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We study the allocation strategies for redundant components in the load-sharing
series/parallel systems. We show that under the specified assumptions, the allocation of
a redundant component to the stochastically weakest (strongest) component of a series
(parallel) system is the best strategy to achieve its maximal reliability. The results have
been studied under cumulative exposure model and for a general scenario as well. They
have a clear intuitive meaning; however, the corresponding additional assumptions are not
obvious, which can be seen from the proofs of our theorems.
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1. INTRODUCTION

One of the standard methods to enhance reliability of a system is to use redundancy
in its structure (Barlow and Proschan [1]). The problem of optimal allocation of redun-
dant components was addressed in numerous publications (cf. Boland, El-Neweihi, and
Proschan [2], Brito, Zequeira, and Valdés [3], Misra and Misra [16], Misra et al. [17,18],
Romera, Valdés, and Zequeira [20], Valdéz and Zequeira [25,26], Hazra and Nanda [7,8],
Cha, Mi, and Yun [4], Li et al. [12,13], Yun and Cha [29,30] to name a few). The specific case
of redundancy, that is, load sharing, had attracted much less attention (see, e.g., Kapur and
Lamberson [9], Keccecioglu [10], Scheuer [21], Shechner [24], Lin, Chen, and Wang et al. [14],
Yinghui and Jing [28], Wang et al. [27], Shao and Lamberson [23], Liu [15] and references
therein).

c© Cambridge University Press 2016 0269-9648/16 $25.00 311

https://doi.org/10.1017/S0269964816000395 Published online by Cambridge University Press

file:FinkelM@ufs.ac.za
https://doi.org/10.1017/S0269964816000395


312 M. Finkelstein and N.K. Hazra

The load-sharing systems can be often encountered in practice, as a tool for decreas-
ing electrical or mechanical stresses and therefore, increasing the corresponding reliability
characteristics. The popular examples are: generators used in a power plant, CPU in a
multiprocessor computer system, cables in a suspension bridge, valves, or pumps used in a
hydraulic system, bolts used to hold a mechanical system, etc. However, most of the relevant
papers in the literature deal only with the specific case when the components of the load-
sharing systems are described by the exponentially distributed lifetimes. There are very few
references where the systems with components having arbitrary lifetime distributions have
been considered (see, e.g., Liu [15], and Yun and Cha [29]). This is mostly because, for a
general case, one must be able to define the initial age of a component in one regime (e.g.,
full load) after switching from the other regime (e.g., partial load).

In this paper, we consider the load-sharing series and parallel systems with components
having arbitrary lifetime distributions when one of the components of the system shares load
with another component. We want to obtain the best allocation strategy that maximizes
reliability of our system, that is, which components of a system should be chosen for a
load sharing with a given redundant component. For addressing this question, we have to:
(1) Describe the mechanism of age correspondence for a component that is functioning in
one regime and then is switched over to the other regime. (2) Develop the corresponding
stochastic ordering technique for comparing different variants of allocation. This will be
done in our paper, which requires the comprehensive analysis of the model and the detailed
stochastic comparisons.

Similar and more general settings for systems without load sharing were extensively
studied in the literature (see, e.g., Boland et al. [2], Brito et al. [3], Misra and Misra [16],
Misra et al. [17,18], Romera et al. [20], Valdéz and Zequeira [25,26]). However, to the best
of our knowledge, there are no relevant results in the literature for the load-sharing systems
with arbitrary distributions of component’s lifetimes. The results obtained in this paper
have a clear intuitive meaning similar to the case of “ordinary” redundancy (without load
sharing). On the other hand, due to the load sharing and the subsequent recalculation of
age, a number of additional issues come into play that should be properly formulated and
adequately described mathematically.

After this general discussion of the topic, let us start with the relevant notation. For
any continuous random variable X, denote by FX(·) the cumulative distribution function,
the probability density function by fX(·) (whenever exists), the survival function by F̄X(·),
the hazard (failure) rate function by rX(·), and the reversed hazard rate function by r̃X(·).

Consider a parallel system formed by two components, namely, A and B. Assume that
both A and B are initially sharing load, and after the failure of one component, the other
one switches over to the full load condition. Without loss of generality, let the total load for
a system be 1 and the components A and B share α and (1 − α) of it, respectively. Denote
by X and Y the random variables representing the lifetimes of A and B under a full load
and by X∗ and Y ∗ those for the load sharing, respectively. As the lifetime of a component
in a partial load condition should be larger than that in the full load condition, we can use
stochastic reasoning employed in accelerated life modeling (ALM) (see, e.g., Nelson [19] and
Finkelstein [6]). Thus, in accordance with the linear version of the ALM, we can write for
both components the following relationships:

FX∗(t) = FX(g(α)t), for all t ≥ 0,

and

FY ∗(t) = FY (h(1 − α)t), for all t ≥ 0,
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where both g(·) and h(·) satisfy: (i) 0 ≤ g(α) ≤ 1 and 0 ≤ h(1 − α) ≤ 1, for all α ∈ [0, 1],
and (ii) both g(·) and h(·) are strictly increasing functions. The simplest specific case of
these functions is when g(α) = α and h(1 − α) = 1 − α; however, our assumptions allow for
a more practically important setting when dependence on the load-sharing factor α is more
general.

Suppose now that the component A was operating under a partial load in [0, u) and
was switched to the full load at time t = u due to the failure of the component B. Thus, we
must be able to define the initial age of this component under the full load that corresponds
to the time spent under the partial load before the switching. We will call this equivalent
age the virtual age (see, e.g., Kijima [11] and Finkelstein [5]) and denote it by ω(u). The
virtual age satisfies the following natural conditions: (i) 0 ≤ ω(u) ≤ u for all u ≥ 0, and (ii)
ω(·) is an increasing function. Let us call {ω(·), g(·)} the set of model functions for A. For
the “reversed” scenario, when the component A fails before the component B, denote the
virtual age of the component B by γ(u) and the corresponding set of model functions by
{γ(·), h(·)}. Denote also the lifetime of the described load-sharing system by X ⊕ Y . Then
the corresponding survival function is given by (cf. Yun and Cha [29])

F̄X⊕Y (t) = F̄X(g(α)t)F̄Y (h(1 − α)t)

+
∫ t

0

F̄X(t − u + ω(u))
F̄X(ω(u))

F̄X(g(α)u)h(1 − α)fY (h(1 − α)u)du

+
∫ t

0

F̄Y (t − u + γ(u))
F̄Y (γ(u))

F̄Y (h(1 − α)u)g(α)fX(g(α)u)du. (1.1)

Indeed, the first term in the r.h.s corresponds to the case when both components did not
fail in [0, t), whereas the second and the third terms correspond to the cases when one of
the components had failed and the other was functioning under the full load after that.

