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Abstract. Collisionless time evolutions of geodesic acoustic modes (GAMs) in toka-
maks are investigated by the gyrokinetic theory and simulation. It is shown that
the collisionless damping of the GAM oscillations is enhanced when the ratio of the
typical drift orbit width of passing ions to the radial wavelength of the zonal flow
increases.

1. Introduction
It was observed in collisionless gyrokinetic simulations that, in toroidal plasmas, the
E×B zonal flow, which is added initially as an impulse, evolves as rapid oscillations
of the geodesic acoustic mode (GAM) before it is damped and converges into a finite
stationary value predicted theoretically [1–3]. The GAM was first predicted based
on the fluid model [4]. Kinetic evaluations of frequencies and damping rates of the
GAM were done in [5, 6] based on local drift kinetic models which do not include
the magnetic drift term of the perturbed distribution function assuming the radial
widths of ion drift orbits to be negligibly smaller than the radial wavelength of the
fluctuation. In this paper, it is shown by the gyrokinetic analysis and simulation
how the collisionless damping of the GAM oscillations in tokamaks is increased by
the finite drift orbit widths of passing ions.

2. Theoretical analysis
The gyrokinetic equation for the zonal flow component with the perpendicular wave
number vector k⊥ = kr∇r is given by [1](

∂

∂t
+ v‖b · ∇ + iωD

)
δfk⊥ = −

(
v‖b · ∇ + iωD

) (
F0J0(k⊥ρ)

eφk⊥

T

)
, (2.1)

where φk⊥ is the electrostatic potential, F0 is the Maxwellian equilibrium distri-
bution function, ρ is the gyroradius, Ω is the gyrofrequency, and ωD ≡ krvdr is
the drift frequency. Here, w ≡ mv2/2 and µ ≡ mv2

⊥/(2B) are used as independent
velocity-space variables and subscripts to represent particle species are omitted.
The perturbed gyrocenter distribution function δfk⊥ consists of adiabatic and non-
adiabatic parts, δfk⊥ = −F0J0(k⊥ρ)(eφk⊥/T )+gk⊥ . For large-aspect-ratio tokamaks,
the magnetic field strength is given by B =B0(1 − ε cos θ) where θ is the poloidal
angle, ε ≡ r/R0 is the inverse aspect ratio and r (R0) is the minor (major) radius.
Hereafter, v‖ is used as the independent variable instead of w. We now consider
passing ions, for which we neglect the mirror force term and rewrite (2.1) as(

∂

∂t
+

v‖

R0q

∂

∂θ

) (
eikr δ̂ cos θδf̂k⊥

)
= −

v‖

R0q

∂

∂θ

(
eikr δ̂ cos θJ0

eφk⊥

T

)
, (2.2)
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where δf̂k⊥ ≡ δfk⊥/F0, q ≡ rB0/(R0BP), δ̂ ≡ (ε/ΩP)[v‖ + µB0/(mv‖)], and ΩP =
eBP/(mc). Here, δ̂ cos θ represents the radial dispacement of the passing ion. Using
Fourier and Laplace transforms with respect to θ and t, respectively, as [δf̂k⊥(θ, t),
φk⊥(θ, t)]=

∑
m(2π)−1

∫
dω eimθ−iωt[δf̂kr,m(ω), φkr,m(ω)], we obtain from (2.2),

δf̂kr,m(ω) =
∑
l,l′

il
′−lJl(krδ̂)Jl′(krδ̂)

(
(m + l)(v‖/R0q)

ω − (m + l)(v‖/R0q)

) (
eφkr,m+l−l′(ω)

T

)

+ δÎkr,m(ω), (2.3)

for m �= 0 Fourier components, where δÎkr,m(ω) denotes the initial condition term.
We see that, for finite orbit widths |krδ̂| > 0, l �= 0 terms generate the reson-
ance conditions ω − (m + l)(v‖/R0q) = 0 which can influence the GAM damping
rate. However, the zero-gyroradius limit k⊥ρ → 0 is taken in deriving (2.3). The
quasineutrality condition is given by

