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Adaptive simulation of the subcritical flow past
a sphere
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School of Computer Science and Communication, KTH, SE-10044 Stockholm, Sweden

(Received 13 April 2005 and in revised form 20 January 2006)

Adaptive DNS/LES (direct numerical simulation/large-eddy simulation) is used to
compute the drag coefficient cD for the flow past a sphere at Reynolds number
Re = 104. Using less than 105 mesh points, cD is computed to an accuracy of a few
percent, corresponding to experimental precision, which is at least an order of magni-
tude cheaper than standard non-adaptive LES computations in the literature.
Adaptive DNS/LES is a General Galerkin G2 method for turbulent flow, where
a stabilized Galerkin finite element method is used to compute approximate solutions
to the Navier–Stokes equations, with the mesh being adaptively refined until a stop-
ping criterion is reached with respect to the error in a chosen output of interest, in this
paper cD . Both the stopping criterion and the mesh refinement strategy are based on a
posteriori error estimates, in the form of a space–time integral of residuals multiplied
by derivatives of the solution of an associated dual problem, linearized at the approx-
imate solution, and with data coupling to the output of interest. There is no filtering
of the equations, and thus no Reynolds stresses are introduced that need modelling.
The stabilization in the numerical method is acting as a simple turbulence model.

1. Introduction
We consider the flow of an incompressible fluid past a sphere at a high Reynolds

number. Characteristic of this flow is a laminar boundary layer that separates close
to the equator to form a turbulent wake of approximately the same length as the
diameter of the sphere. For very high Reynolds numbers the boundary layer undergoes
transition to turbulence leading to a delayed separation and a much smaller wake,
corresponding to a drastic decrease of the drag, the so-called drag crisis. In this paper
we consider the subcritical flow with laminar separation of the boundary layer.

The Navier–Stokes equations (NSE) seem to be able to model both laminar and
turbulent flow in a wide range of applications. The number of degrees of freedom
needed to represent all the small scales in the turbulent flow in a direct numerical
simulation (DNS) may be estimated to be of order Re3 in space–time. In many
applications of industrial importance the Reynolds number Re is larger than 106, and
thus full resolution of all physical scales is impossible using the computers of today.

Not only is DNS for high Reynolds numbers very expensive; even if we were able
to resolve all physical scales in a DNS we should not expect to be able to compute
a pointwise accurate solution. Theoretically, such an ‘exact solution’ could exist in
a computation completely free from noise and with zero numerical error, but the
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78 J. Hoffman

smallest perturbation in data, model, or numerics would result in a solution which
locally could differ significantly from this ‘exact solution’. In addition, the value of
such an ‘exact solution’ would be questionable from an application point of view,
where perturbations always are present.

On the other hand, both experiments and computations indicate that certain mean
values are less sensitive to perturbations than more local quantities. That is, in general
we expect a smaller variation in mean value output than in pointwise output. It seems
reasonable to aim for an accuracy in computations similar to the best possible
accuracy in experiments. For the turbulent flow over a sphere, mean value outputs
such as drag are experimentally determined to an accuracy of a few percent, and thus
we aim for a similar accuracy in computations.

The traditional approach to get around the problems of DNS is to use some sort of
turbulence modelling, where one seeks new equations satisfied by some average of the
solutions to the NSE. These new equations are constructed by averaging, or filtering,
NSE, introducing so-called Reynolds stresses, representing the influence of unresolved
scales on resolved scales. In a Reynolds-averaged Navier–Stokes (RANS) model the
filter corresponds to a global average or an ensemble average, whereas in a large eddy
simulation (LES) the average is local in space and time, see Sagaut (2001) for an
overview of LES. The Reynolds stresses are given in terms of the unfiltered velocity,
and thus needs to be modelled in terms of the filtered velocity in a subgrid model, or
turbulence model, which is referred to as the problem of closure. The closure problem
is a main unsolved problem of turbulence research today, with the existing turbulence
models being problem dependent and highly sensitive to the numerical method being
used to solve the averaged equations.

