
Propagation characteristics of Hermite-cosh-Gaussian laser
beam in a rippled density plasmas

S. KAUR,1 M. KAUR,1 R. KAUR,2 AND T.S. GILL1

1Department of Physics, Guru Nanak Dev University, Amritsar -143005, India
2Department of Physics, D. A. V. College, Jalandhar-144008, India

(RECEIVED 27 July 2016; ACCEPTED 12 November 2016)

Abstract

In the present research work, the authors have investigated the self-focusing and defocusing of Hermite-cosh-Gaussian
laser (HChG) beam in an inhomogeneous rippled density plasmas. By taking the relativistic non-linearity into account,
an equation for envelope is set up and solved using Wentzel–Kramers–Brillouin and the paraxial ray approximation.
An ordinary non-linear differential equation governing the beam width parameter as a function of propagation distance
is set up for different mode structures of the beam. Further, a numerical study of this differential equation is carried for
suitable set of plasma and laser parameters. The beam undergoes periodic self-focusing/defocusing due to relativistic
non-linearity. We also report the comparison between self-focusing/defocusing of HChG beam in the absence and
presence of density ripple. Presence of ripple does not only leads to substantial increase in self-focusing length, but
also results in oscillatory character with decreasing f. In a relativistic case, strong oscillatory self-focusing and
defocusing is observed. Further, self-focusing is enhanced with increased value of decentered parameter.
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1. INTRODUCTION

Self focusing of laser beam at high laser intensities is an
important nonlinear phenomenon from last three decades
due to its technological application such as high harmonic
generation (Ganeev et al., 2015), attosecond pulse generation
(Ma et al., 2015), generation of x- rays (Arora et al., 2014),
inertial confinement fusion (Michel et al., 2015) and charged
particle acceleration (Lotov et al., 2014). For practical
realization of these applications, it is desirable that high-
power laser beam should propagate over long distance
with high precession to directionality. Among the funda-
mental processes, self-focusing of laser beam is a genuine-
ly non-linear phenomenon, which has become important
and active area of research during the last five decades.
Self-focusing is counterbalanced by the tendency of the
beam to spread because of diffraction. In the absence
of non-linearity, the beam will spread substantially in a
Rayleigh length Rd(≈k0a20), where k0 is the wave number,
and a0 is the spot size of the laser beam.
If the peak power is high enough, then a balance between

self-focusing and diffraction can provide a condition for laser

beam to propagate over several Rayleigh lengths. The basic
physical mechanism responsible for self-focusing is non-line-
arity of themedia such as plasmas, liquids, dielectric, semicon-
ductors (Luther et al., 1994; Boyd et al., 2009; Rubenchik
et al., 2009), which originates in its interaction with the laser
field. For example, when a Gaussian laser beam propagates
in a plasma, then the refractive index becomes larger on the
axis comparedwith the other parts of thewavefront due tomax-
imum intensity on the axis. As a result, the wavefront of the
beam creates refractive index profile across its own intensity
profile, develops curvature, and focuses on its own. An intense
laser or electromagnetic beam is capable of introducing
thermal (Litvak, 1966), ponderomotive and relativistic non-
linearity (Hora, 1975) during its propagation in the plasma.
If the frequencyof the laser beamexceeds the natural frequency
of electron oscillations in a plasma, then the ponderomotive
force comes into play. The ponderomotive force pushes the
electron from axial region, that is, from the high-intensity
region to the low-intensity region, thus reducing the local
electron density, which further focuses the laser beam.
Extensive research work has been carried out on relativis-

tic self-focusing of the laser beam (Singh & Walia, 2010;
Irani et al., 2012; Sharma, 2015). The phenomenon appears
at the intensities when electron mass experience relativistic
changes. With rapid evolution of ultra-short and ultra-intense
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compact lasers using the chirped pulse amplification tech-
niques (Ren et al., 2007), the physics of the laser–plasma in-
teraction in relativistic regimes has been identified as an
emerging area in the recent years (Umstadter, 2003). For
ultra-fast laser pulses, the drift velocity of the electrons in
the plasma can be comparable with the velocity of light, caus-
ing significant increase in the mass of the electrons and hence
the dielectric constant of the plasma. The non-linearity in the
dielectric constant arises on account of relativistic variation
of mass for arbitrary magnitude of intensity. The relativistic
self-focusing has been investigated in the relativistic regime
theoretically and experimentally (Asthana et al., 1994; Main-
fray, 1995).
Beyond the focusing point, the nonlinear refraction starts

