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Abstract

Comparison results for Markov processes with respect to function-class-induced
(integral) stochastic orders have a long history. The most general results so far for this
problem have been obtained based on the theory of evolution systems on Banach spaces.
In this paper we transfer the martingale comparison method, known for the comparison
of semimartingales to Markovian semimartingales, to general Markov processes. The
basic step of this martingale approach is the derivation of the supermartingale property
of the linking process, giving a link between the processes to be compared. This property
is achieved using the characterization of Markov processes by the associated martingale
problem in an essential way. As a result, the martingale comparison method gives a
comparison result for Markov processes under a general alternative but related set of
regularity conditions compared to the evolution system approach.
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1. Evolution systems and comparison of Markov processes

Stochastic ordering and comparison results for Markov processes are basic problems in
probability theory. They have a long history and are motivated by a number of applications in
a variety of fields (see [4], [5], [6], [7], [14], [15], [16], [17], and [18]). Various approaches
ranging from analytic to coupling methods have been developed to this end, sometimes in the
context of specific models or specific applications. The most general comparison results so far
have been obtained based on the theory of evolution systems on Banach spaces (see [18]).

The transition operators Ts,t, s ≤ t, of a Markov process X with values in a metric space
S are an evolution system on the space of measurable bounded real-valued functions Lb(S).
Since the transition operators are defined by conditional expectations, it is also possible to
consider them on function spaces other than Lb(S). In order to stay within the framework of
evolution systems, we consider the transition operators on Banach spaces. We also assume that
the Banach spaces are spaces of integrable functions, in the sense that they are integrable with
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Comparison of Markov processes 165

respect to all conditional laws. Generally, a family of bounded linear operators (Ts,t)s≤t from a
Banach space B to B is called an evolution system if, for all 0 ≤ s ≤ t ≤ u, it satisfies

(1) Ts,s = id,

(2) Ts,u = Ts,tTt,u.

An evolution system is called strongly continuous if, for all f ∈B, the B-valued function
(s, t) �→ Ts,t f is continuous. If the evolution system is time-homogeneous, i.e. it only depends
on the duration t − s, then (Tt)t≥0 defined by Ttf := T0,t f is a semigroup. An evolution system
(Ts,t)s≤t is called a Feller evolution system if it is strongly continuous and maps C0(S) into
itself. If the evolution system maps Cb(S) into itself, we call it a Cb-Feller evolution system.
Further, if the transition operators of a Markov process X are a (Cb)-Feller evolution system, X
is called a (Cb)-Feller process.

Right generators of evolution systems (Ts,t) on a Banach space B are defined by

A+
s f := lim

h↓0

Ts,s+h f − f

h
for all s ∈R+.

This operator is defined on its domain D(A+
s ), i.e. for all f ∈B for which the limit exists in

norm. Analogously we define the left generators on the domain D(A−
s ) by

A−
s f := lim

h↓0

Ts−h,s f − f

h
for all s ∈R+ \ {0}.

If we weaken the limit in the definitions of the left and right generators to a pointwise limit,
then the corresponding operators are called extended pointwise right and left generators (see
[9]). The generators of an evolution system on a Banach space B are linear operators on B.
In general the right generator and left generator do not coincide. In [1] an explicit example
for a Markov process is given whose right and left generators do not coincide. There also, a
condition is given to imply equality for the left and right generators.

Evolution systems arise as solutions of homogeneous evolution problems. Let (Ts,t)s≤t≤T

be an evolution system on some Banach space B. For 0 < t we set

D+(t) := { f ∈B; s �→ Ts,t f is differentiable from the right on (0, t)}, (1.1)

and
DA+(s) :=

⋂
s≤t

D(At), DA(s, t) :=
⋂

s≤u≤t

D(Au).

The following theorem restates basic connections of evolution systems to their right generators
from [9] and states some corresponding representation results.

Theorem 1.1. Let (Ts,t)s≤t≤T be an evolution system on a Banach space B with right
generators (A+

t )t∈[0,T). Then the following assertions hold true.

(a) If (Ts,t)s≤t≤T is strongly continuous, then for fixed t the function u : s �→ Ts,t f with f ∈
D+(t) is a solution to the following final value problem on (0, t):⎧⎪⎪⎨

⎪⎪⎩

∂+

∂s
u(s) = −A+

s u(s),

lim
s↑t

u(s) = f .
(1.2)

https://doi.org/10.1017/jpr.2020.87 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2020.87


166 B.KÖPFER AND L. RÜSCHENDORF

(b) For f ∈DA+
+ (s), for some fixed 0 < s < T, and for any s < t < T, the forward equation

holds:
∂+

∂t
Ts,t f = Ts,tA

+
t f .