An alternative approach to filtering is to seek functions that satisfy the NSE only
in an approximate weak sense. Using stabilized Galerkin finite element methods, here
referred to as General Galerkin G2 methods, we can construct such solutions with
the corresponding NSE residuals being small in a weak norm. A G2 method is a
combination of a Galerkin method, ensuring the residual to be small in average, and
a weighted least-squares stabilization, corresponding to a certain strong control of
the residual.

For a G2 solution, one can derive a posteriori error estimates for the error in
a quantity of interest, or output. Such a posteriori error estimates take the form
of a space–time integral of a residual times a dual weight, where the dual weight
characterizes the sensitivity in a chosen output with respect computational errors.
Within the same framework it is possible to study the sensitivity in output error with
respect errors in data, but in this paper we focus on computational errors. The dual
weight is obtained from computational approximation of an associated dual problem
linearized at a G2 solution with data coupling to the chosen output. In particular,
the a posteriori error estimates both control the numerical error from the Galerkin
discretization in G2, and the modelling error from the stabilization in G2.

Based on the a posteriori error estimates we construct an algorithm for adaptive
mesh refinement with respect to the error in the chosen output. For turbulent flow
we also refer to this method as Adaptive DNS/LES, where part of the flow is being
resolved in a DNS and part of the flow is being left under-resolved in an LES, with
the stabilization in G2 acting as a type of turbulence model.

For an overview of adaptive finite element methods including references, we refer to
the survey articles by Eriksson et al. (1995), Becker & Rannacher (2001) and Giles &
Süli (2002). The extension of this framework to LES is investigated in Hoffman (2004).
The generalization to Adaptive DNS/LES is first presented in Hoffman & Johnson
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Adaptive simulation of the subcritical flow past a sphere 79

(2006) and Hoffman (2005), with applications to flow around a surface-mounted cube
and a square cylinder.

For the bluff body problems considered in Hoffman & Johnson (2006) and Hoffman
(2005), we find that using Adaptive DNS/LES we are able to compute mean value
output, such as drag, using of order 10–100 times fewer mesh points in space
than typical LES computations for the corresponding problems in the literature.
This is a dramatic cut of the computational cost, and it is of great importance to
further investigate the properties of Adaptive DNS/LES applied to basic benchmark
problems of turbulence.

In this paper we use Adaptive DNS/LES to compute drag for the subcritical flow
past a sphere at Re= 104, and again we find that Adaptive DNS/LES is significantly
cheaper than corresponding non-adaptive LES computations in the literature.

First we recall details of Adaptive DNS/LES as a computational method for
turbulence simulation, and then present results from computing the drag of a sphere
at Reynolds number 104.

2. The Navier–Stokes equations
The incompressible Navier–Stokes equations expressing conservation of momentum

and incompressibility of a unit-density Newtonian fluid with constant kinematic
viscosity ν > 0 enclosed in a volume Ω in �3 (where we assume that Ω is a
polygonal domain) with homogeneous Dirichlet boundary conditions take the form:
find û = (u, p) such that

u̇ + (u · ∇)u − ν∆u + ∇p = f in Ω × I,

∇ · u = 0 in Ω × I,

u = 0 on ∂Ω × I,

u(·, 0) = u0 in Ω,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.1)

where u(x, t) = (ui(x, t)) is the velocity vector and p(x, t) the pressure of the fluid
at (x, t), and f , u0, I = (0, T ), are a given driving force, initial data and time
interval, respectively. The quantity ν∆u − ∇p represents the total fluid force, and
may alternatively be expressed as

ν∆u − ∇p =div σ (u, p), (2.2)

where σ (u, p) = (σij (u, p)) is the stress tensor, with components σij (u, p) = 2νεij (u) −
pδij , composed of the stress deviatoric 2νεij (u) with zero trace and an isotropic
pressure: here εij (u) = (ui,j + uj,i)/2 is the strain tensor, with ui,j = ∂ui/∂xj , and δij

is the usual Kronecker delta, the indices i and j ranging from 1 to 3. We typically
assume that (2.1) is normalized so that the reference velocity and typical length scale
are both equal to one. The Reynolds number Re is then equal to ν−1.