weakening with the result that laser spot size increases.
This is followed by oscillating self-focusing/de-focusing.
Suk et al. (2001) proposed a scheme for electron trapping
by making use of density transition. Gupta et al. (2007) ap-
plied this concept by introducing a slowly increasing density
ramp leading to the enhancement of self-focusing. Later on
Bonabi et al. (2009) used proper plasma density ramp
profile to show significant improvement of the relativistic
self-focusing.
However, there is another way to increase the self-focusing

effect by introducing density ripple in the plasma. Different
lasers are used to create density ripples in the plasma. Lin
et al. (2006) used longitudinal spatial structure using laser
matching with light modulator to achieve arbitrary plasma
structures. Kuo et al. (2007) reported enhancement of relativ-
istic harmonic generation by using a preformed periodic
plasma waveguide. Resonant dependence of harmonic inten-
sity on the plasma density and density modulation parameters
was observed. Kaur and Sharma (2009) studied numerically
the non-linear propagation of intense short Gaussian laser
beam in a plasma containing large amplitude density
ripple. Self-focusing due to relativistic and ponderomotive
effect is undergoes significant enhancement in the region
of high plasma density. Liu & Tripathi (2008) investigated
the third-harmonic generation of a short pulse laser in a
plasma density ripple. It was reported that the energy conver-
sion efficiency scaled as the square of the plasma density and
square of the depth of density ripple.
The earlier investigation on self-focusing has been con-

fined to cylindrical symmetric Gaussian laser beam. The
propagation of Gaussian beam (Wang & Zhou, 2011),
Hermite–Gaussian beam (Takale et al., 2009; Kant et al.,
2012), cosh-Gaussian beam (Patil et al., 2009, 2010, 2012;
Patil & Takale, 2013; Nanda & Kant, 2014), Hermite-cosh-
Gaussian (HChG) beam (Patil et al., 2007), etc. are recently
studied by researchers due to its wide ranging applications.
Saini & Gill (2006) studied the non-linear self-focusing
and self-phase modulation of elliptic Gaussian laser beam
in collisionless magnetoplasma with the help of variational
approach. They discussed the effect of two beam width pa-
rameters along x- and y-directions on the cross-focusing of
the beam. The focusing of one beam results in defocusing

of another. When we increase the magnetic field, enhanced
oscillating self-focusing with increased intensity is observed.

Purohit et al. (2016) numerically investigate the effect of
relativistic–ponderomotive non-linearity and decentered pa-
rameter on the propagation of two cosh-Gaussian beams in
collision less plasma. The decentered parameter plays a cru-
cial role to enhance the focusing of cosh and HChG beams in
a non-linear medium. Habibi and Ghamar (2015) studied
strong relativistic self-focusing of cosh-Gaussian beam through
dense plasmas of density ramp profile by using higher-order
paraxial approximation.Theperiodic self-focusing/defocusing
of cosh-Gaussian beam due to relativistic–ponderomotive
non-linearity in a ripple density plasma has been observed
by Aggarwal et al. (2014). Singh et al. (2013) explored
that by the beating of two cosh-Gaussian laser beam in
a rippled density, terahertz radiations are generated. They
have discussed that by choosing appropriate decentered pa-
rameter, terahertz radiations can be focused at a specific po-
sition. The self focusing of cosh-Gaussian beams in a plasma
with weakly relativistic and ponderomotive nonlinearity is
studied by Gill et al. (2011) where they have discussed
self phase modulation, self trapping of the cosh-Gaussian
beams and impact of decentered parameter b on focusing
of the laser beam has been studied. They found that oscilla-
tory self-focusing takes place for a higher value of decentered
parameter b= 1 and sharp self-focusing exhibits for b= 2.

