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Direct numerical simulations (DNS) of turbulent channel flow over rough surfaces,
formed from hexagonally packed arrays of hemispheres on both walls, were performed
at friction Reynolds numbers Reτ =200, 400 and 600. The inner normalized roughness
height k+ = 20 was maintained for all Reynolds numbers, meaning all flows were
classified as transitionally rough. The spacing between hemispheres was varied
within d/k = 2–4. The statistical properties of the rough-wall flows were contrasted
against a complementary smooth-wall DNS at Reτ = 400 and literature data at
Reτ = 2003 revealing strong modifications of the near-wall turbulence, although the
outer-layer structure was found to be qualitatively consistent with smooth-wall flow.
Amplitude modulation (AM) analysis was used to explore the degree of interaction
between the flow in the roughness sublayer and that of the outer layer utilizing all
velocity components. This analysis revealed stronger modulation effects, compared
to smooth-wall flow, on the near-wall small-scale fluctuations by the larger-scale
structures residing in the outer layer irrespective of roughness arrangement and
Reynolds number. A predictive inner–outer model based on these interactions, and
exploiting principal component analysis (PCA), was developed to predict the statistics
of higher-order moments of all velocity fluctuations, thus addressing modelling of
anisotropic effects introduced by roughness. The results show excellent agreement
between the predicted near-wall statistics up to fourth-order moments compared to
the original statistics from the DNS, which highlights the utility of the PCA-enhanced
AM model in generating physics-based predictions in both smooth- and rough-wall
turbulence.
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1. Introduction
Turbulent flows over rough surfaces are encountered in many industrial and natural

situations, for which substantial variation in the topographical complexity of the
roughness often exists. Examples include degraded surfaces of turbine blades (Bons
et al. 2001), ice accumulation on aircraft wings (Bragg, Broeren & Blumenthal
2005) and ablation of vehicle surfaces during atmospheric re-entry (Vignoles et al.
2009), to name a few. Similar topographical complexity exists in meteorological
boundary layers, where experimental investigations have been focused on flows over
vegetation canopies, rural terrains and urban cities (see Monin 1970; Cheng & Castro
2002). Understanding turbulence interactions in this context also contributes to our
understanding of global biogeochemical cycles (Finnigan 2000), for example.

Though the complexity of the roughness morphology in laboratory studies is often
greatly reduced and well controlled (periodic arrays of hemispheres, pyramids, etc.),
compared to realistic roughness topographies, such studies of simplified topographies
will inevitably encounter unavoidable difficulties in accessing the flow structure in
the immediate vicinity of the roughness (Flack, Schultz & Shapiro 2005; Wu &
Christensen 2007; Hong, Katz & Schultz 2011; Barros & Christensen 2014, among
others). For example, Raupach, Antonia & Rajagopalan (1991) pointed out that a
conventional hot-wire probe suffers from a limited velocity-vector acceptance angle
and spatial resolution in measuring high-intensity turbulence within the roughness
sublayer, which adversely impacts the accuracy of measured shear stress just above
the roughness crest.

Optical techniques, such as laser Doppler velocimetry and particle image velocimetry
(PIV), circumvent these difficulties to some degree; however, their reliance on the
use of high-power lasers to illuminate tracer particles in the flow inevitably leads to
laser light reflections from the solid surface which corrupts such measurements
in the immediate vicinity of even idealized roughness elements. Furthermore,
such measurements cannot access the flow below the roughness crests due to
similar difficulties, nor can they fully access the spatio-temporal character of this
unsteady, three-dimensional (3-D) turbulent scenario. Recent PIV studies meant
to characterize the turbulence in the roughness sublayer of flow over a realistic
roughness topography replicated from a damaged turbine blade clearly illustrate the
limitations of optical measurements near complex surfaces (Wu & Christensen 2007,
2010; Mejia-Alvarez & Christensen 2010, 2013; Barros & Christensen 2014). While
the flow in the outer portion of the roughness sublayer was well characterized in
these efforts, the flow within 1–2 roughness heights of the topography could not
be interrogated owing to laser reflections from the multi-scale roughness topography.
These inherent measurement challenges have inhibited advance our understanding of
roughness-sublayer physics and thus in the development of near-wall models for the
accurate simulation of practical rough-wall flows.

