which is in accor-
dance with Yaglom’s theorem for ordinary Galton–Watson processes. For technical reasons
we have to somewhat strengthen Assumption (A). We require that for every ε > 0 there is a
constant cε <∞ such that, for all natural numbers n ≥ 1,

E[Y2
n ; Yn > cε(1 + E[Yn])] ≤ εE[Y2

n ; Yn ≥ 2]. (B)

This condition is again widely satisfied, as we shall explain in the next section. It implies
Assumption (A). Namely, for ε= 1/2 we have

E[Y2
n ; Yn ≥ 2] ≤ 2E[Y2

n ; 2 ≤ Yn ≤ c1/2(1 + E[Yn])]

≤ 2c1/2(1 + E[Yn])E[Yn; Yn ≥ 2]. (6)

Since 1 + E[Yn] ≤ 2E[Yn | Yn ≥ 1], we obtain (A) with c = 4c1/2.

Theorem 4. Let (B) be satisfied and let q = 1. Then the following conditions are equivalent:

(i) There is a sequence bn, n ≥ 0, of positive numbers such that Zn/bn conditioned on the
event Zn > 0 converges in distribution to a standard exponential distribution as n → ∞;
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202 G. KERSTING

(ii) E[Zn | Zn > 0] → ∞ as n → ∞;

(iii) 1
μn

= o

(
n∑

k=1

νk
μk−1

)
as n → ∞.

Under these conditions we may set bn := E[Zn | Zn > 0], and we have

E[Zn | Zn > 0] ∼ μn

2

n∑
k=1

νk

μk−1
,

or equivalently

P(Zn > 0) ∼ 2

( n∑
k=1

νk

μk−1

)−1

as n → ∞.

This theorem covers the classical results of Kolmogorov and Yaglom for critical Galton–
Watson processes in the finite variance case (without further moment restrictions), since then
(B) is trivially satisfied.

Our results show how to implement a classification of regular BPVEs which connects to
the notions used for classical Galton–Watson processes. If q< 1, then in view of Theorem 2
and Corollary 1 we distinguish two regimes. There is the supercritical regime in the case
of E[Zn] → ∞, and the asymptotically degenerate regime otherwise. If, on the other hand,
we have q = 1, then Theorem 4 suggests characterizing the critical regime by the condition
E[Zn | Zn > 0] → ∞ (and not just by some condition on the limiting behaviour of μn, as one
might do in a first attempt), and to allocate the other BPVEs to the subcritical regime. In this
way we differentiate the clear-cut limiting property of critical BPVEs from the indeterminacy
of the remaining processes. In this classification a subcritical BPVE (Zn)n≥0 exhibits subcriti-
cal behaviour in the sense that according to Theorem 3 the random variables Zn conditioned on
Zn > 0 are tight, at least along some subsequence in which the an stay bounded. The Zn may
diverge with positive probability along some other subsequence, yet this does not in general
imply critical behaviour in the sense that along that subsequence the random variables Zn, con-
ditioned on Zn > 0 and suitably scaled, have asymptotically an exponential distribution. For a
counterexample we refer to Example 3 and (5).

By means of Theorems 1 and 3 we may streamline the determining conditions of the four
regimes, as summarized in the subsequent overview.

Proposition 1. A regular BPVE is

supercritical if and only if lim
n→∞μn = ∞ and

∞∑
k=1

νk

μk−1
<∞,

asymptotically degenerate if and only if 0< lim
n→∞μn <∞ and

∞∑
k=1

νk

μk−1
<∞,

critical if and only if lim
n→∞μn

n∑
k=1

νk

μk−1
= ∞ and

∞∑
k=1

νk

μk−1
= ∞,

subcritical if and only if lim inf
n→∞ μn = 0 and lim inf

n→∞ μn

n∑
k=1

νk

μk−1
<∞.
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Note that convergence of the means μn is not enforced in the critical case; they may diverge,
converge to zero or even oscillate in between.

Example 4. In the case 0< infn νn ≤ supn νn <∞ (as e.g. for Poisson variables) the classi-
fication simplifies. Here, we are in the supercritical regime if and only if

∑
k≥0 1/μk <∞

(enforcing μn → ∞). Asymptotically degenerate behaviour is excluded, and there is plenty of
room for critical processes, i.e. for processes which conform to the conditions

∑
k≥0 1/μk = ∞

and 1/μn = o(
∑n−1

k=0 1/μk). The second requirement is e.g. fulfilled if we have μn/μn−1 → 1
as n → ∞. This latter condition covers a variety of scenarios for μn below exponential growth
and above exponential decay.

Example 5. In the binary case P(Yn = 2) = pn, P(Yn = 0) = 1 − pn we get f ′
n(1) = f ′′

n (1) = 2pn.
Therefore νk/μk−1 = 1/μk, so that the situation conforms to the previous example.

Example 6. In the symmetric case P(Yn = 0) = P(Yn = 2) = pn/2 and P(Yn = 1) = 1 − pn we
have μn = 1 and νn = pn. Here, we find critical or asymptotically degenerate behaviour,
according to whether

∑∞
k=1 pn is divergent or convergent.

Example 7. If the Yn take only the values 0 and 1, then all νn vanish. Now the BPVE is
subcritical or asymptotically degenerate, according to whether μn converges to zero or to a
positive value.

Our proofs rely largely on analytic considerations. The task is to get a grip on the probability
measures f1 ◦ · · · ◦ fn, which are the distributions of the random variables Zn. In order to handle
such iterated compositions of generating functions we resort to a device which has been applied
from the beginning in the theory of branching processes. For a probability distribution f on N0
with positive, finite mean m we define a function ϕ : [0, 1) →R by the equation

1

1 − f (s)
= 1

m(1 − s)
+ ϕ(s), 0 ≤ s< 1.