Recently, Nanda and Nitikant (2014) studied that plasma
density ramp effects the self focusing of HChG beams. They
have discussed that decentered parameter is responsible for en-
hanced relativistic self focusing of HChG beams. Nanda et al.
(2013a, b) studied the strong self-focusing of HChG beam in
magnetoplasma of ramp density profile. The propagation prop-
erties of HChG beams in semiconductors for first three mode
indices have been investigated analytically by Patil et al.
(2008a, b, c). The focusing ofHChG laser beams in amagneto-
plasma with ponderomotive nonlinearity is studied by Patil et
al. (2010). They demonstrated that additional self focusing is
obtained for higher decentered parameter. Similarly mode
index also affects the focusing of the laser beams.

In this paper, we present an investigation of self-focusing
of HChG laser beam in rippled density plasmas taking into
account of relativistic nonlinearity. HChG beam is one of
the solutions of paraxial wave equation and it can be obtained
in the laboratory by the superposition of two decentered
Hermite–Gaussian beams. Further, HChG can possess high
power in comparison with that of a Gaussian laser beam.
Moreover, the self-focusing phenomenon of such beams is
very sensitive to the decentered parameter b and different
mode indices. Decentered parameter plays a crucial role in
propagation characteristics of these beams. The capability
of fabricating gas/plasma density structure is important for
the development of plasma devices for high field applica-
tions. As inferred from the recent experiments, density rip-
ples have been used to achieve phase-matched harmonic
generation from plasmas. Non-linear parabolic partial differ-
ential equation governing the evolution of complex envelope
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in slowly varying approximation is solved using paraxial ap-
proximation in a periodically modulated density profile. The
present work is valid for paraxial approximation, because the
irradiance of the HChG beams depends upon mode indices
and decentered parameter. For small values of decentered pa-
rameter, (m+ 1) lobes are formed in the intensity profile. For
m= 0, intensity of the beam is maximum on the axis and for
m= 2, intensity profile contains two decentered lobes and
one centred lob on the axis. But in case of m= 1, the
intensity is minimum on axis and maximum on the decen-
tered positions. For m= 1 and 2, paraxial ray theory is
only approximate one. Still, the paraxial ray theory is used
in a number of investigation because of its mathematical sim-
plicity Nanda and Nitikant (2014) & Patil et al. (2008a, b, c).
The paper is as follows. in Section 2 self-focusing and defocus-
ing of HChG beams are studied analytically. In this case, the
wave equation for the beam width parameter is solved
numerically for the relevant parameter and in Section 3, we dis-
cuss the results followed by conclusion.

2. SELF-FOCUSING AND DEFOCUSING OF
THE BEAM

Let the equilibrium electron density n0 be sinusoidal,
n= n0(1+ α2cos qz), where n0 is the maximum electron
density and α2= n2/n0 is the depth of density modulation
and q is the ripple wave number. A laser beam launched
into the plasma, which propagates through the plasma along ẑ,

E = A r, z( )ei ωt−kz( ), (1)

where k = εrel( )1/2 (ω/c), is in the absence of density transition
and k = ε z( )( )1/2 (ω/c), is in the presence of density transition.
The propagation of field amplitude of HChG laser beam in

a plasma is given by

E r, z( ) = E0

f z( ) Hm

��
2

√
r

r0 f z( )
( )[ ]

eb
2/4 e− [r/r0 f ]+[b/2]( )2 + e− [r/r0f ]−[b/2]( )2{ }

,

(2)

where mode index of the Hermite polynomial Hm is given by
m, maximum amplitude of HChG beam for central position
at r= z= 0 is E0, the initial spot size of the laser beam is
r0, decentred parameter is b and dimensionless beam width
parameter of the laser beam is f(z).
The general wave equation of laser beam propagating is

written as,

∇2 E − ω2

c2
εE +∇

E ·∇ ε( )
ε

( )
= 0. (3)

For 1/k2
( )

∇2 ln ε( ) ≪ 1, we get

∂2E
∂z2

+ ∂2E
∂r2

+ 1
r

∂E
∂r

+ ε
ω2

c2
E = 0. (4)