Consider now a series (resp. parallel) system formed by n-independent components with
lifetimes X1,X2, . . . , Xn. Let a redundant component for load sharing with the lifetime Y be
available for allocation to one of the components of the system. Then, the natural question
is: how to allocate Y in the system in order to maximize its reliability in a suitable stochastic
sense? Define, for i = 1, 2, . . . , n,

Ui = min{X1, . . . , Xi−1,Xi ⊕ Y,Xi+1, . . . , Xn},

and

Vi = max{X1, . . . , Xi−1,Xi ⊕ Y,Xi+1, . . . , Xn},
where the operation Xi ⊕ Y means that Y is sharing load with Xi. Thus, Ui (resp. Vi)
represents the lifetime of a series (resp. parallel) system where the component Y is sharing
load with the ith component Xi. Note also that this problem obviously does not exist for
parallel systems without load sharing as all n + 1 components are functioning independently,
whereas in the case of load sharing, the corresponding dependence takes place.

In order to achieve an optimal (maximal) reliability of our system, certain measures for
comparison of reliability characteristics should be employed. It is well known that stochastic
ordering is a very useful tool for comparing lifetimes. Many different types of stochastic
orders have been developed and studied in the literature. For example, usual stochastic order
compares two reliability functions, hazard rate order compares two failure rate functions,
whereas the reversed hazard rate order compares two reversed hazard rate functions (see
Shaked and Shanthikumar [22] for encyclopaedic information on stochastic orders). For the
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sake of completeness, we give the following definitions of stochastic orders that will be used
in our paper.

Definition 1.1: Let X and Y be two continuous non-negative random variables with respec-
tive supports (lX , uX) and (lY , uY ), where uX and uY may be positive infinite, and lX and
lY may be zero. Then, X is said to be smaller than Y in

1. Hazard rate (hr) order, denoted as X ≤hr Y , if

F̄Y (x)
F̄X(x)

is increasing in x ∈ (0,max(uX , uY )),

which can equivalently be written as

rX(x) ≥ rY (x), where defined;

2. Reversed hazard (rh) rate order, denoted as X ≤rh Y , if

FY (x)
FX(x)

is increasing in x ∈ (min(lX , lY ),∞),

which can equivalently be written as

r̃X(x) ≤ r̃Y (x), where defined;

3. Usual stochastic (st) order, denoted as X ≤st Y , if

F̄X(x) ≤ F̄Y (x) for all t ∈ (0,∞).

The following diagram shows the chain of implications among the stochastic orders as
discussed above.

X ≤hr Y
↘
X ≤st Y.

↗
X ≤rh Y

Thus, the hazard rate order and the reversed hazard rate order are stronger than usual
stochastic order. Throughout the paper, increasing and decreasing, as usual, means non-
increasing and non-decreasing, respectively. The random variables considered in this paper
are all non-negative. For convenience of notation, we write Z = min{X3,X4, . . . , Xn} and
W = max{X3,X4, . . . , Xn}.

The rest of the paper is organized as follows. In Section 2, we consider allocation strate-
gies for load-sharing series (resp. parallel) systems. We compare different variants of these
systems with respect to the usual stochastic order and under the assumption of the cumula-
tive exposure model. We generalize these results in Section 3. In Section 4, we discuss some
simulation results. Finally, the concluding remarks are given in Section 5.
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2. STOCHASTIC COMPARISONS UNDER THE CUMULATIVE EXPOSURE MODEL

As was stated in the Introduction, when a component of a load-sharing system is switched
from the partial load to a full load, its initial age in the new regime should be defined. The
cumulative exposure model or its equivalents (see, e.g., Nelson [19] and Finkelstein [6]) that
is widely used in accelerated life testing, is a popular and efficient way of dealing with this
problem. Consider the load-sharing system as discussed in (1.1). In accordance with the
reasoning similar to the cumulative exposure model, for example, for the component X, we
have the following relation for the initial age (to be called “virtual age”) after the switching:

FX∗(t) = FX(g(α)t) = FX(ω(t)),

which immediately gives us
ω(t) = g(α)t

for all t ≥ 0. Thus, the virtual age of a component after the switching to the full load is
smaller than the age before switching and, in accordance with our assumptions, is given
by the linear function. Note that this function also defines the scale transformation in the
argument of the corresponding distribution function under partial load (ALM). In a similar
way, we can also define the virtual age γ(t) for the component Y .

In what follows in this section, we will formulate and analyze several practically impor-
tant stochastic comparisons of interest for the case of the linear virtual age described above.
In the next section, we will not rely on this assumption and, similar to (1.1), will consider
the case of general, not necessarily linear virtual age. For the sake of presentation, we will
omit now all the proofs that are just specific cases of general results of the next section,
for which the detailed proofs will be given. Thus, we believe that the contents of the cur-
rent section can have a practical importance, whereas the results of Section 3 are more
theoretical.

Suppose that we have two different components, and one redundant component that
can be used in a load-sharing scenario with any of the two components. Then, the following
theorem holds (see the proof of Theorem 3.1).

Theorem 2.1: Let {ω1(·), g1(·)}, {ω2(u), g2(·)} and {γ(·), h(·)} be the sets of model func-
tions for X1, X2 and Y , respectively. Suppose that the following conditions hold.

(i) X1 ≥st X2.
(ii) ω1(u) = g1(α)u ≤ g2(α)u = ω2(u) and γ(u) = h(1 − α)u, for all 0 ≤ α ≤ 1 and

u ≥ 0.

Then, X1 ⊕ Y ≥st X2 ⊕ Y .

