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Abstract. The relativistic modified formula for the energy loss of the relativistic
electron beam due to binary electron–electron collisions is obtained. Another im-
portant energy loss mechanism, the excitation of Langmuir collective plasma oscil-
lation, is also treated within the relativistic framework. Then the relevant physics
parameters in the fast-ignitor scenario, including the continuous winded range,
the maximum penetration depth and the stopping time, have been calculated.
The results obtained are much better than those from non-relativistic cases and
even partially relativistic modified theories. Thus, we re-examine theoretically the
possibility of igniting hot spots in a super-compressed deuterium–tritium plasma.

The advent of the chirped-pulse amplification (CPA) technique, coupled with the
development of solid-state lasers capable of delivering ultra-short pulses, has opened
up the new field of ultra-high-intensity laser physics [1, 2]. Ultra-high-intensity
lasers can potentially be used in conjunction with conventional fusion lasers to
ignite inertial confinement fusion (ICF) [3] capsules with a total energy of a few
tens of kilojoules of laser light, and can possibly lead to high gain with as little as
100 kJ. The so-called fast-ignitor scenario (FIS) [4] proposed to ease the indirect
drive approach to ICF of a hollow pellet target containing deuterium–tritium (DT)
thermonuclear fuel has received considerable attention. In the FIS approach energy
deposition by a relativistic electron beam (REB) in hot plasma plays a key part.
The intense laser–target interaction may produce hot or super-hot plasma. So the
dynamic parameters of the plasma should be taken as being relativistic. Recently,
Deutsch et al. [5] have calculated analytically the REB interaction for a super-
compressed thermonuclear fuel and examined the possibility of igniting a hot spot
in the target. Unfortunately, there exist some mistakes in their calculations even if
some errors have been corrected in the corrigendum [6]. In their calculations, (3) is
an important expression in [5], which describes the basic process for the energy loss
due to binary electron–electron collisions. There are some mistakes and defects in
this expression, even if the authors of [5] had made corrections in [6], but it still ex-
ists as a mistake and a defect. First, the second term in the bracket of the equation
should be 0.125(τ/(τ + 1))2, while the revised one is just 0.125(τ/(τ + 1)). Second,
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the definition of the factor τmin according to [5] is -λe/λD, which is obtained in the
non-relativistic limit. In addition, in [5, (5)] two factors are missing, the Avogadro
number,NA, and the density of the DT target, e. Except for these revisions, we take
the plasma as a relativistic one and then study the energy deposition of REB in the
hot plasma. Though the intense laser–target interaction may produce a hot plasma,
some studies still just took the dynamic parameters of the plasma as the non-
relativistic ones, even treating the electrons as being non-relativistic particles [7–9].
In this letter, based on the relativistic dynamics we re-study the interaction

between the REB and the super-compressed hot DT core. There are two basic
processes for the energy loss due to the interactions of REB with a plasma [5,10]:
binary electron–electron collisions and the excitation of the Langmuir collective
plasma oscillation.
The energy loss of the incident electron as a result of interaction with the free

electron in the plasma may be calculated using Møller’s cross section [11],(
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β = v0/c and γ = (1 − β2)−1/2 are the Lorentz parameters of the incident electron,
me is the rest mass of the electron and v0 is the speed of the incident electron.
The incident electron total energy is E = γmec

2, the kinetic energy is E0 = (γ −
1)mec

2 and ε is the energy transfer in units of E0. Since the outgoing electron of
higher energy is by definition the primary electron, the maximum energy transfer
is εmax = 1

2 ; while in the plasma the minimum energy transfer should be εmin =
1
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frequency [12] for the hot plasma, kT is the plasma temperature, γ′ is the Lorentz
factor of the electron in the hot plasma and np is the plasma density. In the non-
relativistic limit, we can see ε

1/2
min is just equal to

-λe/λD, where -λe is the de Broglie
wavelength of the incident electron and λD is the Debye length of the plasma, which
is consistent with other previous works [5,10].
Therefore, due to hard collisions the average energy loss per atom of Z electrons

may be expressed as follows:
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Thus, using (2) we can easily obtain the rate of average energy loss per unit path
length x in a medium with np atoms per unit volume for the binary collisions:
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where Z = 1 for the hot super-compressed DT core and np is the plasma density.
In addition, to the energy loss due to the binary collisions one must add the

contribution from the excitation of the Langmuir collective plasma oscillation [13],
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Figure 1. The rate of energy loss per unit distance of the REB with 1 MeV energy in the DT
target at a density of 300 g cm−1 and a temperature in the range of 5–100 keV caused by
(a) collective excitation and (b) two-body collisions.

where λ′
D = [13 (〈v2

i 〉av/ω′2
p )]1/2 is the relativistic modified ‘Debye length’. 〈vi〉av is

the average speed of the electron in the plasma.
In the following, we calculate the rate of energy loss per unit distance of the