In this way the mean and the ‘shape’ of f are separated to a certain extent. Indeed, Lemma 1
below shows that ϕ takes values which are of the size of the standardized second factorial
moment ν. Therefore we briefly name ϕ the shape function of f . As we shall see, these func-
tions are useful to dissolve the generating function f1 ◦ · · · ◦ fn into a sum (see Lemma 4 below).
Here, our contribution consists in obtaining sharp upper and lower bounds for the function ϕ
and its derivative. The interaction of these bounds then allows for precise estimates e.g. of the
survival probabilities P(Zn > 0). The role of Assumption (A) in this interplay is to keep both
bounds together uniformly in n.

Concluding this introduction, let us comment on the literature. Agresti in his paper [1] on
almost sure extinction already derived the sharp upper bound for ϕ which we give below in
(8). We note that this bound is related to the well-known Paley–Zygmund inequality (compare
the proof of Lemma 7). Agresti also obtained a lower bound for the survival probabilities,
which, however, in general is away from our sharp bound. Lyons [18] obtained the equiva-
lence of conditions (v), (vi), (vii) and (somewhat disguised) (viii) from Theorem 1 under the
assumption that the random variables Yn are a.s. bounded by a constant, with methods com-
pletely different from ours. He also proved Theorem 2, again under the assumption that the
offspring numbers are a.s. uniformly bounded by a constant. D’Souza and Biggins [7] derived
Theorem 2 under a different set of assumptions. They required that there are numbers a> 0,
b> 1 such that μm+n/μm ≥ abn for all m, n ≥ 1 (called the uniform supercritical case). They
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did not need finite second moments, but assumed instead that the random variables Yn are
uniformly dominated by a random variable Y with E[Y log+ Y]<∞. Goettge [12] obtained
E[W] = 1 under the condition μn ≥ anb with a> 0, b> 1 (together with a uniform domination
assumption), but did not consider the validity of the equation P(W = 0) = q. In order to prove
the conditional limit law from Theorem 4, Jagers [15] drew attention to uniform estimates due
to Sevast’yanov [21] (see also [9, Lemma 3]). This approach demands, amongst others, the
strong assumption that the sequence E[Zn], n ≥ 0, is bounded from above and away from zero.
Independently, and in parallel to our work, Bhattacharya and Perlman [3] have presented a con-
siderable generalization of Jager’s result, on a different route and under assumptions which are
stronger than ours. For recent results on almost sure extinction and asymptotic exponentiality
of multitype BPVEs we refer to [8].

The remainder of this paper is organized as follows. In Section 2 we discuss the assumptions
and several examples. In Section 3 we analyze the shape function ϕ. Section 4 contains the
proofs of our theorems.

2. Examples

The following example illustrates the difference in range of the conditions (A) and (B).

Example 8. Let Y have a linear fractional distribution, meaning that

P(Y = y | Y ≥ 1) = (1 − p)y−1p, y ≥ 1,

with some 0< p< 1 and some probability P(Y ≥ 1). Then, from properties of geometric
distributions, we have

E[Y | Y ≥ 1] = 1

p
, E[Y − 1 | Y ≥ 1] = (1 − p)

p
, E[Y(Y − 1) | Y ≥ 1] = 2(1 − p)

p2
,

and it follows that

E[Y2; Y ≥ 2] ≤ 2E[Y(Y − 1)] = 4(1 − p)

p2
P(Y ≥ 1)

= 4 E[Y − 1;Y ≥ 1] · E[Y | Y ≥ 1] ≤ 4 E[(Y;Y ≥ 2] · E[Y | Y ≥ 1].

Thus, for any sequence Yn of linear fractional random variables, Assumption (A) is fulfilled
with c = 4, whatever the parameters pn and P(Yn ≥ 1) are.

However, for condition (B) the corresponding statement fails. To see this we resort for linear
fractional distributions to the formula

2(1 − pn)

p2
n

P(Yn ≥ 1) = E[Yn(Yn − 1)] ≤ E[Y2
n ; Yn ≥ 2].

If we assume (B), then the inequality (6) is also valid, yielding

2(1 − pn)

p2
n

P(Yn ≥ 1) ≤ 4c1/2E[Yn − 1; Yn ≥ 1] · (1 + E[Yn]).

For linear fractional distributions this estimate may be rewritten as

2(1 − pn)

p2
n

P(Yn ≥ 1) ≤ 4c1/2
(1 − pn)

pn
P(Yn ≥ 1)

(
1 + 1

p n
P(Yn ≥ 1)

)
,
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which simplifies to
1

2c1/2
≤ pn + P(Yn ≥ 1).

Thus, condition (B) implies infn (pn + P(Yn ≥ 1))> 0, and a sequence of linear fractional
random variables satisfying pn + P(Yn ≥ 1) ≤ 1/n does not meet (B).

Incidentally, Theorem 4 still holds true for linear fractional Yn, n ≥ 1, regardless of the
validity of (B). Then, as is well known, Zn is also linear fractional for any n ≥ 1, and conse-
quently the sequence Zn/E[Zn | Zn ≥ 1] given the events that Zn ≥ 1 converges in distribution
to a standard exponential distribution provided that we have E[Zn | Zn ≥ 1] → ∞.

In other examples, a direct verification of Assumptions (A) or (B) can be cumbersome.
Therefore we introduce another assumption, which is often easier to handle: there is a constant
c̄<∞ such that, for all natural numbers n ≥ 1,

E[Yn(Yn − 1)(Yn − 2)] ≤ c̄ E[Yn(Yn − 1)] · (1 + E[Yn]). (C)

Condition (C) implies (A) and (B), as seen from the following proposition.

Proposition 2. If condition (C) is fulfilled, then (B) holds with cε := max (3, 5c̄/ε) and (A)
holds with c := max (12, 40c̄).

Proof. From cε ≥ 3 and (C) we obtain

E[Y2
n ; Yn > cε(1 + E[Yn])] ≤ 5 E[(Yn − 1)(Yn − 2); Yn > cε(1 + E[Yn])]

≤ 5
E[Yn(Yn − 1)(Yn − 2)]

cε(1 + E[Yn])

≤ 5c̄

cε
E[Yn(Yn − 1)].