The solution of this equation is given by (1). Propagation

of laser beam through plasmas causes longitudinal oscilla-
tory velocity to electrons given by v= eE/m0 ωc, where
m0, ω, and e are the rest mass of electrons, angular fre-
quency of incident beam, and charge on electron; and c
is the speed of light in vacuum, γ = �������������

1++αEE∗√
de-

pends upon laser intensity with α relativistic factor given
by α = e2/m2

0 ω
2c2. The effective permittivity of the

plasma is given by (Sodha et al. 1976),

ε = ε0 + φ(EE∗),

where ε0 = 1− (ω2
p/ω

2) is the linear part, φ is non-linear
part of dielectric constant and ωp = 4πn0e2/m0

( )1/2
is the

equilibrium plasma frequency. Here, we are considering
only the relativistic mass of the electrons, me=m0γ. In
the absence of density transition, the intensity-dependent
non-linear part of dielectric constant is given by,

φ EE∗( ) = ω2
p0

ω2

( )
1− 1

1+ αEE∗( )1/2
[ ]

. (5)

Now, in the presence of density ripple n= n0(1+ α2 cos qz) the
dielectric constant of the plasma is represented as

ε(z) = 1− ω2
p0

γω2
+ ω2

p0

γω2
α2 cos qz

( )
.

Non-linear part is given by

φ EE∗( ) = ω2
p0

γω2
+ ω2

p0

γω2
α2 cos qz

[ ]
1− 1

1+ αEE∗( )1/2
[ ]

. (6)

For nearly spherical wave front, the complex amplitude A(r, z)
may be expressed as

A r, z( ) = A0 r, z( )e−ik z( )S r,z( ), (7)

where A0 and S are the real functions of r and z and eikonal S is
given by

S = r2

2
β z( ) + φ z( ), (8)

where β(z) can be expressed as (1/f )(df/dz) and it represents
the curvature of the wave front. Now substituting the values
of Eq. (1) and (7) in Eq. (4) and neglecting ∂2 A/∂z2, we get
a complex differential equation with real and imaginary parts.
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In the presence of density ripple, the real part is given by

−2
∂S
∂z

− Sω2α2q sin qz
c2k2

ω2
p0

γω2
− zSω4α22q

2 sin2 qz
2c4k4

ω2
p0

γω2

( )2

− zω2α2q sin qz
c2k2

ω2
p0

γω2

( )
∂S
∂z

( )
zω2α2q sin qz

c2k2
ω2
p0

γω2

( )

− z2ω4α22q
2 sin2 qz

4c4k4
ω2
p0

γω2

( )2

+ 1

2A2
0k

2

∂2A2
0

∂r2
− ∂S

∂r

( )2

+ 1

2rA2
0k

2

∂A2
0

∂r
− 1

4A2
0k

2

∂A2
0

∂r

( )2

= 0

(9)

and imaginary part is given by,

− 1

A2
0

∂A2
0

∂z
− 2π2zα2q sin qz

λ2A2
0k

2

∂A2
0

∂z
− 4π2α2q sin qz

λ2k2
λ2

γλ2p

+ 4π4zα22q
2 sin2 qz

λ4k4
λ2

γλ2p

( )2

− 2zπ2α2q2 cos qz

λ2k2
λ2

γλ2p

− 1

A2
0

∂A2
0

∂r
∂S
∂r

− ∂2S
∂r2

− 1
r

∂S
∂r

= 0.

(10)

Substituting A2
0 as the solution of Eqs. (9) and (10) is given by

A2
0 =

E2
0

f 2 z( ) Hm

��
2

√
r

r0 f

( )2[ ]
eb

2/2

e−2 [r/r0 f (z)]+[b/2]( )2 − e−2 [r/r0 f z( )]−[b/2]( )2 + 2e− [2r2/r20 f 2(z)]+[b2/2]( ){ }
.