∫
d3v F0δf̂ikrm − n0(krai)2eφkrm/Ti = δnekrm

with ai ≡ (Ti/mi)1/2/Ωi. The perturbed electron density is given by δnekrm =
n0eφkrm/Te (for m �= 0), 0 (for m = 0). Here, subscripts referring to particle species
are explicitly shown. For krai � 1, we obtain∫

d3v F0δf̂ikrm(ω) = n0
eφkrm(ω)

Te
(m �= 0). (2.4)

Combining the quasineutrality condition with (2.1) gives

n0(krai)2
e

Ti
[−iωφkr0(ω) − φkr0(t = 0)]

=
∫

d3v F0
kr

2R0Ωi

(
v2

‖ +
µB0

mi

)[
δf̂ikr−1(ω) +

eφkr−1(ω)
Ti

− δf̂ikr1(ω) − eφkr1(ω)
Ti

]
.

(2.5)

Using the symmetry property of (2.3)–(2.5), we can seek the solution for the GAM
which satisfies δf̂ikrm(v‖) = (−1)mδf̂ikr−m(−v‖) and φkrm = (−1)mφkr−m. Then we
find from (2.3) and (2.4) that φkrm/φkr0 ∼ (krδ̂)m (m = 1, 2, . . .) for |krδ̂| � 1. Also,
from (2.3) with m = 1, we have

δf̂ikr1(ω) =

⎡
⎣ (v‖/R0q)

ω − (v‖/R0q)
+

(
krδ̂

2

)2
2(v‖/R0q)

ω − 2(v‖/R0q)

⎤
⎦

×
[

eφkr1(ω)
Ti

+ i

(
kr δ̂

2

)
eφkr0(ω)

Ti

]
+ δÎikr1(ω), (2.6)

where terms including φkrm with m � 2 are negleted. Here, we see two reson-
ance conditions ω = v‖/R0q and ω = 2v‖/R0q, in which the latter may seem to be
ineffective due to small factors of a higher order in krδ̂ appearing together with the
factor 1/[ω − 2(v‖/R0q)] although its influence can dominate the GAM damping
because the population of ions with the resonant parallel velocity v‖ =R0qω/2
becomes larger than that with v‖ =R0qω. Thus, in (2.6), we retain the resonant
(or imaginary) part of 1/[ω − 2(v‖/R0q)] while neglecting its non-resonant (or real)
part. Then, when using (2.6) for evaluations of velocity-space integrals, we perform
the replacement, 1/[ω − 2(v‖/R0q)] → −iπδ[ωr − 2(v‖/R0q)], where |ωi/ωr| � 1
with (ωr, ωi) ≡ (Re(ω), Im(ω)) is assumed. We note from the symmetry condition
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that other resonances ω = −v‖/R0q and ω = −2v‖/R0q appear in the equation for
δf̂kr−1(ω).
We now assume the initial perturbed ion gyrocenter distribution function to take

the Maxwellian form, δfik⊥(t = 0)= (δn(gyro)
ik⊥

(t = 0)/n0)Fi0, where δn
(gyro)
ik⊥

(t =
0)= n0(k2

⊥a2
i )eφkr0(t = 0)/Ti. In this case, the effect of δÎikr1(ω) in (2.6) on the the

zonal-flow potential evolution is negligibly small compared with that of φkr0(t = 0)
in (2.5). Then, using (2.4)–(2.6), we obtain φkr0(ω)= K(ω)φkr0(t = 0), where

1
K(ω)

= −iω̂ − i
q2

2

[
2ω̂3 + 3ω̂ + (2ω̂4 + 2ω̂2 + 1)Z(ω̂) − ω̂

2
{
2ω̂ + (2ω̂2 + 1)Z(ω̂)

}2

×
{

Ti
Te

+ 1 + ω̂Z(ω̂)
}−1

+ i

√
π

2

(
krvTiq

Ωi

)2

e−ω̂2
r /4

{
ω̂6
r

64
+

(
ω̂4
r

8
+

3ω̂2
r

4
+ 3

+
6
ω̂2
r

)(
1 − 3ω̂r

16

{
2ω̂r + (2ω̂2

r + 1)Zr(ω̂r)
}{

Ti
Te

+ 1 + ω̂rZr(ω̂r)
}−1)}]