(c) (Representation results) Let (Ts,t)s≤t≤T be strongly continuous and f ∈D+(t). Further,
assume that the right derivative (∂+/∂u)Tu,t f is integrable on [s,t]. Then the following
integral representation of the evolution system holds true:

Ts,t f − f =
∫ t

s
A+

u Tu,t f du.

If f ∈DA+
(s, t), and the right derivative (∂+/∂u)Ts,u f is integrable on [s,t], then

Ts,t f − f =
∫ t

s
Ts,uA+

u f du. (1.3)

A similar integral representation also holds true for f ∈DA−
(s, t) using the left derivative

instead of the right derivative.

Theorem 1.2. Let (Ts,t)s≤t≤T be an evolution system on a Banach space B with left generators
(A−

t )t∈(0,T], and define

D−(t) := { f ∈B; s �→ Ts,t is differentiable from the left on (0, t)}
and

Ft :=
{

f ∈B; lim
h↓0

Tt−h,t f = f

}
.

Then the following assertions hold.

(a) For 0 < t < T and f ∈D−(t) ∩ Ft, the function u : s �→ Ts,t f is a solution to the backward
equation on (0, t): ⎧⎪⎪⎨

⎪⎪⎩

∂−

∂s
u(s) = −A−

s u(s),

lim
s↑t

u(s) = f .

(b) If (Ts,t)s≤t≤T is strongly continuous in s, f ∈D−(t), and the left derivative (∂−/∂s)Ts,t f
is integrable on [s,t], then the following integral representation of the evolution system
holds:

Ts,t f − f =
∫ t

s
A−

u Tu,t f du.

For further extensions and properties of the notion of left (right) generators, see [1], [2],
and [13].

A basic result in the theory of evolution systems is the following integral representa-
tion for solutions to an inhomogeneous evolution problem (see [18]). For fixed s, t ∈R+, let
(Ar)s≤r≤t be a family of linear operators on a Banach space B, and let G : [s, t] →B. A function
u : [s, t] →B, right differentiable on (s, t) and such that u(r) ∈D(Ar) for all s ≤ r < t, is called
a solution to the inhomogeneous right evolution problem with boundary condition f ∈B if

∂+

∂r
u(r) = −Aru(r) + G(r) for s < r ≤ t,

u(t) = f .
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If, moreover, u is continuous on [s, t], it is called a classical solution to the inhomogeneous
right evolution problem.

On the other hand, for u : [s, t] →B, left differentiable on (s, t) such that u ∈DA(s, t), u is a
solution to the inhomogeneous left evolution problem with boundary condition f ∈B if

∂−

∂r
u(r) = −Aru(r) + G(r) for s < r ≤ t,

u(t) = f .

If u is continuous it is called a classical solution.
The representation result is as follows.

Theorem 1.3. Let (Ts,t)s≤t be a strongly continuous evolution system on a Banach space B

with right generators (A+
t )t≥0. For fixed t ∈R+, let Ft, G : [0, t] →B be such that

(a) the function r �→ Ts,rG(r) is integrable on fixed [s, t],

(b) Ft solves the inhomogeneous right evolution problem for the operators (A+
s )s≤t,

∂+

∂r
Ft(r) = −A+

r Ft(r) + G(r).

Then the following representation holds:

Ft(s) = Ts,tFt(t) −
∫ t

s
Ts,rG(r) dr.

The same representation result also holds true for the inhomogeneous left evolution problem
for left generators of a strongly continuous evolution system (see [13]). The representation
result is the basic tool for the general comparison theorem for Markov processes by means
of evolution systems in [18], stating an ordering result of Markov processes with respect to
function classes F . Therefore, let X and Y be Markov processes with corresponding transition
operators TX and TY . Under some regularity conditions this result states that a propagation of
order property for X, i.e. f ∈F , implies TX

s,t f ∈F , and comparison of generators implies the
stochastic ordering condition Xt ≤F Yt, t ≥ 0.

The following is a modification of this result holding true for single functions f . Note that
for this case where F = { f }, the propagation of order property does not make sense. We let
DX+(t) and DY+(t) denote the sets from (1.1) corresponding to the particular transition operators.