It follows that

E[Y2
n ; Yn > cε(1 + E[Yn])] ≤ ε E[Y2

n ; Yn ≥ 2],

which is our first claim. The second one follows by means of (6). �
Condition (C) can be easily handled by means of generating functions and their derivatives.

Here are some examples.

Example 9. If the Yn are a.s. uniformly bounded by a constant c, then (C) is satisfied with
c̄ = c.

Example 10. Let Y be Poisson with parameter λ> 0. Then

E[Y(Y − 1)(Y − 2)] = λ3 ≤ λ2(λ+ 1) = E[Y(Y − 1)](1 + E[Y]).

Here, (C) is fulfilled with c̄ = 1.

Example 11. For binomial Y with parameters m ≥ 1 and 0< p< 1 the situation is analogous,
and here

E[Y(Y − 1)(Y − 2)] = m(m − 1)(m − 2)p3 ≤ m(m − 1)p2mp ≤ E[Y(Y − 1)](1 + E[Y]).
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Example 12. For a hypergeometric distribution with parameters (N,K,m) we have, for N ≥ 3,

E[Y(Y − 1)(Y − 2)] = m(m − 1)(m − 2)K(K − 1)(K − 2)

N(N − 1)(N − 2)

≤ 3
m(m − 1)K(K − 1)

N(N − 1)

mK

N
≤ 3E[Y(Y − 1)](1 + E[Y]),

and (C) is satisfied with c̄ = 3. The case N ≤ 2 can immediately be included.

Example 13. For negative binomial distributions the generating function is given by

f (s) =
(

p

1 − s(1 − p)

)α

with 0< p< 1 and a positive integer α. Now,

E[Y] = α
1 − p

p
,

E[Y(Y − 1)] = α(α + 1)
(1 − p)2

p2
,

E[Y(Y − 1)(Y − 2)] = α(α + 1)(α+ 2)
(1 − p)3

p3
.

Thus,

E[Y(Y − 1)(Y − 2)] ≤ 3E[Y(Y − 1)](1 + E[Y]).

Again, (C) is fulfilled with c̄ = 3.

3. Bounds for the shape function

For f ∈P with mean 0<m = f ′(1)<∞, define the shape function as the function ϕ =
ϕf : [0, 1) →R given by the equation

1

1 − f (s)
= 1

m(1 − s)
+ ϕ(s), 0 ≤ s< 1.

Due to convexity of f (s) we have ϕ(s) ≥ 0 for all 0 ≤ s< 1. By means of a Taylor expansion of
f around 1, one obtains lims↑1 ϕ(s) = f ′′(1)/(2f ′(1)2), and thus we extend ϕ by setting

ϕ(1) := ν

2
with ν := f ′′(1)

f ′(1)2
. (7)

In this section we prove the following sharp bounds.

Lemma 1. Assume f ′′(1)<∞. Then, for 0 ≤ s ≤ 1,

1

2
ϕ(0) ≤ ϕ(s) ≤ 2ϕ(1). (8)

Note that ϕ is identically zero if f [z] = 0 for all z ≥ 2. Otherwise, ϕ(0)> 0 and the lower
bound of ϕ becomes strictly positive. Choosing s = 1 and s = 0 in (8), we obtain ϕ(0)/2 ≤ ϕ(1)
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and ϕ(0) ≤ 2ϕ(1). Note that for f = δk (Dirac measure at point k) and k ≥ 2 we have ϕ(1) =
ϕ(0)/2, implying that the constants 1/2 and 2 in (8) cannot be improved. The upper bound was
derived in [11] using a different method of proof.

The next lemma is based on a close investigation of the derivative of ϕ(s).

Lemma 2. Let Y be a random variable with distribution f and assume f ′′(1)<∞. Then, for
0 ≤ s ≤ 1 and natural numbers a ≥ 1,

sup
s≤t≤1

|ϕ(1) − ϕ(t)| ≤ 2mν2(1 − s) + 2aν(1 − s) + 2

m2
E[Y2; Y > a].

Uniform estimates of ϕ(1) − ϕ(s) based on third moments have already been obtained by
Sevast’yanov [21] and others (see [9, Lemma 3]). Our lemma implies and generalizes these
estimates. For the proof of these lemmas we use the following result.

Lemma 3. Let g1, g2 be elements of P with the same support and satisfying the following
property. For any y ∈N0 with g1[y]> 0 we have

g1[z]

g1[y]
≤ g2[z]

g2[y]
for all z> y.

Also, let α : N0 →R be a non-decreasing function. Then
∞∑

y=0

α(y)g1[y] ≤
∞∑

y=0

α(y)g2[y].

Proof. The lemma’s assumption is called the ‘monotone likelihood ratio property’, which
is known to imply our claim. For convenience, we give a short proof. By assumption there is
a non-decreasing function h(y), y ∈N0, such that h(y) = g2(y)/g1(y) for all elements y of the
support of g1. Then, for any real number c,

∞∑
y=0

α(y)g2[y] −
∞∑

y=0

α(y)g1[y] =
∞∑

y=0

(α(y) − c)(g2[y] − g1[y])

=
∞∑

y=0

(α(y) − c)(h(y) − 1)g1[y].

For c := min{α(y) : h(y) ≥ 1} we have α(0) ≤ c<∞. For this choice of c, since h and α are
non-decreasing, every summand of the right-hand sum is non-negative. Thus, the whole sum
is non-negative, too, and our assertion follows. �

Proof of Lemma 1.
(i) First, we examine a special case of Lemma 3. Consider for 0< s ≤ 1 and r ∈N0 the
probability measures

gs[y] = sr−y

1 + s + · · · + sr
, 0 ≤ y ≤ r.