The second assumption is, in fact, two-fold. On the one hand, we are assuming the
specific form of the model functions that correspond to the cumulative exposure model. On
the other hand, it establishes the required inequality. For convenience, let us say that one
component (system) is stronger (weaker) than the other one if its lifetime is larger (smaller)
in the sense of the usual stochastic ordering. If a different ordering is used, then we will add
the corresponding description where necessary.

Thus, this theorem states that if the redundant component for load sharing is allocated
to the stronger component, then the system with load sharing will be also stronger. This
result can be, of course, intuitively anticipated as the same holds for ordinary, not load-
sharing systems with an active (hot) or standby (cold) redundant component. However, an
important feature of our result is that we need additionally an ordering between virtual ages.
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Otherwise, the proposed ordering does not necessarily hold as the following counterexample
shows.

Counterexample 2.1: Let X1 and X2 be two independent random variables representing
the lifetimes of two components with failure rates 1 and 1.2, respectively. Further, let Y
be another random variable representing the lifetime of a redundant component with the
failure rate 2. Assume that X1, X2, and Y are independent. Let ω1(u) = g1(α)u = 0.5u,
ω2(u) = g2(α)u = 0.25u, and γ(u) = h(1 − α)u = 0.5u, for all u ≥ 0. Then, X1 ≥st X2 but
ω1(u) � ω2(u). Denote: e0(t) = F̄X1⊕Y (t) − F̄X2⊕Y (t). Then, for all t ≥ 0,

e0(t) =
∫ t

0

e−u
[
e−(t−u+0.5u) − e−1.2(t−u+0.25u)

]
du

+
∫ t

0

e−2(t−u+0.5u)
[
e−0.5u − e−0.3u

]
du.

It can be numerically calculated that e0(1.2) = −0.18 and e0(4.5) = 0.002. This shows that
e0(t) is not always non-negative, and hence X1 ⊕ Y �st X2 ⊕ Y .

In the following theorem we show that if we allocate the load-sharing redundancy to
the weakest component of a series system, then the resulting system becomes optimal in
the sense of the usual stochastic order (see the proof of Theorem 3.2).

Theorem 2.2: Fix n = 2. Let {ω1(·), g1(·)}, {ω2(u), g2(·)} and {γ(·), h(·)} be the sets of
model functions for X1, X2 and Y , respectively. Suppose that the following conditions
hold.

(i) X1 ≤hr X2.
(ii) ω1(u) = g1(α)u ≤ g2(α)u = ω2(u) and γ(u) = h(1 − α)u, for all 0 ≤ α ≤ 1 and

u ≥ 0.

Then, U1 ≥st U2.

The intuitive meaning of Theorem 2.2 is also quite clear: to allocate the redundant
component to the weakest component of the system. However, distinct from the previous
theorem, the weakest component is defined in the sense of the hazard rate ordering. This is
an important observation that could not be foreseen without a proper proof. The following
counterexample shows that the condition X1 ≤hr X2 given in Theorem 2.2 can not be
replaced by X1 ≤st X2.

Counterexample 2.2: Let X1, X2, and Y be independent random variables with cumulative
distribution functions given by

FX1(t) =

⎧⎨
⎩

t

3
, for 0 ≤ t ≤ 3,

1, for t ≥ 3,

FX2(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

t2

3
, for 0 ≤ t ≤ 1,

t2 + 3
12

, for 1 ≤ t ≤ 3,

1, for t ≥ 3,
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and

FY (t) = 1 − e−3t, for t > 0,

respectively. Then, it is easy to verify that X1 ≤st X2 but X1 �hr X2. Further, let ω1(u) =
g1(α)u = 0.01u, ω2(u) = g2(α)u = 0.1u, and γ(u) = h(1 − α)u = 0.9u. Note that condi-
tion (ii) given in Theorem 2.2 is satisfied. Denote: e1(t) = F̄U1(t) − F̄U2(t). Then, for all
0 ≤ t ≤ 1,

e1(t) = e−3t(t/3 − t2/3)

+
∫ t

0

0.3
[(

1 − t2

3

)(
1 − 0.01u

3

)
−

(
1 − t

3

)(
1 − 0.01u2

3

)]
e−3(t−u+0.9u)du

+
∫ t

0

2.7
[(

1 − t2

3

)(
1 − t − u + 0.01u

3

)
−

(
1 − t

3

)(
1 − (t − u + 0.1u)2

3

)]
e−2.7udu.

It can be numerically calculated that e1(0.1) = 0.027 and e1(1) = −0.025. This shows that
e1(t) is not always non-negative. Thus, U1 �st U2.

The following counterexample shows that the result given in Theorem 2.2 does not hold
without the condition (ii).

Counterexample 2.3: Let X1, X2, and Y be independent random variables with survival
functions given by F̄X1(t) = e−2.1t2 , t > 0, and F̄X2(t) = e−2t2 , t > 0, and F̄Y (t) = e−3t2 ,
t > 0, respectively. Assume that X1, X2 and Y are independent. Let ω1(u) = g1(α)u = 0.5u,
ω2(u) = g2(α)u = 0.25u and γ(u) = h(1 − α)u = 0.5u, for all u ≥ 0. Then, X1 ≤hr X2 but
ω1(u) � ω2(u). Denote: υ(t) = F̄U1(t) − F̄U2(t). Then, for all t ≥ 0,

υ(t) = e−0.75t2
[
e−2.52t2 − e−2.22t2

]

+
∫ t

0

e−3(t−0.5u)2
[
1.05ue−(2t2+0.52u2) − 0.25ue−(2.1t2+0.12u2)

]
du

+
∫ t

0

1.5ue−0.75u2
[
e−2.1(t−0.5u)2−2t2 − e−2(t−0.75u)2−2.1t2

]
du.

It can be numerically calculated that υ(0.3) = 0.004 and υ(1) = −0.012. This indicates that
υ(t) is not always non-negative, and hence U1 �st U2.

We are turning now to analysis of parallel load-sharing systems. We show that the opti-
mal strategy (in the sense of the usual stochastic order) is when the redundant component
is allocated for the load sharing to the strongest component of the system (see the proof
of Theorem 3.4). Note that this can be considered as a new problem, as in the case of the
ordinary redundancy (not load sharing), obviously, it does not matter to which component
to allocate the redundant component.
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Theorem 2.3: Let {ω1(·), g1(·)}, {ω2(u), g2(·)}, and {γ(·), h(·)} be the sets of model
functions for X1, X2, and Y , respectively. Suppose that the following conditions hold.