Theorem 1.4. Assume that (TX
s,t)s≤t and (TY

s,t)s≤t are strongly continuous evolution systems on
a Banach space B and let f ∈DX+(t) ∩DY+(t). If, for fixed t ∈R+, it holds that, for all s ≤ t,

(a) TX
s,t f ∈D(AY+

s ),

(b) r �→ TY
s,r(AX+

r − AY+
r )TX

s,rf is integrable on [s, t],

(c) AX+
s TX

s,t f ≤ AY+
s TX

s,t f a.s.,

then
TX

s,t f ≤ TY
s,t f a.s. for all s ≤ t.

Proof. Set Ft(s) := TY
s,t f − TX

s,t f . Then, by (1.2), Ft satisfies the equation

∂+

∂s
Ft(s) = −AY+

s TY
s,t f + AX+

s TX
s,t f ,
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with boundary condition Ft(t) = 0. This equation can be written as

∂+

∂s
Ft(s) = −AY+

s

(
TY

s,t f − TX
s,t f

) + (
AX+

s − AY+
s

)
TX

s,t f = : − AY+
s Ft(s) + G(s), (1.4)

where G(s) := (AX+
s − AY+

s )TX
s,t f . The terms in the equation are well-defined by Theorem 1.1

and assumption (a). Hence Ft solves an inhomogeneous right evolution problem.
From the strong continuity of the evolution systems we deduce that Ft is continuous in s.

Hence Ft is a classical solution to the inhomogeneous right evolution problem (1.4).
We show that Ft is non-negative; then the assertion follows. To see this we apply the integral

representation in Theorem 1.3 to Ft, to obtain

Ft(s) = TY
s,t Ft(t) −

∫ t

s
TY

s,rG(r) dr =
∫ t

s
TY

s,r( − G(r)) dr.

From assumption (c) it follows that −G(r) ≥ 0 a.s. and hence the assertion follows from the
fact that the transition operators of Markov processes are positivity-preserving operators. �

A similar comparison result also holds for left generators (see [13]).

2. The martingale comparison method for Markov processes

For the comparison of a semimartingale X to a Markovian semimartingale Y , Gushchin and
Mordecki [10] introduced the martingale comparison method. The basic step of this approach
is to establish that the linking process

(
TX

s,t f (Ys)
)

0≤s≤t

is a submartingale for fixed t. Note that TX
t,t f (Yt) = f (Yt) and TX

0,t f (x0) =E[ f (Xt)], assuming
that X0 = x0 = Y0. Thus (TX

s,t f (Ys)) gives a link between the processes X and Y . From the sub-
martingale property of the linking process, as a direct consequence, the following comparison
result is obtained:

E[ f (Yt)] =E
[
TX

t,t f (Yt)
] ≥ TX

0,t f (x0) =E[ f (Xt)]. (2.1)

If (TX
s,t f (Ys))0≤s≤t is a supermartingale, the reverse inequality holds. The proof of the sub-

martingale property is essentially based on Itô’s formula and on a version of Kolmogorov’s
backwards equation for Markovian semimartingales. In this paper we transfer this martin-
gale comparison approach to the comparison of general Markov processes. As main tool we
make essential use of the characterization of Markov processes by the martingale problem. We
transfer this classical result (see e.g. [8, Chapter 4, Proposition 1.7]) to the frame of Markov
processes with transition operators defined on a Banach space B of integrable functions; for a
detailed exposition see [13].

Theorem 2.1. Let (Xt)t∈[0,T] be a Markov process with strongly continuous transition opera-
tors (Ts,t )s≤t≤T on some Banach space B and corresponding right generators (A+

t )t∈[0,T). If for
f ∈DA++ (0) the right derivative (∂+/∂t)Ts,t f is integrable on [0,T), then the process (Mt)t∈[0,T]
defined by

Mt := f (Xt) − f (X0) −
∫ t

0
A+

s f (Xs) ds

is a martingale with respect to its natural filtration Ft := (σ (Xs; s ≤ t))t∈[0,T].
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Proof. The integrability is clear since the Banach space is assumed to consist of integrable
functions and the right generator (A+

t )t∈[0,T) maps the Banach space into itself. Let 0 ≤ s ≤ t.
Then, by the Markov property and equation (1.3), we have

E[Mt |Fs] =E[ f (Xt) | Xs] − f (X0) −
∫ t

0
E

[
A+

u f (Xu) | Xs
]

du

= Ts,t f (Xs) − f (X0) −
∫ t

s
Ts,uA+

u f (Xs) du −
∫ s

0
A+

u f (Xu) du

= f (Xs) − f (X0) −
∫ s

0
A+

u f (Xu) du

= Ms.