(11)

Using the values of Eqs. (8) and (11) inEq. (9),we get the equa-
tion governing the evolution of beam width parameter. In the
absence of ripple density, the beam width reduces to that of
Eqs (11b), (12b), (13b) (Nanda and Nitikant, 2014) for the
case ofm= 0 andm = 1 & 2. In the presence of ripple density,
for mode indicesm= 0, the equation of beamwidth parameter
is given by, where q′ = qRd, ξ= z/Rd is the normalized propa-
gation distance, Rd is the diffraction length.

1+ ξα2 q′ sin q′ξ
( )(ω2

p0/γω
2)

2 1− ω2
p0/γω

2
[ ]

− ω2
p0/γω

2
[ ]

α2 cos q′ξ
( )( )

⎡
⎣

⎤
⎦ d2f

dξ2

+ 1+ ξα2 q′ sin q′ξ
( )[ω2

p0/γω
2]

2 1− ω2
p0/γω

2
[ ]

− ω2
p0/γω

2
[ ]

α2 cos q′ξ
( )( )

⎡
⎣

⎤
⎦

×
α2 q′ sin q′ξ

( ) [ω2
p0/γω

2] ∂f /∂ξ( )
2 1− ω2

p0/γω
2

[ ]
− ω2

p0/γω
2

[ ]
α2 cos q′ξ

( )( )
⎛
⎝

⎞
⎠

− ξα2 q′ sin q′ξ
( )[ω2

p0/γω
2]

2 1− ω2
p0/γω

2
[ ]

− ω2
p0/γω

2
[ ]

α2 cos q′ξ
( )( ) 1

f

df

dξ

( )2

− 4− 4b2
( )

f 3
+ 4αE2

0

f 3
ω2
p0

ω2
+ ω2

p0

ω2
α2 cos q′ξ

( )( )
ωr0
c

( )2

× 1+ 4αE2
0

f 2

( )−3/2

eb
2/2 = 0.

(12a)

In our earlier investigation, we have studied the self-focusing
for mode indicesm= 0. Moreover, in the present investigation
the differential equation 12(a) governing the evolution of beam
width parameter is different from equation (12) of Kaur and
Kaur (2016). This paperwas partial extension ofNanda andNi-
tikant (2014) wherewe have introduced density ripple. Further,
Eq. (12) agrees with those of Nanda and Nitikant (2014) in the
absence of density ripple. Equation (12) is approximately true,
as the two terms written below were missing in Nanda and Ni-
tikant (2014). In the present investigation, we have taken all the
terms contained in the eikonal s, which are appearing in Equa-
tion 12(a) and we have taken care of both the terms in beam
width parameter equation, that is,

1+ ξα2 q′ sin q′ξ
( ) ω2

p0

γω2
/2 1− ω2

p0

γω2
− ω2

p0

γω2
α2 cos q′ξ

( )( )( )[ ]

α2 q′ sin q′ξ
( ) ω2

p0

γω2

∂f
∂ξ

( )
/2 1− ω2

p0

γω2
− ω2

p0

γω2
α2 cos q′ξ

( )( )( )
⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦.

For mode indices m= 1, the equation of beam width param-
eter can be written as

1+
ξα2 q′ sin q′ξ

( )
ω2
p0/γω

2
[ ]

2 1− ω2
p0/γω

2
( )

− ω2
p0/γω

2
( )

α2 cos q′ξ
( )( )

⎡
⎣

⎤
⎦

α2 q′ sin q′ξ
( )

ω2
p0/γω

2
[ ]

∂f /∂ξ
( )

2 1− ω2
p0/γω

2
( )

− ω2
p0/γω

2
( )

α2 cos q′ξ
( )( )

⎛
⎝

⎞
⎠

−
ξα2 q′ sin q′ξ

( )
ω2
p0/γω

2
[ ]

2 1− ω2
p0/γω

2
[ ]

− ω2
p0/γω

2
[ ]

α2 cos q′ξ
( )( ) 1

f

df

dξ

( )2

− 4− 4b2
( )

f 3
− 8αE2

0

f 3
ω2
p0

ω2
+ ω2

p0

ω2
α2 cos q′ξ

( )( )
ωr0
c

( )2

× 2− b2
( )

eb
2/2 = 0.