3. Discretization: cG(1)cG(1)
The cG(1)cG(1) method is a General Galerkin G2 method, see Hoffman (2005),

using the continuous Galerkin method cG(1) in space and time. With cG(1) in time
the trial functions are continuous piecewise linear and the test functions piecewise
constant. cG(1) in space corresponds to both test functions and trial functions being
continuous piecewise linear. Let 0 = t0 < t1 < . . . < tN = T be a sequence of discrete time
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80 J. Hoffman

steps with associated time intervals In = (tn−1, tn] of length kn = tn − tn−1 and space–
time slabs Sn = Ω × In, and let Wn ⊂ H 1(Ω) be a finite element space consisting of
continuous piecewise linear functions on a mesh Tn = {K} of mesh size hn(x), with
Wn

w the functions v ∈ Wn satisfying the Dirichlet boundary condition v|∂Ω = w.

We seek Û = (U, P ), continuous piecewise linear in space and time, and the
cG(1)cG(1) method for the Navier–Stokes equations (2.1) with homogeneous Dirichlet
boundary conditions reads: for n= 1, . . . , N , find (Un, P n) ≡ (U(tn), P (tn)) with
Un ∈ V n

0 ≡ [Wn
0 ]3 and P n ∈ Wn, such that

((Un − Un−1)k−1
n + Ūn · ∇Ūn, v) + (2νε(Ūn), ε(v)) − (P n, ∇ · v)

+ (∇ · Ūn, q) + SDδ(Ūn, P n; v, q) = ( f , v) ∀v̂ = (v, q) ∈ V n
0 × Wn, (3.1)

where Ūn = 1
2
(Un + Un−1), with the stabilizing term

SDδ(Ūn, P n; v, q) ≡ (δ1(Ūn · ∇Ūn + ∇P n − f ), Ūn · ∇v + ∇q)+ (δ2∇ · Ūn, ∇ · v); (3.2)

δ1 = 1
2
(k−2

n + |U |2h−2
n )−1/2 in the convection-dominated case ν < Ūnhn and δ1 = κ1h

2
n

otherwise, δ2 = κ2hn if ν < Ū
n
hn and δ2 = κ2h

2
n otherwise, with κ1 and κ2 positive

constants of unit size (in this paper κ1 = κ2 = 1), and

(v, w) =
∑

K∈T\

∫
K

v · w dx,

(ε(v), ε(w)) =
3∑

i,j = 1

(εij (v), εij (w)).

⎫⎪⎬
⎪⎭ (3.3)

4. Computation of drag
Using partial integration, the mean value in time of the drag of a body may be

expressed as (Giles et al. 1997)

N(σ (û)) =
1

|I |

∫
I

(u̇+u ·∇u− f , Φ)− (p, ∇·Φ)+(2νε(u), ε(Φ))+(∇· u, Θ) dt, (4.1)

where Φ is a function defined in the fluid volume Ω , and is equal to a unit vector
in the direction of the flow on Γ0, the surface of the body in contact with the fluid,
and zero on the remaining part of the boundary of the fluid volume Γ1 = ∂Ω\Γ0. The
representation (4.1) is independent of Θ , and the particular extension of Φ away from
the boundary. Here û = (u, p) is a solution to (2.1) in the fluid volume Ω surrounding
the body (using suitable boundary conditions as specified below) defining the target
output N(σ (û)), with sufficient regularity for (4.1) to be well defined.

We compute an approximation of the drag N(σ (û)) from a cG(1)cG(1) solution
Û = (U, P ), using the formula

Nh(σ (Û)) =
1

|I |

∫
I

(U̇ + U · ∇U − f , Φ) − (P, ∇ · Φ)

+ (2νε(U), ε(Φ)) + (∇ · U, Θ) + SDδ(U, P ; Φ, Θ) dt, (4.2)

where now Φ and Θ are finite element functions (with, as before, Φ = φ on Γ0 and
Φ =0 on Γ1), and where U̇ = (Un − Un−1)/kn on In. We note the presence of the
stabilizing term SDδ in (4.2), compared to (4.1), which is added in order to obtain the
independence of Nh(σ (Û)) from the choice of (Φ, Θ), given by (3.1).