This shows the assertion. �
Remark 2.1. The integrability condition on (∂+/∂t)Ts,t f can be replaced by the assumption
that Ts,.f is absolutely continuous on [0, T); see [11, Example 18.41]. This also holds true for
Theorems 1.4, 2.2, 2.3, and 2.4.

A similar martingale property also holds for the left generators. We will also make use
of the martingale property for space–time functions f (t, x). To that end we state the follow-
ing definition, a variant of the definition in [2] for general Banach spaces. The family of
operators (A+

t )t∈[0,T) is here regarded as single operator A+ on a space consisting of space–
time functions f : [0, T) × S →R. Therefore it is important that the Banach space B on which
each A+

t is defined can be extended reasonably to functions of the space–time process B̄, like
Lp(Rd), Lb(Rd) and the smooth functions vanishing at infinity C∞

0 (Rd). Then a function f is
in D(A+) if, for all t ∈ [0, T], it holds that x �→ f (t, x) ∈D(A+

t ) and if (s, x) �→ A+
s f (s, ·)(x) ∈ B̄.

We let D+(A+) denote the set of functions f ∈D(A+) which are right differentiable in the time
variable. D−(A+) is defined analogously for the left derivatives.

Definition 2.1. A family of operators (A+
t )t∈[0,T) on some Banach space B is said to be a right

generator of a Markov process X if, for all f ∈D+(A+), for all x ∈ S, and for all s ≤ t, it holds
that

∂+

∂t
E[ f (t, Xt) | Xs = x] =E

[
∂+

∂t
f (t, Xt) + A+

t f (t, ·)(Xt)

∣∣∣∣ Xs = x

]
.

A family of operators (A−
t )t≥0 on B is said to be a left generator of X if we replace the right

derivatives above by left derivatives.

We remark that the extended pointwise right and left generators (A+
t ) and (A−

t ) of strongly
continuous transition operators are also right and left generators in the sense of Definition 2.1
(see [13]).

With the help of this definition we can formulate the martingale property for the space–time
process.

Theorem 2.2. Let (A+
t )t∈[0,T) be the right generator of a Markov process X in the sense of

Definition 2.1. Then, for every f ∈D+(A+) such that (∂+/∂t)E[ f (t, Xt) | Xs] is integrable on
[0,T), we find that

Mt := f (t, Xt) − f (0, X0) −
∫ t

0

(
∂+

∂s
+ A+

s

)
f (s, Xs) ds

is a martingale with respect to the natural filtration (Ft)t∈[0,T].
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Proof. Again the integrability is clear and the martingale property can be shown easily:

E[Mt |Fs] =E[ f (t, Xt) | Xs] − f (0, X0) −
∫ t

0
E

[(
∂+

∂u
+ A+

u

)
f (u, Xu)

∣∣∣∣ Xs

]
du

=E[ f (t, Xt) | Xs] − f (0, X0) −
∫ t

s
E

[(
∂+

∂u
+ A+

u

)
f (u, Xu)

∣∣∣∣ Xs

]
du

−
∫ s

0

(
∂+

∂u
+ A+

u

)
f (u, Xu) du

=E[ f (t, Xt) | Xs] − f (0, X0) −
∫ t

s

∂+

∂u
E[f (u, Xu) | Xs] du

−
∫ s

0

(
∂+

∂u
+ A+

u

)
f (u, Xu) du

=E[ f (t, Xt) | Xs] − f (0, X0) −E[ f (t, Xt) | Xs] + f (s, Xs)

−
∫ s

0

(
∂+

∂u
+ A+

u

)
f (u, Xu) du

= Ms.

This completes the proof. �
Remark 2.2.

(a) In [2] a similar result is given under the assumption that the function f is continuously
differentiable in the time variable.

(b) The proof of Theorem 2.2 can also be adapted for the extended pointwise right and left
generators of the transition operators of X. Thus Theorem 2.1 also holds for the extended
pointwise right and left generators.