(i) X1 ≥rh X2.
(ii) ω1(u) = g1(α)u ≤ g2(α)u = ω2(u) and γ(u) = h(1 − α)u, for all 0 ≤ α ≤ 1 and

u ≥ 0.

Then, V1 ≥st V2.

Thus, in order to obtain a more reliable system (in the sense of the usual stochastic
order), the components should be ordered in the sense of the stronger reversed hazard rate
order, which is an interesting observation. The following important counterexample shows
that the condition X1 ≥rh X2 given in Theorem 2.3 cannot be replaced by X1 ≥st X2.

Counterexample 2.4: Fix n = 2. Let X1, X2, and Y be independent random variables with
cumulative distribution functions given by

FX1(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

t2

3
, for 0 ≤ t ≤ 1,

t2 + 3
12

, for 1 ≤ t ≤ 3,

1, for t ≥ 3,

FX2(t) =

⎧⎪⎨
⎪⎩

t

3
, for 0 ≤ t ≤ 3,

1, for t ≥ 3,

and

FY (t) = 1 − e−3t, for t > 0,

respectively. Then, it is easy to verify that X1 ≥st X2 but X1 �rh X2. Further, let ω1(u) =
g1(α)u = 0.01u, ω2(u) = g2(α)u = 0.1u and γ(u) = h(1 − α)u = 0.9u. Note that condition
(ii) given in Theorem 2.3 is satisfied. Denote e2(t) = FV2(t) − FV1(t). Then, for all 1 ≤ t ≤ 3,

e2(t) =
∫ t

0

0.3
[(

t2 + 3
12

)(
0.01u

3

)
−

(
t

3

)(
0.0001u2 + 3

12

)]
e−3(t−u+0.9u)du

+
∫ t

0

2.7
[(

t2 + 3
12

)(
t − u + 0.1u

3

)
−

(
t

3

)(
(t − u + 0.01u)2 + 3

12

)]
e−2.7udu.

It can be numerically calculated that e2(1) = −0.018 and e2(2.6) = 0.028. This indicates
that e2(t) is not always non-negative. Thus, V1 �st V2.

The following counterexample shows that the result given in Theorem 2.3 does not hold
without condition (ii).

Counterexample 2.5: Fix n = 2. Let X1, X2, and Y be independent random variables with
failure rates 0.3, 0.45, and 1, respectively. Assume that X1, X2, and Y are independent.
Let ω1(u) = g1(α)u = 0.2u, ω2(u) = g2(α)u = 0.04u, and γ(u) = h(1 − α)u = 0.8u, for all

https://doi.org/10.1017/S0269964816000395 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000395


ON STOCHASTIC COMPARISONS 319

u ≥ 0. Then, X1 ≥rh X2 but ω1(u) � ω2(u). Denote: η(t) = FV2(t) − FV1(t). Then, for all
t ≥ 0,

η(t) =
∫ t

0

[(
1 − e0.3t

) (
1 − e0.45(t−0.96u)

)
− (

1 − e0.45t
) (

1 − e0.3(t−0.8u)
)]

0.8e−0.8udu

+
∫ t

0

[(
1 − e0.3t

) (
1 − e0.018u

) − (
1 − e0.45t

) (
1 − e0.06u

)]
0.2e−(t−0.2u)du.

It can be numerically calculated that η(2.5) = −0.01 and η(8.5) = 0.01. This indicates that
η(t) is not always non-negative, and hence V1 �st V2.

3. GENERAL SCENARIO

In the previous section, the assumption of the cumulative exposure model was used to
obtain the corresponding virtual ages after switching. As was already mentioned, we will not
assume in this section that the cumulative exposure model holds and will consider general
forms of the virtual age functions. Thus, the theorems of this section are generalizations of
the corresponding theorems of the previous section, where the more practical results were
presented. Our presentation of the following results are more formal. It should be noted that
our theorems here employ a number of additional assumptions, however, their probabilistic
meaning is quite clear and can be easily interpreted.

The following theorem is a generalization of Theorem 2.1

Theorem 3.1: Let {ω1(·), g1(·)}, {ω2(u), g2(·)}, and {γ(·), h(·)} be the sets of model
functions for X1, X2, and Y , respectively. Suppose that the following conditions hold.

(i) g1(α) ≤ g2(α), for all 0 ≤ α ≤ 1, and ω1(u) ≤ ω2(u), for all u ≥ 0.
(ii) u − γ(u) and γ(u) − h(1 − α)u are increasing in u ≥ 0, for all 0 ≤ α ≤ 1.

(iii) X1 ≥hr X2, and X1 or X2 has log-concave survival function.
(iv) Y has log-concave survival function.

Then, X1 ⊕ Y ≥st X2 ⊕ Y .

Proof: We only prove the result when X1 has log-concave survival function. The result
follows similarly for the other case. Note that

F̄X1⊕Y (t) − F̄X2⊕Y (t) = l1(t) + l2(t),

where

l1(t) =
∫ t

0

h(1 − α)fY (h(1 − α)u)
[
F̄X1(t − u + ω1(u))

F̄X1(ω1(u))
F̄X1(g1(α)u)

− F̄X2(t − u + ω2(u))
F̄X2(ω2(u))

F̄X2(g2(α)u)
]

du,
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and

l2(t) = F̄Y (h(1 − α)t)
[
F̄X1(g1(α)t) − F̄X2(g2(α)t)

]

−
∫ t

0

F̄Y (h(1 − α)u)
F̄Y (t − u + γ(u))

F̄Y (γ(u))
d

[
F̄X1(g1(α)u) − F̄X2(g2(α)u)

]

=
∫ t

0

[
F̄X1(g1(α)u) − F̄X2(g2(α)u)

]
d

[
F̄Y (h(1 − α)u)

F̄Y (t − u + γ(u))
F̄Y (γ(u))

]
.