We define the drag coefficient cD as a global average of a normalized drag force on
the sphere from the flow, and we seek to approximate cD by c̄D , a normalized drag
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Adaptive simulation of the subcritical flow past a sphere 81

force averaged over a finite time interval I in fully developed flow, defined by

c̄D ≡ 1
1
2
U 2

∞A
× N(σ (û)), (4.3)

where U∞ =1 is the free-stream velocity, A= 0.25 × πD2 is the sphere section area
facing the mean flow, with D the diameter of the sphere, and N(σ (û)) is defined by
(4.1). In computations we approximate c̄D by c̄h

D , defined by

c̄h
D =

1
1
2
U 2

∞A
× Nh(σ (Û)), (4.4)

with Nh(σ (Û)) being defined by (4.2). Below we present an a posteriori error estimate
(5.2) for the error |N(σ (û)) − Nh(σ (Û))|. A estimate of the error |c̄D − c̄h

D| is obtained
by scaling (5.2).

5. Adaptive DNS/LES
Adaptive DNS/LES may be thought of as an algorithm for solving the minimization

problem: minimize the number of degrees of freedom, under the contraint that
|c̄D − c̄h

D| <T OL, where T OL is a given tolerance typically of the same size
as the experimental precision in cD . The a posteriori error estimate underlying
Adaptive DNS/LES is based on duality. We introduce the following dual problem:
find ϕ̂ = (ϕ, θ) with ϕ = Φ on Γ0 and ϕ = 0 on Γ1, such that

−ϕ̇ − (u · ∇)ϕ + ∇U · ϕ − ν∆ϕ + ∇θ = 0 in Ω × I,

∇ · ϕ = 0 in Ω × I,

ϕ(·, T ) = 0 in Ω,

⎫⎬
⎭ (5.1)

where (∇U · ϕ)j = (U),j · ϕ.
Replacing the exact dual solution ϕ̂ by a computed approximation ϕ̂h =(ϕh, θh),

we are led to the following a posteriori output error estimate, see Hoffman & Johnson
(2006) and Hoffman (2005), and assuming sufficient regularity of ϕ̂h:

|N(σ (û)) − Nh(σ (Û))| ≈
∣∣∣∣∣
∑

K∈Th

EK,h

∣∣∣∣∣ , (5.2)

where EK,h = eK
D,h + eK

M,h is an error indicator for element K in the mesh Th, and

eK
D,h =

1

|I |

∫
I

((|R1(U, P )|K + |R2(U, P )|K ) · (Chh
2|D2ϕh|K + Ckk|ϕ̇h|K )

+ ‖R3(U)‖K · (Chh
2‖D2θh‖K + Ckk‖θ̇h‖K )) dt, (5.3)

eK
M,h =

1

|I |

∫
I

SDδ(U, P ; ϕh, θh)K dt, (5.4)

where we may view eK
D,h as an error contribution from the Galerkin part of

the cG(1)cG(1) discretization, and eK
M,h a contribution from the stabilization in

cG(1)cG(1), on element K , and k and h are the time step and the local mesh
size, respectively. The residuals Ri are defined by

R1(U, P ) = U̇ + U · ∇U + ∇P − f − ν∆U,

R2(U, P ) = νD2(U),
R3(U, P ) = ∇ · U,

⎫⎬
⎭ (5.5)
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82 J. Hoffman

with

D2(U)(x, t) = max
y∈∂K

(hn(x))−1

∣∣∣∣
[
∂U
∂n

(y, t)

]∣∣∣∣ (5.6)

for x ∈ K , with [·] the jump across the element edge ∂K . D2 denotes second-order
spatial derivatives, and we write |w|K ≡ (‖w1‖K, ‖w2‖K, ‖w3‖K ), with ‖w‖K = (w, w)1/2K ,
and let the dot denote the scalar product in �3.