The connection of Markov processes to martingales allows the introduction of further exten-
sions of generators. Therefore we give some definitions which are motivated by Theorem 2.1.
They are variants of definitions from [3] for time-inhomogeneous Markov processes.

Definition 2.2. Let (At)t≥0 be a family of operators on a Banach space with domains
(D(At))t≥0. It is called the extended generator of a Markov process X if DA+(0) consists of
measurable functions f : S →R such that, for all t ≥ 0,

f (Xt) − f (X0) −
∫ t

0
Asf (Xs) ds

is well-defined and a local martingale.

Note that it makes no sense to distinguish between left and right generators since here the
interpretation as partial semi-differential of the underlying evolution system is not taken. Also,
a restriction to Banach spaces as domains is not necessary.
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The same definition can be given for the space–time process. Recall that the Banach space
under consideration has to be extendable to the space–time process.

Definition 2.3. Let (A+
t )t≥0 be a family of operators on a Banach space with domains

(D(A+
t ))t≥0. It is called the extended right generator of the space–time process (id, X) if

D+(A+) consists of measurable functions f : R+ × S →R such that, for all t ≥ 0,

f (t, Xt) − f (0, X0) −
∫ t

0

(
∂+

∂s
+ A+

s

)
f (s, Xs) ds

is well-defined and a local martingale.
If the derivatives above are replaced by left derivatives, we call the corresponding family

of operators extended left generators.

The extended generators can be expanded to integrals other than the Lebesgue integral. This
is particularly interesting, for example, if we consider general Markovian semimartingales with
fixed jump times.

Definition 2.4. Let F ∈ V + be predictable. A family of operators (At)t≥0, At : L(S) →L(�) is
called the F-random generator of a Markov process X if DA+(0) consists of functions f : Rd →
R for which (Atf )t≥0 is an optional process such that Af · F ∈ V is predictable, and

f (Xt) − f (X0) −
∫ t

0
Asf dFs

is well-defined and a local martingale.

Based on the martingale problem, we obtain a transfer of the martingale comparison method
to the comparison of general Markov processes. In the following theorem we consider the
transition operators TX

s,t for fixed t and f ∈B as a function TX·,t f : [0, t] × S →R. Hence we
can insert the space–time process and obtain the connection to the martingale problem from
Theorem 2.2. Note that we use generators in the sense of Definition 2.1. For processes X, Y
we denote their (right) generators AX+ and AY+. The following comparison result by the mar-
tingale method uses similar conditions as the comparison result Theorem 1.4 by the evolution
approach.

Theorem 2.3. (Comparison by the martingale comparison method.) Let (TX
s,t)s≤t and (TY

s,t)s≤t

be strongly continuous with right generators (AX+
s )s≥0 and (AY+

s )s≥0. For f ∈B and fixed t ∈
R+, assume that for all s ≤ t the following holds:

(a) TX·,t f ∈D+
(
AX+) ∩D+

(
AY+)

,

(b) (∂+/∂u)E[TX
u,t f (Xu) | Xs] and (∂+/∂u)E[TX

u,t f (Yu)|Ys] are integrable on [0, t],

(c) supp
(
P

Ys
) ⊂ supp

(
P

Xs
)
,

(d) AX+
s TX

s,t f ≤ AY+
s TX

s,t f a.s.

Then

E
[

f (Yt)
] ≥E[ f (Xt)].
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Proof. For the proof of the assertion, we establish that (TX
s,t(Ys)) is a submartingale. By

construction (TX
s,t f (Xs))s≤t is a martingale; this follows by the Markov property. For u ≤ s we

have

E[TX
s,t f (Xs) |Fu] =E[E[ f (Xt) | Xs] |Fu]

=E[E[ f (Xt) |Fs] |Fu]

=E[ f (Xt) |Fu]

= TX
u,t f (Xu).

On the other hand, by assumption (b) and Theorem 2.2,

TX
s,t f (Xs) − TX

0,t f (X0) −
∫ s

0

(
∂+

∂u
+ AX+

u

)
TX

u,t f (Xu) du

is a martingale as well. It follows that the integral process

∫ s

0

(
∂+

∂u
+ AX+

u

)
TX

u,t f (Xu) du

is also a martingale starting at zero. Since it is an integral with respect to the Lebesgue measure,
it is of finite variation and continuous. By [12, Corollary I.3.16] it follows that it is zero λ × P

almost surely: (
∂+

∂u
+ AX+

u

)
TX

u,t f (Xu) = 0.