To prove the result it suffices to show that both l1(t) and l2(t) are non-negative. Note that

l1(t) ≥
∫ t

0
h(1 − α)fY (h(1 − α)u)F̄X2(g2(α)u)

[
F̄X1(t − u + ω1(u))

F̄X1(ω1(u))
− F̄X2(t − u + ω2(u))

F̄X2(ω2(u))

]
du

≥
∫ t

0
h(1 − α)fY (h(1 − α)u)F̄X2(g2(α)u)

[
F̄X1(t − u + ω2(u))

F̄X1(ω2(u))
− F̄X2(t − u + ω2(u))

F̄X2(ω2(u))

]
du

≥ 0,

where the first inequality follows from the fact that X1 ≥hr X2 and g1(α) ≤ g2(α). The
second inequality holds because X1 has log-concave survival function, and ω1(u) ≤ ω2(u),
whereas the third inequality follows from X1 ≥hr X2. Further, for all u ≥ 0, we have

d

du

(
F̄Y (h(1 − α)u)

F̄Y (γ(u))

)
=

F̄Y (h(1 − α)u)
F̄Y (γ(u))

[
γ′(u)

fY (γ(u))
F̄Y (γ(u))

− h(1 − α)
fY (h(1 − α)u)
F̄Y (h(1 − α)u)

]

≥ h(1 − α)
F̄Y (h(1 − α)u)

F̄Y (γ(u))

[
fY (γ(u))
F̄Y (γ(u))

− fY (h(1 − α)u)
F̄Y (h(1 − α)u)

]

≥ 0,

where the first inequality follows from the fact that both γ(u) and γ(u) − h(1 − α)u are
increasing in u ≥ 0. The second inequality holds because γ(u) ≥ h(1 − α)u, for all u ≥ 0,
and Y has log-concave survival function. Thus,

F̄Y (h(1 − α)u)
F̄Y (γ(u))

is increasing in u ≥ 0. (3.1)

Since, u − γ(u) is increasing in u ≥ 0, we have that

F̄Y (t − u + γ(u)) is increasing in u ≥ 0. (3.2)

Thus, from (3.1) and (3.2), we get that

F̄Y (h(1 − α)u)
F̄Y (t − u + γ(u))

F̄Y (γ(u))
is increasing in u ≥ 0. (3.3)

Again, X1 ≥hr X2 and g1(α) ≤ g2(α) imply that, for all u ∈ [0, t],

F̄X1(g1(α)u) − F̄X2(g2(α)u) ≥ 0. (3.4)

Thus, on using (3.3) and (3.4), we have that l2(t) ≥ 0, and hence the result is proved. �

Below we give an example of model functions which supports the above theorem.
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Example 3.1: Let γ(u) = au, ω1(u) = bu, and ω2(u) = cu, for all 0 ≤ a ≤ 1 and
0 ≤ b ≤ c ≤ 1. Further, let g1(α) = α2, g2(α) = α, and h(1 − α) = (1 − α) with a ≥ 1 − α.
Note that all the conditions of the model functions given in Theorem 3.1 are satisfied.

Remark 3.1: It can be easily verified that u − γ(u) can never be decreasing in u ≥ 0. It
might happen that u − γ(u) is non-monotone in some cases, but we could not find the
corresponding example. Thus, we were not able so far to relax the condition that u − γ(u)
should be increasing in u ≥ 0.

Remark 3.2: It is to be noted that the condition (i) given in Theorem 3.1 cannot be removed
(see Counterexample 2.1).

The following counterexample shows that the condition “γ(u) − h(1 − α)u is increasing
in u” given in Theorem 3.1 cannot be relaxed.

Counterexample 3.1: Let X1 and X2 be two independent random variables representing the
lifetimes of two components with failure rate 20.5 and 21, respectively. Further, let Y be
another random variable representing the lifetime of a redundant component with survival
function given by F̄Y (t) = exp{−0.2t2}, t > 0. Let g1(α) = 0.01, g2(α) = 0.1, h(1 − α) =
0.9, γ(u) = 0.01u, ω1(u) = 0.2u, and ω2(u) = 0.3u, for all u ≥ 0. Note that all the conditions
given in Theorem 3.1 are satisfied except γ(u) − h(1 − α)u is not increasing in u. Denote:
κ(t) = F̄X1⊕Y (t) − F̄X2⊕Y (t). Then, for all t ≥ 0,

κ(t) = e−0.162t2
[
e−0.205t − e−2.1t

]

−
∫ t

0

e−0.162u2−0.2(t−0.99u)2+0.2(0.01u)2
[
2.1e−2.1u − 0.205e−0.205u

]
du

+
∫ t

0

0.324ue−0.162u2
[
e−20.5(t−0.99u) − e−21(t−0.9u)

]
du.

It can be numerically obtained that κ(1.4) = −0.021 and κ(4) = 0.035. This indicates that
κ(t) changes sign over t, and hence X1 ⊕ Y �st X2 ⊕ Y .

In the following theorem, we show that allocation of the redundant component to the
stochastically weakest component of the system is the best strategy (in the sense of the
usual stochastic order) for obtaining the optimal series system (see Theorem 2.2).

Theorem 3.2: Let {ω1(·), g1(·)}, {ω2(u), g2(·)} and {γ(·), h(·)} be the sets of model func-
tions for X1, X2, and Y , respectively. Suppose that (i) and (ii), and any one among (iii),
(iv), (v), (vi) hold.

(i) X1 ≤hr X2 and g1(α) ≤ g2(α), for all 0 ≤ α ≤ 1.
(ii) Y has log-concave survival function, and u − γ(u) and γ(u) − h(1 − α)u are increas-

ing in u ≥ 0, for all 0 ≤ α ≤ 1.
(iii) X1 has log-concave survival function, and max{g1(α)u, ω1(u)} ≤ ω2(u), for all u ≥ 0

and 0 ≤ α ≤ 1.
(iv) X1 has log-convex survival function, and g1(α)u ≤ ω2(u) ≤ ω1(u), for all u ≥ 0 and

0 ≤ α ≤ 1.
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(v) X2 has log-concave survival function, and g1(α)u ≤ ω1(u) ≤ ω2(u), for all u ≥ 0 and
0 ≤ α ≤ 1.