Then, for 0< s ≤ t ≤ 1, 0 ≤ y< z ≤ r we have gs[z]/gs[y] = sy−z ≥ ty−z = gt[z]/gt[y]. Hence,
we obtain that

r∑
y=0

ygs[y] = sr−1 + 2sr−2 + · · · + r

1 + s + · · · + sr
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is a decreasing function in s. Also,
∑r

y=0 yg0[y] = r and
∑r

y=0 yg1[y] = r/2, and it follows for
0 ≤ s ≤ 1 that

r

2
≤ r + (r − 1)s + · · · + sr−1

1 + s + · · · + sr
≤ r. (9)

(ii) Next, we derive a second representation for ϕ. We have

1 − f (s) =
∞∑

z=1

f [z](1 − sz) = (1 − s)
∞∑

z=1

f [z]
z−1∑
k=0

sk

and

f ′(1)(1 − s) − (1 − f (s)) = (1 − s)
∞∑

z=1

f [z]
z−1∑
k=0

(1 − sk)

= (1 − s)2
∞∑

z=1

f [z]
z−1∑
k=1

k−1∑
j=0

sj

= (1 − s)2
∞∑

z=1

f [z]((z − 1) + (z − 2)s + · · · + sz−2).

Therefore,

ϕ(s) = m(1 − s) − (1 − f (s))

m(1 − s)(1 − f (s))

=
∑∞

y=1 f [y]((y − 1) + (y − 2)s + · · · + sy−2)

m · ∑∞
z=1 f [z](1 + s + · · · + sz−1)

.

From (9) it follows that

ϕ(s) ≤ ψ(s)

m
≤ 2ϕ(s), (10)

with

ψ(s) :=
∑∞

y=1 f [y](y − 1)(1 + s + · · · + sy−1)∑∞
z=1 f [z](1 + s + · · · + sz−1)

.

Now consider the probability measures gs ∈P , 0 ≤ s ≤ 1, given by

gs[y] := f [y](1 + s + · · · + sy−1)∑∞
z=1 f [z](1 + s + · · · + sz−1)

, y ≥ 1. (11)

Then, for f [y]> 0 and z> y, after some algebra,

gs[z]

gs[y]
= f [z]

f [y]

z−y∏
v=1

(
1 + 1

s−1 + · · · + s−y−v+1

)
,

which is an increasing function in s. Therefore, by Lemma 3, the function ψ(s) is increasing
in s. In combination with (10) we get

ϕ(s) ≤ ψ(s)

m
≤ ψ(1)

m
≤ 2ϕ(1), 2ϕ(s) ≥ ψ(s)

m
≥ ψ(0)

m
≥ ϕ(0).

This gives the claim of the lemma. �
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Proof of Lemma 2. First, we estimate the derivative of ϕ, which is given by

ϕ′(s) = 1

m

mf ′(s)

(1 − f (s))2
− 1

m(1 − s)2
.

It turns out that this expression becomes more manageable if we replace the squared geomet-
ric mean

√
mf ′(s) on the right-hand side by the square of the arithmetic mean (m + f ′(s))/2.

Therefore, we split the derivative into parts according to

ϕ′(s) =ψ1(s) −ψ2(s), (12)

with

ψ1(s) = 1

4m

(m + f ′(s))2

(1 − f (s))2
− 1

m(1 − s)2
, ψ2(s) = 1

4m

(m + f ′(s))2

(1 − f (s))2
− f ′(s)

(1 − f (s))2
.

We show that both ψ1 and ψ2 are non-negative functions, and estimate them from above.
For ψ1 we accomplish this task by introducing the function

ζ (s) := (m + f ′(s)) − 2
1 − f (s)

1 − s

=
∞∑

y=1

y(1 + sy−1)f [y] − 2
∞∑

y=1

1 − sy

1 − s
f [y]

=
∞∑

y=3

(y(1 + sy−1) − 2(1 + s + · · · + sy−1))f [y].

Since

d

ds
(y(1 + sy−1) − 2(1 + s + · · · + sy−1))

= y(y − 1)sy−2 − 2(1 + 2s + · · · + (y − 1)sy−2)

≤ y(y − 1)sy−2 − 2sy−2(1 + 2 + · · · + (y − 1)) = 0

for all 0 ≤ s ≤ 1, and since ζ (1) = 0, we see that ζ is a non-negative, decreasing function. Thus,
ψ1 is a non-negative function, too. Also, ζ (0) ≤ m.

Moreover, we have for y ≥ 3 the polynomial identity

y(1 + sy−1) − 2(1 + s + · · · + sy−1) = (1 − s)2
y−2∑
z=1

z(y − z − 1)sz−1,

and consequently
ζ (s) = (1 − s)2ξ (s)

with

ξ (s) :=
∞∑

y=3

y−2∑
z=1

z(y − z − 1)sz−1f [y].

The function ξ is non-negative and increasing.
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Coming back to ψ1, we rewrite it as

ψ1(s) =
1
2 (m + f ′(s))(1 − s) − (1 − f (s))

(1 − f (s))(1 − s)
·

1
2 (m + f ′(s))(1 − s) + (1 − f (s))

m(1 − f (s))(1 − s)
.

Using f ′(s) ≤ m, it follows that

ψ1(s) ≤ ζ (s)

2(1 − f (s))

(
1

1 − f (s)
+ 1

m(1 − s)

)

= ζ (s)

2

(
1

m(1 − s)
+ ϕ(s)

)(
2

m(1 − s)
+ ϕ(s)

)

≤ 2ζ (s)

(
1

m2(1 − s)2
+ ϕ(s)2

)

= 2ξ (s)

m2
+ 2ζ (s)ϕ(s)2.

By means of Lemma 1, by the monotonicity properties of ξ and ζ , and by ϕ(1) = ν/2, ζ (0) ≤ m,
we obtain

0 ≤ψ1(s) ≤ 2ξ (s)

m2
+ 2mν2. (13)

Now we investigate the function ψ2, which we rewrite as

ψ2(s) = 1

4m

(
m − f ′(s)

1 − f (s)

)2

.

We have

1 − f (s) =
∞∑

z=1

(1 − sz)f [z] = (1 − s)
∞∑

z=1

(1 + s + · · · + sz−1)f [z]

and

m − f ′(s) =
∞∑

y=1

(1 − sy−1)yf [y] = (1 − s)
∞∑

y=2

y(1 + · · · + sy−2)f [y].

Using the notation from (11) it follows that

m − f ′(s)

1 − f (s)
=

∞∑
y=2

1 + · · · + sy−2

1 + · · · + sy−1
ygs[y] ≤

∞∑
y=2

ygs[y].