Hence, for all x ∈ supp(PXu ) except on a set of time points u of Lebesgue measure zero, we
obtain (

∂+

∂u
+ AX+

u

)
TX

u,t f (x) = 0.

By assumption (c), this implies that

(
∂+

∂u
+ AX+

u

)
TX

u,t f (Yu) = 0 (2.2)

λ × P almost surely. Therefore, by assumptions (a), (b) and Theorem 2.2 applied to TX
s,t f , we

find that

Ms := TX
s,t f (Ys) − TX

0,t f (Y0) −
∫ s

0

(
∂+

∂u
+ AY+

u

)
TX

u,t f (Yu) du

is a martingale. Combining this with (2.2) implies that

TX
s,t f (Ys) − TX

0,t f (x0) −
∫ s

0

(
AY+

u − AX+
u

)
TX

u,t f (Yu) du

is a martingale. By assumption (d) the integral is non-negative, and it follows that
(
TX

s,t f (Ys)
)

s≤t
has the representation

TX
s,t f (Ys) = TX

0,t f (x0) + Ms +
∫ s

0

(
AY+

u − AX+
u

)
TX

u,t f (Yu) du.
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This is a submartingale since the integral is non-negative. The assertion then follows by
inequality (2.1). �
Remark 2.3. From the proof of Theorem 2.3 it follows in a similar way that the inverse
inequality, AX+

s TX
s,t f ≥ AY+

s TX
s,t f , implies that (TX

s,t f (Ys))0≤s≤t is a supermartingale and hence
the expectations are ordered the other way around, i.e. E[ f (Yt)] ≤E[ f (Xt)].

Since we also have an analogous martingale property for left generators, we can transfer
Theorem 2.3 to left generators.

Theorem 2.4. Let (TX
s,t)s≤t and (TY

s,t)s≤t be strongly continuous and f ∈B. For fixed t ∈R+,
assume that for all s ≤ t we have

(a) TX·,t f ∈D−(AY−) ∩D−(AY−),

(b) (∂−/∂u)E[TX
u,t f (Xu) | Xs] and (∂−/∂u)E[TX

u,t f (Yu)|Ys] are integrable on [0, t],

(c) supp(PYs ) ⊂ supp(PXs ),

(d) AX−
s TX

s,t f ≤ AY−
s TX

s,t f a.s.

Then

E[ f (Yt)] ≥E[ f (Xt)].

Proof. The proof is similar to the proof of Theorem 2.3. �
The extended generators and the random generators are defined by a local martingale prop-

erty. Since the results above rely on the martingale property, we are able to obtain similar
results for the extended generators and the random generators. The main difference now is that
we only have a local martingale property and we are not restricted to Banach spaces.

Let (AX+
t )t≥0 and (AY+

t )t≥0 be the extended right generators for X and Y; see Definition
2.3. Let f : S →R be a function such that (TX

s,t f )s≥0 ∈D+(AX+). By the martingale property
of (TX

s,t f (Xs))s≥0, we obtain that, λ × P almost surely,

(
∂+

∂s
+ AX+

s

)
TX

s,t f (Xs) = 0. (2.3)

We then can undertake the same steps as in the proof of Theorem 2.3, which yields a local sub-
martingale property for (TX

s,t f (Ys))s≥0. So we only need to specify the particular assumptions
and make sure that (TX

s,t f (Ys))s≥0 is a proper submartingale. Therefore we use the class (DL),
which makes a local (sub-) martingale a proper martingale. A stochastic process X is of class
(DL) if all t ≥ 0, {Xτ ; τ a stopping time, τ ≤ t} is uniformly integrable. Note that we use the
extended right generator in the next theorem.

Theorem 2.5. Let f : S →R be such that, for fixed t and all s ≤ t,

(a) TX·,t f ∈D+(AX+) ∩D+(AY+),

(b) supp(PYs ) ⊂ supp(PXs ),

(c) (TX
s,t f (Ys)−)s≥0 is of class (DL),

(d) AX+
s TX

s,t f ≤ AY+
s TX

s,t f a.s.
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Then

E[ f (Yt)] ≥E[ f (Xt)].

Proof. The proof is similar to the proof of Theorem 2.3. As mentioned above, we have λ × P

almost surely (
∂+

∂s
+ AX+

s

)
TX

s,t f (Xs) = 0.