REB with 1 MeV energy interacting with the super-compressed DT target at a
density of 300 g cm−3 and a temperature in the range 5–100 keV. The results
are shown in Figs 1(a) and (b). With the increase of the plasma temperature, the
energy loss per unit distance caused by collective excitation gradually decreases
while that caused by the two-body collisions opposes it, but the total energy loss
almost stays unchanged at about 430 MeV cm−1. The reason may be as follows.
In a dense electron gas we know that for phenomena involving distances greater
than the ‘Debye length’, the system behaves collectively; for distance shorter than
this length, it may be treated as a collection of approximately free individual
particles. Here, the increase of the plasma temperature, as well as that of the
velocity of relativistic electrons, lead to a decrease of the plasma frequency ω′

p and
an increase of the ‘Debye length’. Thus, the increase of the ‘Debye length’ causes a
decrease in the number of electrons participating in the collective oscillation and an
increase of the number of electrons participating in the random thermal motion.
But the homeostasis process in the plasma makes the total energy loss almost
unchanged.
For a stopping target, by putting the stopping contributions (3) and (4) together,

we may calculate the continuous winded range

R =
∫

dx

dE
dE =
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with V = β2 and
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Here, the value of R describes the actual path length of the incident electron dur-
ing its passage through the DT target. The quasielastic and highly erratic motion
for the incident relativistic electrons make them experience multiple scattering on
the target. Such a process is essentially described by the square average deflection
per unit path length (Z = 1, A = 2) [14],
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where NA is the Avogadro number equal to 6.022 × 1023 mol−1; ρ, Z and A are the
density, atomic number and the atomic weight of the DT target, respectively.
In fact, we really need an efficient packing mechanism to wind the projectile

trajectories within a smaller domain in the compressed core. This winding process
is easily described by the maximum penetration depth l0. The simple relationship
between the continuous winded range (the stopping range) R and the maximum
penetration depth l0 is given by [15]

R = l0 +
1
2

l20
λ

+
1
2

l30
λ2

. (7)

In order to qualify the FIS as a coherent ignition scenario, a sufficiently short
stopping time

tstop =
1
c

∫ Emax

Emax/10

1 + E/mec
2

[(E/mec2)(E/mec2 + 2)]1/2

dE

dE/dx
(8)

is required.
In order to calculate the values of R, l0 and tstop, here for the super-compressed

DT core we take a typical value of the density as 300 g cm−3 and a temperature
of being 5 keV. Therefore, according to the expressions (5)–(8), for a 90% energy
loss of 1 MeV REB we can obtain R = 18.226 µm, l0 = 13.95 µm and tstop =
8.45 × 10−14 s. For comparison, we quote the relevant results given by [5, 6] as
follows: R = 42.66 µm, l0 = 11 µm, tstop = 1.6 × 10−13 s in [5] and R = 34.66 µm
in [6]. Obviously, having made a more careful relativistic treatment, our results are
much better than those given in [5,6]†.
We calculate the values of R and l0 for the energy range 0.5 < (MeV) < 1.5 of

the relativistic electrons with 90% energy loss, with a super-compressed DT target
density of 300 g cm−3 and a temperature of 5 keV. The results are shown in Fig. 2(a).

† In [5, 6] the formula for λ−1 is not cited correctly, when it is corrected according to
[14], the results should be: R =42.66 µm, l0 =25.24 µm, tstop =1.6 × 10−13 s in [5] and, R =
34.66 µm, l0 =22.07 µm in [6].
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Figure 2. (a) REB stopping range R (µm) and maximum penetration depth l0 (µm) in a
300 g cm−3 DT target at 5 keV temperature and 0.5 < E0 (MeV) < 1.5. (b) Corresponding
stopping time tstop.
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Figure 3. (a) R and l0 for 1 MeV REB passing through a DT target with density ranging
from 300 to 1000 g cm−3, at 5 keV temperature. (b) Corresponding stopping time tstop.

The corresponding stopping time tstop is shown in Fig. 2(b). From Fig. 2 we can see
the maximum penetration l0 is on a microns scale. One knows that the fuel ignition
requires the density radius of the hot DT spot to obey ρr > 0.3 g cm−2 [4, 16].
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For a DT target with a density of 300 g cm−3, if we take ρr ∼ 0.45 g cm−2, the
target radius r is about 15 µm. Our results show the maximum penetration to be
l0 = 13.95 µm, while the REB at 1 MeV suffers from an energy loss of 90%. Thus,
the REB can efficiently transfer their energy to the plasma of the DT core. The
corresponding stopping time tstop ∼ 10−14 s is short enough to ignite the target
effectively. These results exhibit that FIS is possible and hopeful.
On the other hand, in Fig. 3 we also investigated the target density dependence

of the above results for a 1 MeV REB and with the target density ranging from
300 to 1000 g cm−3, with a 5 keV temperature. From Fig. 3 we can see R, l0 and
tstop reduce drastically with increasing target density.
In conclusion, we have studied the REB energy deposition during passage

through a super-compressed DT core within the framework of relativistic theory.
The results are much better than those works that did not take relativistic effects
into consideration completely. We re-examine theoretically the possibility of ignit-
ing hot spots in a super-compressed DT target and the answer is that the FIS is
able to yield thermonuclear ignition in the target.
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