(vi) X2 has log-convex survival function, and max{g1(α)u, ω2(u)} ≤ ω1(u), for all u ≥ 0
and 0 ≤ α ≤ 1.

Then, U1 ≥st U2.

Proof: We only prove the result under conditions (i), (ii), and (iii). The result follows
similarly for the other cases. Note that

F̄U1(t) = F̄X1⊕Y (t)F̄X2(t)F̄Z(t),

and

F̄U2(t) = F̄X2⊕Y (t)F̄X1(t)F̄Z(t).

Writing 	(t) = F̄U1(t) − F̄U2(t), we have

	(t) = k1(t) + k2(t),

where

k1(t) = F̄Z(t)F̄Y (h(1 − α)t)
[
F̄X2(t)F̄X1(g1(α)t) − F̄X1(t)F̄X2(g2(α)t)

]

+
∫ t

0

F̄Z(t)F̄Y (h(1 − α)u)
F̄Y (t − u + γ(u))

F̄Y (γ(u))
[
F̄X2(t)g1(α)fX1(g1(α)u)

−F̄X1(t)g2(α)fX2(g2(α)u)
]
du

= F̄Z(t)F̄Y (t)
[
F̄X2(t) − F̄X1(t)

]
+

∫ t

0

F̄Z(t)
[
F̄X2(t)F̄X1(g1(α)u)

−F̄X1(t)F̄X2(g2(α)u)
]
d

[
F̄Y (h(1 − α)u)

F̄Y (t − u + γ(u))
F̄Y (γ(u))

]
,

and

k2(t) =
∫ t

0

F̄Z(t)h(1 − α)fY (h(1 − α)u)
[
F̄X1(t − u + ω1(u))

F̄X1(ω1(u))
F̄X1(g1(α)u)F̄X2(t)

− F̄X2(t − u + ω2(u))
F̄X2(ω2(u))

F̄X2(g2(α)u)F̄X1(t)
]

du.

To prove the result, it is sufficient to show that both k1(t) and k2(t) are non-negative. From
(i), we have

F̄X2(t)F̄X1(g1(α)t) − F̄X1(t)F̄X2(g2(α)t) ≥ 0, (3.5)

and

F̄X2(t) − F̄X1(t) ≥ 0. (3.6)

Further, (ii) implies that (see the proof of Theorem 3.1)

F̄Y (t − u + γ(u))
F̄Y (γ(u))

F̄Y (h(1 − α)u is increasing in u ≥ 0. (3.7)
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Thus, on using (3.5)–(3.7), we have that k1(t) ≥ 0. Again, (iii) implies that

F̄X1(t − u + ω1(u))
F̄X1(ω1(u))

≥ F̄X1(t − u + ω2(u))
F̄X1(ω2(u))

, (3.8)

which can equivalently be written as

F̄X1(t − u + ω1(u))
F̄X1(ω1(u))

F̄X1(g1(α)u)F̄X2(t) ≥
F̄X1(t − u + ω2(u))

F̄X1(ω2(u))
F̄X1(g1(α)u)F̄X2(t)

≥ F̄X2(t − u + ω2(u))
F̄X1(ω2(u))

F̄X1(g1(α)u)F̄X1(t)

≥ F̄X2(t − u + ω2(u))
F̄X2(ω2(u))

F̄X2(g2(α)u)F̄X1(t),

where the second and third inequalities follow from (i) and (iii). Thus, on using the above
inequality, we get k2(t) ≥ 0. Hence, the result is proved. �

An example of model functions, which satisfies Theorem 3.2, is discussed below.

Example 3.2: Let γ(u) = a ln(1 + u), ω1(u) = bu, and ω2(u) = cu, for all 0 ≤ a ≤ 1 and 0 ≤
b ≤ c ≤ 1. Further, let g1(α) = α2, g2(α) = α, and h(1 − α)u = (1 − α) ln(1 + u) with a ≥
1 − α. Note that all conditions for the model functions given in (i)–(iii) of Theorem 3.2 are
satisfied.

Remark 3.3: It is to be noted that the conditions “g1(α) ≤ g2(α)”, “max{g1(α)u, ω1(u)} ≤
ω2(u)” and “g1(α)u ≤ ω1(u) ≤ ω2(u)” given in Theorem 3.2 cannot be relaxed (see
Counterexample 2.3).

The following counterexample shows that the result given in Theorem 3.2 does not hold
without the condition “γ(u) − h(1 − α)u is increasing in u”.

Counterexample 3.2: Fix n = 2. Let X1 and X2 be two independent random variables rep-
resenting the lifetimes of two components with failure rates 19 and 18.99, respectively.
Further, let Y be another random variable representing the lifetime of a redundant compo-
nent with survival function given by F̄Y (t) = exp{−t2}, t > 0. Let g1(α) = 0.01, g2(α) = 0.1,
h(1 − α) = 0.9, γ(u) = 0.01u, ω1(u) = 0.2u, and ω2(u) = 0.3u, for all u ≥ 0. Note that all
the conditions given in (i), (ii), and (iii) of Theorem 3.2 are satisfied except γ(u) − h(1 − α)u
is not increasing in u. Denote: κ0(t) = F̄U1(t) − F̄U2(t). Then, for all t ≥ 0,

κ0(t) = e−0.81t2
[
e−19.18t − e−20.899t

]

−
∫ t

0

e−0.81u2−(t−0.99u)2+(0.01u)2
[
1.899e−(19t+1.899u) − 0.19e−(18.99t+0.19u)

]
du

+
∫ t

0

1.62ue−(0.81u2+37.99t)
[
e−18.81u − e−17.09u)

]
du.

It can be verified that κ0(t) is not always non-negative, and hence U1 �st U2.

The following theorem shows that a similar result as in Theorem 3.2 holds under some
weaker conditions, whenever both X1 and X2 have the same set of model functions.
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Theorem 3.3: Let both X1 and X2 have the same set of model functions given by
{ω(·), g(·)}, and Y have the model function given by {γ(·), h(·)}. Assume that ω(u) ≥ g(α)u,
for all 0 ≤ α ≤ 1 and u ≥ 0. If X1 ≤hr X2 then U1 ≥st U2.