. (2.7)

Here, Z(ω̂) is the plasma dispersion function of the normalized frequency ω̂ ≡
R0qω/vTi (vTi ≡

√
2Ti/mi) and the subscript r represents the real part. The last

group of terms proportional to (krvTiq/Ωi)2 exp(−ω̂2
r /4) of the right-hand side of

(2.7) appear due to the resonance of passing ions with the GAM at |v‖| = Rqω/2(=
vTi ω̂/2) caused by the finite orbit widths. Contributions from other resonances
at |v‖| = Rqω/n (n= 3, 4, 5, . . .) are proportional to (krvTiq/Ωi)n exp(−ω̂2

r /n2) and
neglected in (2.7). The inverse Laplace transform of φkr0(ω)= K(ω)φkr0(t = 0)
gives φkr0(t)= K(t)φkr0(0) where K(t) = (2πi)−1

∫
dω e−iωtK(ω). Using the pair

of poles ω = ± ωG + iγ for K(ω) which correspond to the minimum damping
rate, φkr0(t)= K(t)φkr0(0) is approximately written as φ(t)= φ(0) cos(ωGt) exp(γt).
Recall that K(t) describes the short-time behavior of the zonal-flow potential,
in which slower variations than the GAM oscillations are neglected. These slow
behaviors are described by the Rosenbluth–Hinton theory [1], in which an essential
role is played by trapped particles that are ignored in (2.3). Taking account of the
residual zonal flow in the collisionless long-time behavior, we can write

φkr0(t) = φkr0(∞) + [φkr0(0) − φkr0(∞)] cos(ωGt) exp(γt), (2.8)

where φkr0(∞)= φkr0(0)/(1 + 1.6q2/ε1/2) is the undamped component of the initial
zonal flow derived by Rosenbluth and Hinton [1]. When ω̂2

G ≡ (R0qωG/vTi)
2 � 1 and

τe ≡ Te/Ti are used, approximate expressions for ωG and γ are obtained as

ωG =
√

7 + 4τe
2

q

(
vTi

R0q

) [
1 +

2(23 + 16τe + 4τ2
e )

q2(7 + 4τe)2

]1/2

, (2.9)

γ = −
√

π

2
q2

(
vTi

R0q

) [
1 +

2(23/4 + 4τe + τ2
e )

q2(7/2 + 2τe)2

]−1 [
exp(−ω̂2

G)
{
ω̂4
G + (1 + 2τe)ω̂2

G

}

+
1
4

(
krvTiq

Ωi

)2

exp(−ω̂2
G/4)

{
ω̂6
G

64
+

(
1 +

3
8
τe

) (
ω̂4
G

8
+

3ω̂2
G

4

)} ]
. (2.10)

3. Numerical results and discussion
A time evolution of the zonal-flow potential obtained by the gyrokinetic-Vlasov
simulation [3] for ε= 0.1, τe = 1, q = 1.5 and krai = 0.131 is plotted by open circles
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Figure 1. Zonal-flow potential as a function of time. Here vti ≡ (Ti/mi)
1/2.

in Fig. 1. The analytical results from (2.8) are also plotted in Fig. 1, where a thin
solid curve is obtained by using (2.7) to numerically search solutions ω =ωG+ iγ of
1/K(ω) = 0while the approximate expressions for (ωG, γ) in (2.9) and (2.10) are used
to plot a thick solid curve. A good agreement between the analytical predictions
and the simulation results on the GAM frequencies and damping rates is verified. A
dotted curve in Fig. 1, which shows a significantly slower damping, is obtained by
neglecting the finite-orbit-width effect terms proportional to (krvTiq/Ωi)2 in (2.7).
The reason of the damping-rate enhancement by the finite orbit width is explained
as follows. When the ratio of the typical orbit width of passing ions to the radial
wavelength of the zonal flow increases, the radial magnetic drift of the perturbed
ion gyrocenter distribution strengthens the poloidal mode number coupling and
grows the oscillation component with the poloidal wave number doubled. Since
the parallel velocity required to resonate with the GAM is lowered, this higher
poloidal wave number component yields a significant population of resonant ions
and increases the resonance damping of the GAM.
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