In the computations we drop the R2(U, P )-term since ν 	 h, and we use Ck = 1/2
and Ch = 1/8 as constant approximations of the interpolation constants in (5.2),
motivated by simple analysis on a reference element. Non-Dirichlet boundary
conditions, such as slip conditions at lateral boundaries and transparant outflow
conditions (see Hoffman 2005), introduce additional boundary terms in the a posteriori
error estimate (5.2). But since the dual solution for the problem in this paper is small
at such non-Dirichlet boundaries, we neglect the corresponding boundary terms in
(5.2).

The dual problem (5.1) is a linear convection–diffusion–reaction problem where
the convection acts backward in time and in the opposite direction to the exact
flow velocity u, which in computations is approximated by an approximate solution
U . The coefficient ∇U of the reaction term is locally large in turbulent regions,
and thus potentially generates rapid exponential growth. However, ∇U is fluctuating,
and the net effect of the reaction term in this paper turns out to generate slower
growth, as we learn from computing approximations of the dual solution. We had
the same experience when computing dual solutions related to mean value output in
other turbulent flow problems, see Hoffman & Johnson (2006) and Hoffman (2005),
where we also find that the dual solution is stable with respect to perturbations from
computational errors and linearization errors from linearizing at the approximate
convection velocity U instead of the exact velocity u.

6. Computational model
In this paper, we keep the space mesh Th and time step k constant in time, with

the time step being equal to the smallest element diameter in the space mesh, and
we use an algorithm for adaptive mesh refinement in space, based on the a posteriori
error estimate (5.2), of the form:

Algorithm 1 (Adaptive DNS/LES). Given an initial coarse computational space
mesh T0

h, start at k = 0, then do

(1) Compute an approximation of the primal problem using Tk
h.

(2) Compute an approximation of the dual problem using Tk
h.

(3) If |
∑

K∈Tk
h
Ek

K,h| <TOL then STOP, else:

(4) Refine a fraction of the elements in Tk
h with largest Ek

K,h → Tk+1
h .

(5) Set k = k + 1, then goto (1).

We consider the flow around a sphere at Reynolds number Re= 104, based on the
unit inflow velocity in the x1 streamwise direction and the sphere diameter D = 0.1. The
sphere is centred at (5.5D, 7.5D, 7.5D) in a channel of dimension 10D × 15D × 15D.
We use no-slip boundary conditions on the sphere, slip boundary conditions on the
lateral walls, and a transparent (or do nothing) outflow boundary condition, see
Hoffman (2005), at the end of the channel.
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Adaptive simulation of the subcritical flow past a sphere 83

Figure 1. Snapshot of the out-of-plane vorticity isosurfaces for the solution on the finest
computational mesh with 91 095 mesh points.
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Figure 2. c̄h
D with (—) and without (· · ·) the contribution from the stabilizing term in (4.2)

averaged over a time interval of length 25U∞/D plotted against log10 of the number of mesh
points in the corresponding computational mesh.

7. Computational results
We use Adaptive DNS/LES to compute approximations c̄h

D of the drag coefficient
cD from (4.4), on a tetrahedral computational mesh. We illustate the character of
the solution in figure 1, and in figure 2 we plot c̄h

D as we refine approximately 5%
of the elements in each iteration of the adaptive algorithm. Experimental reference
values for this problem are presented as cD ≈ 0.40 to an accuracy of a few percent,
see Schlichting (1955) and Constantinescu & Squires (2004), and in figure 2 we find
that when using less than 30 000 mesh points the approximation c̄h

D is within the
experimental tolerance.

In figure 3 we plot c̄h
D as a function of time for the solution on the finest compu-

tational mesh with 91 095 mesh points. Here we also plot approximations of the two
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Figure 3. Drag coefficient c̄h
D and transversal force coefficients c̄h

y and c̄h
z as functions of

time t .
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Figure 4. Pressure coefficient cp averaged over a time interval of length 25U∞/D, plotted
against an angle starting from zero at the upstream stagnation point.

other components of the normalized force c̄h
y and c̄h

z , and in figure 4 we plot the pres-
sure coefficient cp .