As above, we may apply Lemma 3 to the probability measures gs and conclude that the right-
hand term is increasing with s. Therefore,

0 ≤ m − f ′(s)

1 − f (s)
≤

∞∑
y=2

yg1[y] =
∑∞

y=2 y2f [y]∑∞
z=1 zf [z]

≤ 2
∑∞

y=1 y(y − 1)f [y]∑∞
z=1 zf [z]

= 2mν,

and hence

0 ≤ψ2(s) ≤ mν2. (14)
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Coming to our claim, note first that owing to the non-negativity of ψ1 and ψ2 we obtain
from (12), for any s ≤ u ≤ 1,

−
∫ 1

s
ψ2(t) dt ≤ ϕ(1) − ϕ(u) ≤

∫ 1

s
ψ1(t) dt.

Equations (13) and (14) entail

−mν2(1 − s) ≤ ϕ(1) − ϕ(u) ≤ 2

m2

∫ 1

s
ξ (t) dt + 2mν2(1 − s). (15)

It remains to estimate the right-hand integral. We have, for 0 ≤ s< 1,

∫ 1

s
ξ (t) dt =

∞∑
y=3

y−2∑
z=1

(y − z − 1)(1 − sz)f [y]

≤ (1 − s)
∞∑

y=3

(y − 2)f [y]
y−2∑
z=1

z−1∑
u=0

su

= (1 − s)
∞∑

y=3

(y − 2)f [y]
y−3∑
u=0

(y − 2 − u)su

= (1 − s)
∞∑

u=0

su
∞∑

y=u+3

(y − 2)2f [y].

The right-hand sum is monotonically decreasing in u, and therefore for natural numbers a we
end up with the estimate

∫ 1

s
ξ (t) dt ≤

∞∑
y=3

(y − 2)2f [y](1 − s)
a−1∑
u=0

su +
∞∑

y=a+3

(y − 2)2f [y](1 − s)
∞∑

u=a

su

≤ f ′′(1)a(1 − s) + E[Y2; Y > a].

Combining this estimate with (15), our claim follows. �
Remark 2. We have

ξ (1) =
∞∑

y=3

y−2∑
z=1

z(y − z − 1)f [y] = 1

3

∞∑
y=3

z(z − 1)(z − 2)f [z] = f ′′′(1)

3
,

and hence from (12), (13), (14) and the monotonicity of ξ for 0 ≤ s ≤ 1,

− f ′′(1)2

f ′(1)3
≤ ϕ′(s) ≤ 2f ′′′(1)

3f ′(1)2
+ 2

f ′′(1)2

f ′(1)3
.

The quality of these bounds becomes evident from the observation that

ϕ′(1) = 1

6

f ′′′(1)

f ′(1)2
− 1

4

f ′′(1)2

f ′(1)3
,

as follows by means of Taylor expansions of f and f ′ about 1.
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4. Proofs of the theorems

First let us consider some formulas for moments. There exists a clear-cut expression for the
variance of Zn due to Fearn [10]. It seems to be less noticed that there is a similar appealing
formula for the second factorial moment of Zn, which turns out to be more useful for our
purpose.

Lemma 4. For a BPVE (Zn)n≥0 we have

E[Zn] =μn,
E[Zn(Zn − 1)]

E[Zn]2
=

n∑
k=1

νk

μk−1
.

Proof. The proof follows a standard pattern. Let v = ( f1, f2, . . .) denote a varying environ-
ment. For non-negative integers k ≤ n let us define the probability measures

fk,n := fk+1 ◦ · · · ◦ fn

with the convention fn,n = δ1 (the Dirac measure at point 1). We have

f ′
k,n(s) =

n∏
l=k+1

f ′
l ( fl,n(s)),

in particular f ′
n,n(s) = 1, and after some rearrangements we have

f ′′
k,n(s) = f ′

k,n(s)2
n∑

l=k+1

f ′′
l ( fl,n(s))

f ′
l ( fl,n(s))2

∏l−1
j=k+1 f ′

j ( fj,n(s))
,

in particular f ′′
n,n(s) = 0. Since the distribution of Zn is given by f0,n, by choosing k = 0 and

s = 1 Lemma 4 is proved. �
Next, we recall an expansion of the generating function of Zn taken from [16] and [11]. This

kind of formula has been used in many investigations of branching processes. Let ϕn, n ≥ 1, be
the shape functions of fn, n ≥ 1. Then, since fk,n = fk+1 ◦ fk+1,n for k< n, we have

1

1 − fk,n(s)
= 1

f ′
k+1(1)(1 − fk+1,n(s))

+ ϕ1( fk+1,n(s)).

Iterating the formula we end up with the following identity.

Lemma 5. For 0 ≤ s< 1, 0 ≤ k< n,

1

1 − fk,n(s)
= μk

μn(1 − s)
+ ϕk,n(s) with ϕk,n(s) :=μk

n∑
l=k+1

ϕl( fl,n(s))

μl−1
,

i.e. ϕk,n is the shape function of fk,n.

In order to estimate survival probabilities, Assumption (A) now comes into play. The next
lemma reveals its role.

Lemma 6. Condition (A) is fulfilled if and only if there is a constant c′ <∞ such that we have
ϕn(1) ≤ c′ϕn(0) for all n ≥ 1.
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Proof. Recall that Yn denotes a random variable with distribution fn. We have P(Yn ≥ 2) = 0
if and only if ϕn(1) = E[Yn(Yn − 1)]/(2E[Yn]2) = 0. Then both inequalities from (A) and from
our lemma are valid for all c> 0 and c′ > 0, respectively. Therefore we may, without loss of
generality, assume that P(Yn ≥ 2)> 0 for all n ≥ 1. Then we have

ϕn(0) = 1

1 − fn[0]
− 1

f ′
n(1)

= E[(Yn − 1); Yn ≥ 1]

E[Yn]P(Yn ≥ 1)
,

and therefore, because of (7),

ϕn(1)

ϕn(0)
= E[Yn(Yn − 1)]P(Yn ≥ 1)

2E[(Yn − 1); Yn ≥ 1]E[Yn]
.