Proof: From ζ(t) = F̄U1(t) − F̄U2(t), we have

ζ(t) = k3(t) + k4(t), (3.9)

where

k3(t) = F̄Z(t)F̄Y (h(1 − α)t)
[
F̄X2(t)F̄X1(g(α)t) − F̄X1(t)F̄X2(g(α)t)

]

+
∫ t

0

F̄Z(t)F̄Y (h(1 − α)u)
F̄Y (t − u + γ(u))

F̄Y (γ(u))
g(α)

[
F̄X2(t)fX1(g(α)u)

−F̄X1(t)fX2(g(α)u)
]
du,

and

k4(t) =
∫ t

0

F̄Z(t)h(1 − α)fY (h(1 − α)u)
[
F̄X1(t − u + ω(u))

F̄X1(ω(u))
F̄X1(g(α)u)F̄X2(t)

− F̄X2(t − u + ω(u))
F̄X2(ω(u))

F̄X2(g(α)u)F̄X1(t)
]

du.

Since, X1 ≤hr X2, we have, for all 0 ≤ u ≤ t < ∞,

F̄X2(t)F̄X1(g(α)t) − F̄X1(t)F̄X2(g(α)t) ≥ 0, (3.10)

F̄X2(t)F̄X1(g(α)u) − F̄X1(t)F̄X2(g(α)u) ≥ 0, (3.11)

and

rX1(g(α)u) ≥ rX2(g(α)u). (3.12)

On using (3.11) and (3.12), we have

F̄X2(t)fX1(g(α)u) − F̄X1(t)fX2(g(α)u) ≥ 0. (3.13)

Thus, on using (3.10) and (3.13), we get that k3(t) ≥ 0. Further, X1 ≤hr X2 and ω(u) ≥
g(α)u imply that

F̄X1(t − u + ω(u))F̄X2(t) − F̄X2(t − u + ω(u))F̄X1(t) ≥ 0, (3.14)

and
F̄X1(g(α)u)
F̄X1(ω(u))

≥ F̄X2(g(α)u)
F̄X2(ω(u))

. (3.15)

Thus, on using (3.14) and (3.15), we have k4(t) ≥ 0. Hence, the result is proved. �

In the following theorem, we show that the best strategy to obtain the optimal parallel
system is to allocate the redundancy to the stochastically strongest component of the system
(see Theorem 2.4.)
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Theorem 3.4: Let {ω1(·), g1(·)}, {ω2(u), g2(·)} and {γ(·), h(·)} be the sets of model func-
tions for X1, X2 and Y , respectively. Assume that X1 ≥rh X2. Suppose that the following
conditions hold.

(i) ω1(u) = g1(α)u ≤ g2(α)u = ω2(u) for all u ≥ 0 and 0 ≤ α ≤ 1.
(ii) Y has log-concave survival function, and u − γ(u) and γ(u) − h(1 − α)u are increas-

ing in u ≥ 0, for all 0 ≤ α ≤ 1.

Then, V1 ≥st V2.

Proof: Note that

F̄X1⊕Y (t) = F̄X1(g1(α)t)F̄Y (h(1 − α)t) +
∫ t

0

F̄X1(t − u + ω1(u))dFY (h(1 − α)u)

+
∫ t

0

F̄Y (t − u + γ(u))
F̄Y (γ(u))

F̄Y (h(1 − α)u)dFX1(g1(α)u)

= F̄Y (h(1 − α)t) +
∫ t

0

F̄X1(t − u + ω1(u))dFY (h(1 − α)u)

−
∫ t

0

FX1(g1(α)u) d

[
F̄Y (t − u + γ(u))

F̄Y (γ(u))
F̄Y (h(1 − α)u)

]
,

which gives

FX1⊕Y (t) = FY (h(1 − α)t) −
∫ t

0

F̄X1(t − u + ω1(u))dFY (h(1 − α)u)

+
∫ t

0

FX1(g1(α)u) d

[
F̄Y (t − u + γ(u))

F̄Y (γ(u))
F̄Y (h(1 − α)u)

]

=
∫ t

0

FX1(t − u + ω1(u))dFY (h(1 − α)u)

+
∫ t

0

FX1(g1(α)u) d

[
F̄Y (t − u + γ(u))

F̄Y (γ(u))
F̄Y (h(1 − α)u)

]
.

From 	2(t) = FV2(t) − FV1(t), we have

	2(t) = s1(t) + s2(t),

where

s1(t) =
∫ t

0

FW (t) [FX1(t)FX2(t − u + ω2(u)) − FX2(t)FX1(t − u + ω1(u)] dFY (h(1 − α)u),

and

s2(t) =
∫ t

0

FW (t) [FX1(t)FX2(g2(α)u) − FX2(t)FX1(g1(α)u)] d

×
[
F̄Y (t − u + γ(u))

F̄Y (γ(u))
F̄Y (h(1 − α)u)

]
.
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Since, X1 ≥rh X2 and ω1(u) = g1(α)u ≤ g2(α)u = ω2(u) we have, for all u ∈ [0, t],

FX1(t)FX2(t − u + ω2(u)) − FX2(t)FX1(t − u + ω1(u) ≥ 0, (3.16)

and

FX1(t)FX2(g2(α)u) − FX2(t)FX1(g1(α)u) ≥ 0. (3.17)

Again, condition (ii) implies that (see proof of Theorem 3.1)

F̄Y (t − u + γ(u))
F̄Y (γ(u))

F̄Y (h(1 − α)u is increasing in u ≥ 0. (3.18)

Thus, on using (3.16)–(3.18) we get that s1(t) ≥ 0 and s2(t) ≥ 0, and hence the result
follows. �

Below we give an example of model functions that supports the above theorem.

Example 3.3: Let γ(u) = au/(1 + u), and ω1(u) = g1(α)u = α2u, ω2(u) = g2(α)u = αu,
and h(1 − α)u = (1 − α)u/(1 + u) with a ≥ 1 − α. Note that all conditions of the model
functions given in Theorem 3.4 are satisfied.

Remark 3.4: Condition (i) given in Theorem 3.4 cannot be relaxed (see Counterexam-
ple 2.5).