The adaptive algorithm is designed to compute the correct drag using a minimum
number of degrees of freedom. Starting from a coarse tetrahedral mesh with 6168
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(a) (b)

(c) (d )

Figure 5. Computational mesh without refinement (a), and after 5 (b), 10 (c), and
15 (d) adaptive mesh refinements.

nodes, the mesh is adaptively refined with respect to the error in cD (or rather c̄D). As
the mesh is refined it is modified to fit the surface of the sphere, and the computational
domain thus changes in each iteration of the adaptive algorithm, see figure 5. We find
that the adaptive algorithm converges to a c̄h

D corresponding to the exact geometry
of the sphere.

Since the adaptive algorithm is designed to minimize computational cost for the
computation of drag, the resulting computational mesh in figure 6 is optimized for
the approximation of drag. We note that the mesh refinement is concentrated in
boundary layers and the turbulent wake. In particular we note that the mesh is finest
at the boundary layer upstream separation, so as to be able to capture the correct
separation points.

Unneccessary refinement is avoided in parts of the domain not critical for the
approximation of drag. For example, the mesh downstream of the wake is kept
very coarse. If we were interested in an accurate approximation of the flow field
further downstream we would have to change the quantity of interest in the adaptive
algorithm.

The dual solution (or rather dervatives thereof) acts as a weight function for the
residual in the a posteriori error estimate underlying the mesh refinement criterion
for the adaptive algorithm. In figure 7 we plot snapshots of a dual solution for
the computation of drag, and the corresponding primal solution at which the dual
problem is linearized.
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Figure 6. Computational mesh after 15 mesh refinements.

Refinements Nodes c̄h
D c̄h

y c̄h
z St

15 91 095 0.41 0.0086 −0.025 0.20
14 71 814 0.38 −0.066 −0.051 0.20
13 53 322 0.36 −0.039 0.011 0.19
12 41 677 0.40 −0.030 0.037 0.17
11 32 450 0.37 0.029 0.025 0.18
10 26 190 0.39 −0.030 −0.029 0.15

Table 1. Mean value output averaged over a time interval of length 25U∞/D.

The adaptive algorithm is constructed for approximation of drag, but it may be
interesting also to measure other output from the resulting solutions. In table 1 we
display mean value output for a set of meshes. Using less than 30 000 nodes we
capture the experimental reference value cD ≈ 0.40, and for the finer meshes we also
obtain good approximations of the other force components, which are close to zero,
and the Strouhal number St ≈ 0.20. We note that the length of the time averaging
interval 25U∞/D is rather short, and on increasing the length we would expect even
more stable mean value output.

Compared to typical LES computations, see e.g. Constantinescu & Squires
(2004), with ad hoc mesh refinement, using 5.8 × 105 − 1.2 × 106 mesh points, adap-
tive DNS/LES is about a factor 10–40 times cheaper in terms of mesh points.
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(a)

(b)

(c)

(d)

Figure 7. The magnitude of primal velocity (a) and pressure (b), and the magnitude of dual
velocity (c) and pressure (d).
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8. Summary
In this paper we have considered the flow past a sphere at Re = 104. The drag was

computed using Adaptive DNS/LES, in which the computational mesh is refined
adaptively until the error in a specified output, in this paper drag, is less than a given
tolerance. The incompressible Navier–Stokes equations are solved using a stabilized
Galerkin finite element method. Both the stopping criterion and the mesh refinement
strategy are based on a posteriori error estimates, in the form of a space–time integral
of residuals multiplied by derivatives of the solution of an associated dual problem,
linearized at the approximate solution, and with data coupling to the output of
interest. There is no filtering of the equations, and thus no Reynolds stresses are
introduced. Instead the stabilization in the numerical method is acting as a simple
turbulence model.

Using less than 105 mesh points, cD is computed to an accuracy of a few percent,
corresponding to experimental precision, which is at least an order of magnitude
cheaper than standard non-adaptive LES computations in the literature. In addition,
other output, such as transversal force components and Strouhal number, are also
captured to experimental accuracy using Adaptive DNS/LES with respect to drag.
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