It is not difficult to see that these expressions are bounded uniformly in n if and only if the
same holds true for the terms

E[Y2
n ; Yn ≥ 2]P(Yn ≥ 1)

E[Yn; Yn ≥ 2]E[Yn]
,

which in turn is equivalent to condition (A). This gives our claim. �
In particular, if ϕn(1) ≤ c′ϕn(0) for all n ≥ 1 then we obtain for the shape functions ϕk,n of

the generating functions fk,n from Lemma 5, by means of Lemmas 6 and 1,

ϕk,n(1) =μn

n∑
l=k+1

ϕl(1)

μl−1
≤ c′μn

n∑
l=k+1

ϕl(0)

μl−1
≤ 2c′μn

n∑
l=k+1

ϕl( fl,n(0))

μl−1
= 2c′ϕk,n(0)

for all 1 ≤ k ≤ n. This estimate, together with Lemma 4, proves Remark 1 from Section 1,
namely that any subsequence of a regular BPVE is regular, too.

The next lemma has a forerunner in Agresti’s estimate [1, Theorem 1].

Lemma 7. Under Assumption (A) there is a γ > 0 such that, for all n ≥ 0,

E[Zn]2

E[Z2
n ]

≤ P(Zn > 0) ≤ 1

γ

E[Zn]2

E[Z2
n ]

.

Proof. The left-hand estimate is just the standard Paley–Zygmund inequality. For the right-
hand estimate observe that P(Zn > 0) = 1 − f0,n[0] = 1 − f0,n(0). Using Lemma 4 with s = 0
we get the representation

1

P(Zn > 0)
= 1

μn
+

n∑
k=1

ϕk( fk,n(0))

μk−1
, (16)

and hence, by means of Lemma 1,

1

P(Zn > 0)
≥ 1

μn
+ 1

2

n∑
k=1

ϕk(0)

μk−1
, (17)

and, by Assumption (A), Lemma 6 and (7),

1

P(Zn > 0)
≥ 1

μn
+ 1

2c′
n∑

k=1

ϕk(1)

μk−1
= 1

μn
+ 1

4c′
n∑

k=1

νk

μk−1
.
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Letting γ := min (1, (4c′)−1), we obtain

1

P(Zn > 0)
≥ γ

(
1

μn
+

n∑
k=1

νk

μk−1

)
.

On the other hand, Lemma 4 implies that

E[Z2
n ]

E[Zn]2
= E[Zn(Zn − 1)]

E[Zn]2
+ 1

E[Zn]
=

n∑
k=1

νk

μk−1
+ 1

μn
. (18)

Combining the last two formulas, our claim follows. �
Proof of Theorem 1.

(i) if and only if (ii): Since limn→∞ P(Zn > 0) = 1 − q, the equivalence follows from
Lemma 7.

(ii) if and only if (iii): We have

n∑
k=1

ρk

μk−1
=

n∑
k=1

νk + fk(1)−1 − 1

μk−1

=
n∑

k=1

νk

μk−1
+

n∑
k=1

(
1

μk
− 1

μk−1

)
=

n∑
k=1

νk

μk−1
+ 1

μn
− 1; (19)

thus, because of (18),

E[Z2
n ]

E[Zn]2
=

n∑
k=1

ρk

μk−1
+ 1. (20)

This gives the claim.

(iii) if and only if (iv): This equivalence is an immediate consequence of (19).

(v) if and only if (vi): This implication follows again from Lemma 7.

(vi) if and only if (vii): This is a consequence of (20).

(vii) if and only if (viii): Again, this claim follows from (19). �

Remark 3. From (17) it follows that a sufficient condition for almost sure extinction is given
by the single requirement

∑
k≥1 ϕk(0)/μk−1 = ∞ (without (A)). This confirms a conjecture of

Jirina [16].

Proof of Theorem 2. Statement (i) is obviously valid. For the first part of statement (ii), note
that, from Theorem 1(vi) it follows that supn≥0 E[W2

n ]<∞. Therefore the martingale (Wn)n≥0

is bounded in L2, implying E[W] = E[W0] = 1 and E[W2]<∞. From (20) it follows that

E[W2] =
∞∑

k=1

ρk

μk−1
+ 1.

This implies (1).
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For the proof of the last claim we distinguish two cases. Either μn → r with 0< r<∞,
in which case Wn = Zn/μn → Z∞/r a.s. and consequently W = Z∞/r a.s. and P(W = 0) =
P(Z∞ = 0) = q, or we may assume μn → ∞ in view of Theorem 1(viii). Also, {Z∞ = 0} ⊂
{W = 0} a.s., and thus it is sufficient to show that P(Z∞ > 0,W = 0) = 0. First, we estimate
P(Z∞ = 0 | Zk = 1) from below. From Lemmas 5 and 1, for k< n,

1

1 − P(Zn = 0 | Zk = 1)
= 1

1 − fk,n(0)
≥ 1

2
μk

n∑
l=k+1

ϕl(0)

μl−1
,

as well as

1

1 − E[e−λWn | Zk = 1]
= 1

1 − fk,n(e−λ/μn )

≤ μk

μn(1 − e−λ/μn )
+ 2μk

n∑
l=k+1

ϕl(1)

μl−1

with λ> 0. By means of Lemma 4 this entails

1

1 − E[e−λWn | Zk = 1]
≤ μk

μn(1 − e−λ/μn )
+ 4c′

1 − P(Zn = 0 | Zk = 1)
.

Letting n → ∞ we get

1

1 − E[e−λW | Zk = 1]
≤ μk

λ
+ 4c′

1 − P(Z∞ = 0 | Zk = 1)
,

and with λ→ ∞,
1

P(W > 0 | Zk = 1)
≤ 4c′

P(Z∞ > 0 | Zk = 1)
.