The following counterexample shows that the condition “γ(u) − h(1 − α)u is increasing
in u” given in Theorem 3.4 cannot be relaxed.

Counterexample 3.3: Fix n = 2. Let X1 and X2 be two independent random variables rep-
resenting the lifetimes of two components with failure rates 5.45 and 5.55, respectively.
Further, let Y be another random variable representing the lifetime of a redundant compo-
nent with survival function given by F̄Y (t) = exp{−t2}, t > 0. Let ω1(u) = g1(α)u = 0.01u,
ω2(u) = g2(α)u = 0.1u, h(1 − α) = 0.9, and γ(u) = 0.01u, for all u ≥ 0. Note that all the
conditions given in Theorem 3.4 are satisfied except γ(u) − h(1 − α)u is not increased in u.
Denote: ξ(t) = FV2(t) − FV1(t). Then, for all t ≥ 0,

ξ(t) =
∫ t

0

[(
1 − e−5.45t

) (
1 − e−5.55t(t−0.9u)

)
− (

1 − e−5.55t
)

×
(
1 − e−5.45t(t−0.99u)

)]
1.62ue−0.81u2

du

+
∫ t

0

[(
1 − e−5.45t

) (
1 − e−0.555u

) − (
1 − e−5.55t

) (
1 − e−0.054u

)]

× 2(0.99t − 1.79u)e−[(t−0.99u)2−(0.01u)2+0.81u2]du.

It can be numerically obtained that ξ(0.8) = 0.009 and ξ(2) = −0.01. This indicates that
ξ(t) is not always non-negative, and hence V1 �st V2.
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Figure 1. Plot of EU1(t) and EU2(t) against t.

4. SIMULATION

We illustrate the result given in Theorem 2.2 via the simulation example below. Other
theorems of our paper can be illustrated in a similar way. It is possible to perform the
comparison using the corresponding survival curves, as all our theorems eventually compare
the systems lifetimes in the sense of the usual stochastic ordering.

Consider a system with n = 3 components in series. Let X1, X2, X3, and Y be indepen-
dent exponentially distributed random variables having respective failure rates 4, 2, 6, and
5. We take ω1(u) = g1(α)u = 0.04u, ω2(u) = g2(α)u = 0.2u and γ(u) = h(1 − α)u = 0.8u.
Then X1 ⊕ Y and X2 ⊕ Y have the survival functions given by F̄X1⊕Y (t) = −23.81e−4.16t +
25e−4t − 0.19e−5t, t > 0, and F̄X2⊕Y (t) = −0.833e−4.08t + 1.92e−2t − 0.087e−5t, t > 0,
respectively. Note that all the conditions given in Theorem 2.2 are satisfied by these
random variables. Now we draw samples for X1, X2, X3, X1 ⊕ Y , and X2 ⊕ Y , each of
size 800, 000, from the respective distributions. We call them x1i, x2i, x3i, x1i ⊕ yi, and
x2i ⊕ yi, for i = 1, 2, . . . , 800, 000, respectively. Now we calculate, for i = 1, 2, . . . , 800, 000,
u1i = min{x1i ⊕ yi, x2i, x3i} and u2i = min{x1i, x2i ⊕ yi, x3i}, the realization of U1 and
U2, respectively. Next we sort the combined sample (u1i, u2i), i = 1, 2, . . . , 800, 000, in an
increasing order of magnitude, and their empirical distribution functions EU1(·) and EU2(·)
are plotted in Figure 1. This shows that EU2(t) dominates EU1(t) for all t. Thus, we may
conclude, based on the data set, that U1 ≥st U2.

5. CONCLUDING REMARKS

In this paper, we have considered general load-sharing series and parallel systems. We have
shown that, for a load-sharing series (resp. parallel) system, the best strategy for achieving
maximal reliability is to allocate the redundant component to the weakest (resp. strongest)
original component of the system. We have studied the proposed results under cumulative
exposure model as well as in a general scenario. The accelerated lifetime model and the
virtual age concept are used in order to calculate the reliability function of a general load-
sharing system. To the best of our knowledge, there are no results in the literature that deal
with allocation strategies for general load-sharing systems and, therefore, our paper might
be considered as the first step in this direction. We have considered only series and parallel

https://doi.org/10.1017/S0269964816000395 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000395


328 M. Finkelstein and N.K. Hazra

systems. The study of more general systems (e.g., k-out-of-n system and coherent system)
can constitute a topic for the future research.

We conclude our discussion by mentioning the fact that the straightforward corollaries
corresponding to Theorems 2.2, 2.3, 3.3, and 3.4 could be formulated similar to the one
given below for Theorem 3.2.

Corollary 5.1: Let {ωi(·), gi(·)} be the set of model functions for Xi, i = 1, 2, . . . , n, and
{γ(·), h(·)} be that for Y . Suppose that (i) and (ii), and (iii) or (iv) hold.

(i) X1 ≤hr X2 ≤hr · · · ≤hr Xn and g1(α) ≤ g2(α) ≤ · · · ≤ gn(α), for all 0 ≤ α ≤ 1.
(ii) Y has log-concave survival function, and u − γ(u) and γ(u) − h(1 − α)u are increas-

ing in u ≥ 0, for all 0 ≤ α ≤ 1.
(iii) Let n be an even integer. Further, X1,X3, . . . , Xn−1 or X2,X4, . . . , Xn have

log-concave (resp. log-convex) survival functions, and gn(α)u ≤ ω1(u) ≤ ω2(u) ≤
· · · ≤ ωn(u) (resp. gn(α)u ≤ ωn(u) ≤ ωn−1(u) ≤ · · · ≤ ω1(u)), for all u ≥ 0 and
0 ≤ α ≤ 1.

(iv) Let n be an odd integer. Further, X1,X3, . . . , Xn or X2,X4, . . . , Xn−1 have
log-concave (resp. log-convex) survival functions, and gn(α)u ≤ ω1(u) ≤ ω2(u) ≤
· · · ≤ ωn(u) (resp. gn(α)u ≤ ωn(u) ≤ ωn−1(u) ≤ · · · ≤ ω1(u)), for all u ≥ 0 and
0 ≤ α ≤ 1.

Then, U1 ≥st U2 ≥st · · · ≥st Un.
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