(12b)

For mode indices m= 2

1+
ξα2 q′ sin q′ξ

( )
ω2
p0/γω

2
[ ]

2 1− ω2
p0/γω

2
[ ]

− ω2
p0/γω

2
[ ]

α2 cos q′ξ
( )( )

⎡
⎣

⎤
⎦ d2f

dξ2

+ 1+
ξα2 q′ sin q′ξ

( )
ω2
p0/γω

2
[ ]

2 1− ω2
p0/γω

2
[ ]

− ω2
p0/γω

2
[ ]

α2 cos q′ξ
( )( )

⎡
⎣

⎤
⎦

α2 q′ sin q′ξ
( )

ω2
p0/γω

2
[ ]

∂f /∂ξ
( )

2 1− ω2
p0/γω

2
[ ]

− ω2
p0/γω

2
[ ]

α2 cos q′ξ
( )( )

⎛
⎝

⎞
⎠

−
ξα2 q′ sin q′ξ

( )
ω2
p0/γω

2
[ ]

2 1− ω2
p0/γω

2
[ ]

− ω2
p0/γω

2
[ ]

α2 cos q′ξ
( )( )

1
f

df

dξ

( )2

− 4− 4b2
( )

f 3
+ 16αE2

0

f 3
ω2
p0

ω2
+ ω2

p0

ω2
α2cos q′ξ

( )( )

ωr0
c

( )2
1+ 16αE2

0

f 2

( )−3/2

eb
2/2 5− 2b2

( ) = 0, (12c)
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3. RESULTS AND DISCUSSION

In this section, we will study the self-focusing and defocus-
ing of HChG beams in plasma with density transition for
mode indices m= 0, 1, and 2. Equations (12a)–(12c) are
the fundamental second-order differential equations for first
three mode indices. These equations governing the self-
focusing/defocusing of HChG beam in a plasma with den-
sity transitions. To analyse these equations numerically, we
apply necessary and sufficient initial boundary conditions
f= 1 and df/dξ= 0 at ξ= 0. There are several terms in
Eqs. (12a)–(12c). Analytical solutions of these equations
are not possible. We therefore, seek numerical computational
techniques to study the beam dynamics. Equations (12b) and
(12c) represent evolution of beam width parameter as a func-
tion of dimensionless distance of propagation respectively
for mode index m= 1 and 2. It is clear that Eq. (12a) is a
non-linear ordinary differential equation, in which left-hand
side contains several parameters such as plasma density, γ
relativistic factor, q′ relative wave number, α2 as depth of
density modulation, b as decentered parameter as well as
intensity parameter of incident laser beam. Each of these
physical entities contributes to the dynamics of beam
width parameter for a given mode structure. With this in
mind, we have carried out numerical simulation for
various mode structure and beam width parameter with fol-
lowing choice of laser and plasma parameters (Lin et al.,
2006), r0ω/c = 100, ω2

p/ω
2 = 0.02, αE2

0 = 0.1, α2=
0.2, q′ = 30, 65, and b= 0, 0.5, 0.9. Figure 1 exhibits the
graphs of beam width parameter as a function of dimension-
less distance of propagation both, in the presence of ripple as
well as in absence of ripple when mode parameter is m= 0.
In the absence of ripple, oscillatory self-focusing is observed.
Our equation reduces to those of Nanda and Nitikant (2014)
Eqs. 11(b), 12(b), 13(b) and our results agrees with those
obtained in the upper mentioned reference. However, with

the presence of density ripple as shown by dotted curve
(q′ = 65) leads to enhanced self-focusing, but oscillatory
character is destroyed due to the appearance of n0α2 cos qz.
When ripple is introduced the solution of Eqs. 12(a)–(c) as
exhibited in figure, focusing is substantially enhanced lead-
ing to increase in the intensity in the focused zone. Further,
there is increase in distance of propagation to the extent of
two Rayleigh length. As observed, the initial changes are
small; however, the introduction of density ripple leads
rapid oscillatory and strong self-focusing. However, no fur-
ther significant distance of propagation is observed as
strong defocusing results set in beyond ξ= 0.9.
In Figure 2, Eq. (12b) is solved numerically for relevant