Using e−2x ≤ 1 − x for 0 ≤ x ≤ 1/2, it follows for P(W > 0 | Zk = 1) ≤ (8c′)−1 that

P(Z∞ = 0 | Zk = 1) = 1 − P(Z∞ > 0 | Zk = 1) ≥ 1 − 4c′P(W > 0 | Zk = 1)

≥ e−8c′P(W>0|Zk=1) ≥ (1 − P(W > 0 | Zk = 1))8c′

= P(W = 0 | Zk = 1)8c′ . (21)

Now we draw on a martingale which already appears in the work of D’Souza and Biggins
[7]. For n ≥ 0, let

Mn := P(W = 0 | Z0, . . . , Zn) = P(W = 0 | Zn = 1)Zn a.s.

From standard martingale theory Mn → I{W = 0} a.s. In particular, we have

P(W = 0 | Zn = 1)Zn → 1 a.s. on the event that W = 0, (22)

a result which has already been exploited by D’Souza [6].
We distinguish two cases. Either there is an infinite sequence of natural numbers such that

P(W > 0 | Zn = 1)> (8c′)−1 along this sequence, so (22) implies that Zn → 0 a.s. on the event
W = 0, or we may apply our estimate (21) to obtain from (22) that

P(Z∞ = 0 | Zn = 1)Zn → 1 a.s. on the event that W = 0.
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Therefore, given ε > 0, we have, for n sufficiently large,

P(Z∞ > 0,W = 0) ≤ ε+ P(Zn > 0, P(Z∞ = 0 | Zn = 1)Zn ≥ 1 − ε)

≤ ε+ 1

1 − ε
E[P(Z∞ = 0 | Zn); Zn > 0]

= ε+ 1

1 − ε
P(Z∞ = 0, Zn > 0).

Letting n → ∞ we thus obtain P(Z∞ > 0,W = 0) ≤ ε; the claim then follows with ε→ 0. �
Proof of Theorem 3. We begin with the proof of the last claim. Note that the assertion from

Lemma 7 can be rewritten as

γ
E[Z2

n ]

E[Zn]
≤ E[Zn | Zn > 0] ≤ E[Z2

n ]

E[Zn]
,

and (18) gives E[Z2
n]/E[Zn] = 1 +μn

∑n
k=1

νk
μk−1

= an. This implies (4).
Consequently, by means of Markov’s inequality we obtain

P(Zn/an > u | Zn > 0) ≤ 1

uan
E[Zn | Zn > 0] ≤ 1

u
,

which implies the theorem’s first claim.
Concerning the second claim we remark that for an < 2 we may set u = 1/2. For an ≥ 2 we

have, by means of Lemma 5, the estimate

1 − su + P(Zn/an > u)

≥ E[1 − sZn/an | Zn > 0]E[1 − sZn/an | Zn > 0]

= 1 − f0,n(s1/an)

1 − f0,n(0)

=
(

1

μn
+

n∑
k=1

ϕk( fk,n(0))

μk−1

)/(
1

μn(1 − s1/an)
+

n∑
k=1

ϕk( fk,n(s1/an))

μk−1

)

with 0< s< 1 and u> 0. Lemmas 1 and 6 along with (7) yield the bound

1 − su + P(Zn/an > u) ≥
n∑

k=1

ϕk(0)

2μk−1

/(
1

μn(1 − s1/an)
+ 2

n∑
k=1

ϕk(1)

μk−1

)

≥ 1

4c′
n∑

k=1

νk

μk−1

/(
1

μn(1 − s1/an)
+

n∑
k=1

νk

μk−1

)
.

Moreover, 1 − s1/an ≥ a−1
n (1 − s), since 1/an ≤ 1. Hence, choosing s = 1/2 we get

1 − 2−u + P(Zn/an > u) ≥ 1

4c′
n∑

k=1

νk

μk−1

/(
2an

μn
+

n∑
k=1

νk

μk−1

)
.

Finally, from an ≥ 2 it follows that an ≤ 2μn
∑n

k=1 νk/μk−1, and consequently

1 − 2−u + P(Zn/an > u) ≥ 1

20c′
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for all u> 0. If we now set θ = 1/(40c′) and choose u> 0 so small that 1 − 2−u ≤ θ we obtain
P(Zn/an > u) ≥ θ , which is our second claim. �

The next lemma prepares the proof of Theorem 4. It clarifies the role of (B).

Lemma 8. Assume condition (B) and let q = 1. Then the condition

1

μn
= o

( n∑
k=1

νk

μk−1

)

implies

sup
0≤s≤1

∣∣∣∣
n∑

k=1

ϕk( fk,n(s))

μk−1
−

n∑
k=1

ϕk(1)

μk−1

∣∣∣∣ = o

( n∑
k=1

ϕk(1)

μk−1

)

as n → ∞.

Proof. Fix ε > 0 and choose cε/9 according to Assumption (B). Let

sk := 1 − η

1 + f ′
k(1)

with some 0<η < 1. Then, from Lemma 3 with a = �cε/9�,

sup
sk≤t≤1

|ϕk(1) − ϕk(t)| ≤ 2νk
f ′′
k (1)

f ′
k(1)

η

1 + f ′
k(1)

+ 2cε/9νkη+ ε

9
4νk.

From the estimate in (6) it follows that

f ′′
k (1) ≤ 2c1/2f ′

k(1)(1 + f ′
k(1)). (23)

Therefore there is an η= ηε > 0 such that

sup
sk≤t≤1

|ϕk(1) − ϕk(t)| ≤ ε

2
νk = εϕk(1). (24)

Now set
r = rε,n := min{k ≤ n : fk,n(0) ≤ sk}.

Because of fn,n(0) = 0 this minimum is attained. In view of (24) and Lemma 1 it follows that

∣∣∣∣
n∑

k=1

ϕk(1)

μk−1
−

n∑
k=1

ϕk( fk,n(s))

μk−1

∣∣∣∣ ≤ ε
r−1∑
k=1

ϕk(1)

μk−1
+ 3

ϕr(1)

μr−1
+ 3

n∑
k=r+1

ϕk(1)

μk−1
.