By assumption (b) we obtain that

(
∂+

∂s
+ AX+

s

)
TX

s,t f (Ys) = 0

λ × P almost surely as well. On the other hand, by the definition of the extended generator,

TX
s,t f (Ys) − TX

0,t f (x0) −
∫ s

0

(
∂+

∂u
+ AY+

u

)
TX

u,t f (Yu) du

is a local martingale. Combining with (2.3),

TX
s,t f (Ys) − TX

0,t f (x0) −
∫ s

0

(
AY+

u − AX+
u

)
TX

u,t f (Yu) du.

The integral is non-negative by assumption (d) and hence (TX
s,t f (Ys))0≤s≤t is a local sub-

martingale. By assumption (c) it is a proper submartingale. The assertion now follows as in
Theorem 2.3. �

An analogous result also holds in the case of extended left generators.
Finally, if we consider random generators instead of extended generators, we get a similar

comparison result. Here we have the advantage that no partial derivative appears in Definition
2.4. This means that we can proceed more directly.

Theorem 2.6. Let F ∈ V + be predictable. Assume that X and Y possess F-random generators
(AX

t )t≥0 and (AY
t )t≥0. Further, for f ∈DAX

+ (0) ∩DAY

+ (0), let

(a) X0 ∼ Y0,

(b) (f (Xt) − f (Yt))t≥0 be of class (DL),

(c) AX
s f ≥ AY

s f a.s.

Then we obtain

E[ f (Xt)] ≤E[ f (Yt)].

Proof. Since (AX
t )t≥0 and (AY

t )t≥0 are F-random generators, we have by Definition 2.4 that

f (Xt) − f (X0) −
∫ t

0
AX

s f dFs

and

f (Yt) − f (Y0) −
∫ t

0
AY

s f dFs
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are local martingales. It follows that

f (Xt) − f (X0) −
∫ t

0
AX

s f dFs − f (Yt) + f (Y0) +
∫ t

0
AY

s f dFs

= f (Xt) − f (X0) − f (Yt) + f (Y0) +
∫ t

0

(
AY

s f − AX
s f

)
dFs

is a local martingale as well. The integral is non-negative, and it follows that (f (Xt) − f (X0) −
f (Yt) + f (Y0))t≥0 is a local supermartingale and thus by assumption (b) a supermartingale. In
consequence we have that

E[ f (Xt) − f (Yt) − f (X0) + f (Y0)] ≤ 0.

The assertion follows by assumption (a). �

2.1. Discussion and comparison of regularity conditions

The martingale comparison method as developed in this paper gives an alternative approach
to the comparison of two Markov processes. The regularity conditions of this approach are
comparable but different from the conditions assumed for the evolution approach. The main
achievements and corresponding assumptions in this paper are as follows.

(1) We extend the evolution approach to the comparison of the expectation of single
functions f and thus without using the propagation of order condition.

(2) The martingale approach allows comparison results for random generators too, as occur-
ring, for example, in the case of Markovian semimartingales with fixed jump times,
which do not fit with the conditions of the evolution approach.

(3) In the case where the evolution approach and the martingale approach both apply, the
regularity conditions are similar but (slightly) different. The evolution approach result
(Theorem 1.4) makes use of the integrability condition

(I) TY
s,u(AX+

u − AY+
u )TX

s,u f is integrable over u ∈ [s, t],

respectively the related absolute continuity condition; see Remark 2.1. The martingale
approach (Theorem 2.3) makes use of the condition

(II) (∂+/∂u)E[TX
u,t f (Xu) | Xs] and (∂+/∂u)E[TX

u,t f (Yu)|Ys] are integrable on [s, t].

Assuming exchangeability of differentiation and expectation, condition (II) is equivalent
to the integrability of TX

s,uAX+
u TX

u,t f and TY
s,uAX+

u TX
u,t f .

Under the propagation of order condition as in previous literature, for a class of
functions F this amounts to

(II)′ TX
s,uAX+

u f and TY
s,uAX+

u f are integrable for f ∈F .

In comparison, condition (I) together with additionally postulating integrability of both
terms separately results in

(I)′ TY
s,uAX+

u f and TY
s,uAY+

u f are integrable for f ∈F .

Thus roughly both conditions are equivalent under the propagation of order condition.
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(4) In Theorem 2.6 we give a reasonable and easily verifiable integrability condition not
directly involving the generators of the processes. There is no corresponding result
available for the evolution approach.
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