set of parameters mentioned above and it is pertinent to
mention that for m= 1 strong defocusing is observed in
all cases of intensity, ripple, and other parameter. For
small values of decentered parameter, the beam intensity
is minimum on the axis as compare to off-axis. Thus, the
diffraction effect dominates over focusing term due to
which beam shows steady defocusing in the plasma. As
the decentered parameter increases, the self-focusing term
dominates that leads to focusing of the beam in the
plasma. However, a slight variation is observed when
ripple is considered (dotted line). The defocusing observed
is quite similar to the one observed in case of Nanda and Ni-
tikant (2014). Figure 3 displays the self-focusing of beam
width parameter f versus ξ for mode indices m= 2. It is no-
ticed that the behavior is quite similar to the case of m= 0,
Eq. 12(a). Further, it may be noted that the distance of prop-
agation is substantially enhanced with strong oscillatory
self-focusing. When m= 0 case is considered, ξ= 0.9 was
obtained. However, for mode m= 2, self-focusing distance
increases to nearly two times. This contrast the case of
Nanda and Nitikant (2014) where ξ= 0.003 is achieved
with density transition. In the present investigation, density
ripple yields superior propagation characteristics.

Fig. 1. Variation of beam width parameter ( f ) with normalized distance of
propagation (ξ) for m= 0 with density ripple (dotted line) and without
density ripple (solid line). The other parameters are ω2

p/ω
2 = 0.02, α2= 0.2,

αE2
0 = 0.1, normalized ripple wave number q′ = 65, b= 0.5, ωr0/c= 100.

Fig. 2. Variation of beam width parameter ( f ) with normalized distance of
propagation (ξ) for m= 1 with ripple (dotted line) and without ripple (solid
line). The other parameters are ω2

p/ω
2 = 0.02, α2= 0.2, αE2

0 = 0.1, normal-
ized ripple wave number q′ = 30, b= 0.5 and ωr0/c= 100.
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Figure 4 represents the variation for the relativistic case.
Earlier investigations reported above were limited to case
when αE2

0 = 0.1 was considered, which is clearly a non-rel-
ativistic case of self-focusing. However, we consider relativ-
istic non-linearity by taking αE2

0 = 1.0 as observed in
Figure 4. Strong oscillatory self-focusing is observed upto
ξ= 0.8 when density ripple is considered (dotted line).
This is further accompanied by oscillatory defocusing. How-
ever, oscillatory self-focusing is observed in the absence of
ripple and the propagation of several Rayleigh lengths is ob-
tained. To highlight the role of decentered parameter in rela-
tivistic case, we have plotted f as a function of ξ for three
different values of decentered parameter in Figure 5. Oscilla-
tory self-focusing is observed in all the three cases (b= 0
dotted, b= 0.5 semi-dotted, b= 0.9 solid line). However,

when decentered parameter b= 0, we get least focusing.
As decentered parameter is increased, self-focusing is en-
hanced. Thus role of increment of decentered parameter in
the presence of density ripple (q′ = 30) not only increase
the self-focusing, but also enhances the distance of propaga-
tion to several Rayleigh lengths. The effect of decentered pa-
rameter on relativistic self-focusing of high-intensity HChG
laser beam has been investigated by Nanda et al. (2013a, b)
and reported the occurrence of strong self-focusing at
ξ ≈ 1.02. In our case, we found that with the introduction
of density ripple in the plasma, strong self-focusing of
beam occurs earlier at lower values of distance of propaga-
tion (ξ≈ 0.1). In Figure 6, we consider the mode m= 2 in
relativistic case αE2

0 = 1
( )

for q′ = 65. We seek the effect
of decentered parameter (b= 0 dotted, b= 0.5 semi-dotted,
b= 0.9 solid line) on f beam width parameter. Surprisingly,
we obtain contrasting results to the case of m= 0. Here for
m= 2, we observe oscillatory strong defocusing with ξ on
increasing decentered parameter b. Nanda et al. (2013a, b)

Fig. 3. Variation of beam width parameter ( f ) with normalized distance of
propagation (ξ) for m= 2 with ripple (dotted line) and without ripple (solid
line). The other parameters are ω2

p/ω
2 = 0.02, α2= 0.2, αE2

0 = 0.1, normal-
ized ripple wave number q′ = 65, b= 0.5, ωr0/c= 100.