From (23) we have

ϕr(1)

μr−1
= f ′′

r (1)

2f ′
r (1)2μr−1

≤ c1/2(f ′
r (1) + 1)

f ′
r (1)μr−1

= c1/2

(
1

μr−1
+ 1

μr

)
,

and from Lemma 6,

n∑
k=r+1

ϕk(1)

μk−1
≤ c′

n∑
k=r+1

ϕk(0)

μk−1
≤ 2c′

n∑
k=r+1

ϕk( fk,n(0))

μk−1
.
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From (16) it follows that P(Zn > 0 | Zr = 1)−1 =μr/μn +μr
∑n

k=r+1 ϕk( fk,n(0))/μk−1 for
n> r, and hence we may proceed to

n∑
k=r+1

ϕk(1)

μk−1
≤ 2c′

μr(1 − fr,n(0))
≤ 2c′

μr(1 − sr)
= 2c′( f ′

r (1) + 1)

ημr
= 2c′

η

(
1

μr−1
+ 1

μr

)
.

Putting our estimates together, we get
∣∣∣∣

n∑
k=1

ϕk(1)

μk−1
−

n∑
k=1

ϕk( fk,n(s))

μk−1

∣∣∣∣ ≤ ε
n∑

k=1

ϕk(1)

μk−1
+ 3

(
c1/2 + 2c′

η

)(
1

μr−1
+ 1

μr

)
. (25)

Now the assumption 1/μn = o(
∑n

k=1 νk/μk−1) comes into play. It implies that there is a
positive integer rε such that, for all r, n with rε < r ≤ n,

3

(
2c′

η
+ c1/2

)(
1

μr−1
+ 1

μr

)
≤ ε

2

r−1∑
k=1

νk

μk−1
+ ε

2

r∑
k=1

νk

μk−1
≤ ε

n∑
k=1

ϕk(1)

μk−1
. (26)

Also, from the assumptions that q = 1 and 1/μn = o(
∑n

k=1 νk/μk−1), together with
Theorem 1(iv) and (7), we have

n∑
k=1

ϕk(1)

μk−1
= 1

2

n∑
k=1

νk

μk−1
→ ∞

as n → ∞, which implies that (26) holds for all r ≤ rε and thus for all r ≤ n, if only n is large
enough. Thereby we may combine (25) and (26) to obtain

∣∣∣∣
n∑

k=1

ϕk( fk,n(s))

μk−1
−

n∑
k=1

ϕk(1)

μk−1

∣∣∣∣ ≤ 2ε
n∑

k=1

ϕk(1)

μk−1

for sufficiently large n. This proves our claim. �
Proof of Theorem 4.
(i) implies (ii): We argue by contradiction. If assertion (ii) fails, then there is an increas-

ing sequence (ni)i≥0 in N fulfilling supi E[Zni | Zni > 0]<∞. From Theorem 3 it follows that
the random variables Zni , i ≥ 0, conditioned on Zni > 0 are tight. This does not conform with
assertion (i), which proves the implication.

(ii) implies (iii): This implication follows from Theorem 3, since assertion (iii) just states
that an → ∞.

(iii) implies (i): For the proof, let

bn := μn

2

n∑
k=1

νk

μk−1
.

From Lemma 5 we have

1 − E[e−λZn/bn | Zn > 0] = 1 − f0,n(e−λ/bn )

1 − f0,n(0)

=
(

1

μn
+

n∑
k=1

ϕk( fk,n(0))

μk−1

)/(
1

μn(1 − e−λ/bn )
+

n∑
k=1

ϕk( fk,n(e−λ/bn ))

μk−1

)
.
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Since bn → ∞, from Lemma 8 and the theorem’s assumption we have

1 − E[e−λZn/bn | Zn > 0]

=
(

(1 + o(1))
n∑

k=1

νk

2μk−1

)/(
(1 + o(1))

bn

λμn
+ (1 + o(1))

n∑
k=1

νk

2μk−1

)

as n → ∞. From the definition of bn we get

1 − E[e−λZn/bn | Zn > 0] = λ+ o(1)

1 + λ
.

This implies assertion (i).
Moreover, from (16), Lemma 8 and assertion (iii) it follows that

1

P(Zn > 0)
= 1

μn
+

n∑
k=1

ϕk( fk,n(0))

μk−1
∼ 1

2

n∑
k=1

νk

μk−1
.

This formula give the extra claims, which concludes the proof. �
Proof of Proposition 1. By Theorem 1(viii) the condition q< 1 is equivalent to the require-

ments of both
∑∞

k=1 νk/μk−1 <∞ and 0< limn μn ≤ ∞. As already explained, the division
between the supercritical regime and the asymptotically non-degenerate regime corresponds
to the cases limn μn = ∞ and 0< limn μn <∞. This gives the first two assertions of the
proposition.

Next, the critical regime is given by the requirements that both E[Zn | Zn > 0] → ∞ and
q = 1. By Theorems 3 and 1(iv) we may equivalently require that 1/μn = o(

∑n
k=1 νk/μk−1)

together with either
∑n

k=1 νk/μk−1 = ∞ or μn → 0. However, the third and the first of these
conditions imply the second one, therefore the third condition can be skipped, and we end
up with the requirements 1/μn = o(

∑n
k=1 νk/μk−1) and

∑n
k=1 νk/μk−1 = ∞, as stated in the

proposition.
Finally, the subcritical regime is characterized by the conditions E[Zn | Zn > 0] �→ ∞ and

q = 1. Because of Theorem 3, the first condition is equivalent to the requirement an �→ ∞,
respectively to lim infn μn

∑n
k=1 νk/μk−1 <∞. Moreover, lim infn μn = 0 implies q = 1, and

therefore the conditions stated in the proposition imply subcriticality. Conversely, if q = 1 then
by Theorem 1(iv) we have limn μn = 0 or

∑n
k=1 νk/μk−1 <∞. The former of these conditions

trivially yields lim infn μn = 0, whereas the latter, together with lim infn μn
∑n

k=1 νk/μk−1 <

∞, implies lim infn μn = 0. Therefore the two conditions stated in the proposition are also
necessary for subcriticality. �
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