Fig. 4. Variation of beam width parameter ( f ) with normalized distance of
propagation (ξ) for m= 2 with density ripple (dotted line) and
without density ripple (solid line) for relativistic case. The other parameters
are ω2

p/ω
2 = 0.02, α2= 0.2, αE2

0 = 1, normalized ripple wave number q′ =
65, b= 0.5, ωr0/c= 100.

Fig. 5. Variation of beam width parameter ( f ) with normalized distance of
propagation (ξ) for m= 0 with density ripple in relativistic case for
different values of decentered parameter b= 0, 0.5, 0.9. The other parame-
ters are ω2

p/ω
2 = 0.02, α2= 0.2, αE2

0 = 1, q′ = 30, and ωr0/c= 100.

Fig. 6. Variation of beam width parameter ( f ) with normalized distance of
propagation (ξ) for m= 2 with density ripple in relativistic case for
different values of decentered par b= 0, 0.5, 0.9. The other parameters are
ω2
p/ω

2 = 0.02, α2= 0.2, αE2
0 = 1, q′ = 65, and ωr0/c= 100.
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reported that with the increase in decentered parameter, di-
vergence terms dominates due to which weak focusing is ob-
served at ξ= 1.02 for b= 1.642. In the present work, we
observed that for small values of decentered parameter, the
focusing term dominates over diffraction term and strong
self-focusing is observed at ξ= 0.08 for b= 0.9. In last,
we have observed the effect of ripple wave number on the
propagation characteristics of the laser beam for mode
index (m= 2) (Figure 7). For this purpose, we have plotted
f (ξ) as a function of three values of ripple wave number q′

viz. dotted (red) for q′ = 30, dotted for q′ = 50 semi-dotted
for q′ = 65 solid line. Significant enhancement of self-focus-
ing and propagation is achieved on increasing the ripple wave
number. Similar results are obtained when relativistic case is
considered for m= 2 mode structure. Thus self-focusing/
defocusing of HChG laser beam in rippled density plasma
can be controlled by choosing the appropriate mode indices,
decentered parameter and ripple wave number. Out of these,
the decentered parameter and ripple number are responsible
for the focusing of the beam.

4. CONCLUSION

In present research work, we have studied self-focusing
of HChG laser beam in a rippled density plasmas
for mode index m= 0, 1 and m= 2. The other parameters
are r0ω/c = 100, ω2

p/ω
2 = 0.02, αE2

0 = 0.1, α2= 0.2,
q′ = 30, 50, 65 and b= 0, 0.5, 0.9. In the absence of
ripple, oscillatory self-focusing is observed. However, the
presence of density ripple (q′ = 65), leads to enhanced self-
focusing, but oscillatory character is destroyed due to appear-
ance of n0α2cos qz for m= 0 and m= 2 mode indices. For
m= 1 mode with small value of decentered parameter, dif-
fraction effect dominates over focusing of the laser beam.
Strong self-focusing is observed upto ξ= 0.8 by considering
relativistic, which is further accompanied by oscillatory

defocusing. As decentered parameter increases, self-focusing
is enhanced upto several Rayleigh lengths, but for higher
mode m= 2 with increased decentered parameter strong os-
cillatory defocusing is observed. Significant enhancement of
self-focusing and propagation is achieved on increasing the
ripple wave number. The presence of density ripples in a
plasma significantly modulates the phenomenon of self-
focusing with increase in intensity in the focused zone. Fur-
ther, there is increase in distance of propagation to the extent
of two Rayleigh length. We have taken the paraxial ray ap-
proximation, which is appropriate for small values of decen-
tered parameter: b= 0, 0.5, and 0.9. When we increase the
decentered parameter, non-paraxial study will be more ap-
propriate as compare with paraxial study. The present work
may add additional information in the field of laser-driven
fusion to improve the focusing quality of the beam with an
adequate intensity and decentered parameter.
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