With the advance of computational power over the last decades, it is now practical
to carry out direct numerical simulations (DNS) of smooth wall-bounded turbulence
with increasingly higher Reynolds numbers (Re) (Kim, Moin & Moser 1987; Hoyas
& Jiménez 2008; Lee & Moser 2015). DNS of rough-wall flows with even idealized
geometric features have the advantage of fully resolving flow physics from the largest
to the smallest relevant spatial and temporal scales. Examples include DNS of channel
flows over sandpaper (Scotti 2006; Yuan & Piomelli 2014), triangular riblets (Choi,
Moin & Kim 1993; Chu & Karniadakis 1993), wavy walls (De Angelis, Lombardi
& Banerjee 1997), arrays of 2-D rods (Ashrafian, Andersson & Manhart 2004; Lee,
Sung & Krogstad 2011) or square bars (Krogstad et al. 2005; Ikeda & Durbin 2007;
Burattini, Leonardi & Orlandi 2008; Orlandi & Leonardi 2008) and 3-D arrays of
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cubes (Coceal et al. 2007; Lee & Sung 2007; Leonardi & Castro 2010), hemispheres
(Chatzikyriakou et al. 2015) or spheres (Chan-Braun, García-Villalba & Uhlmann
2011; Ghodke & Apte 2016), etc. More recently, DNS of flow over realistic roughness
have also been considered despite the topographical complexity (Busse, Lutzner &
Sandham 2015; Busse, Thakkar & Sandham 2017, for example).

With regard to rough-wall flow physics, it is well established that the presence
of either 3-D or 2-D transverse idealized roughness elements (Ashrafian et al. 2004;
Nagano, Hattori & Houra 2004; Coceal et al. 2007) increases the drag at the wall
(except in the case of flow-aligned riblets for which a reduction of drag is observed
(Choi et al. 1993; Chu & Karniadakis 1993; Orlandi, Leonardi & Antonia 2006)). A
downward shift of the mean velocity profile compared to smooth-wall flow is one
consequence of this increased surface drag and is termed the roughness function 1U+
(where ‘+’ indicates normalization in inner units), which generally varies with the
flow geometry, the characteristics of the topography and Re. The roughness type can
be classified based on the behaviour of 1U+ with respect to Re and/or geometrical
characteristics of the roughness. A ‘k-type’ roughness refers to one in which 1U+
depends on the roughness height and Re. A ‘d-type’ roughness depends on the
outer length scale, such as the diameter of the pipe, the thickness of a boundary
layer or the half-width of the channel (Perry, Schofield & Joubert 1969). Other
roughness parameters, such as the packing density, aspect ratio, higher-order statistics
of the roughness (skewness, flatness), etc. may also be relevant in characterizing
the dynamics of rough-wall flow; however, a more complete parameterization of
roughness effects in this regard remains an open topic of research.

Recent smooth-wall turbulence studies highlight that physics-based predictions
of the flow require a comprehensive understanding of the interactions or coupling
between the outer flow and the flow in the near-wall region. Recently, Marusic,
Mathis & Hutchins (2010) developed an amplitude modulation (AM) analysis to
quantify such effects in smooth-wall turbulent boundary layers at high Re and found
many statistical details that connect the outer flow structure with that of the near-wall
region using single-point measurements of streamwise velocity. In particular, they
reported a clear AM effect of the large-scale structures imparted on the small-scale
near-wall turbulence, with the effect growing with Re (Hutchins & Marusic 2007a,b).
This growth of the AM effect with Re is also apparent in a suite of DNS of a
compressible, developing smooth-wall turbulent boundary layer for 205< Reτ < 1123
reported by Bernardini & Pirozzoli (2011). Leveraging the 3-D spatially resolved
data afforded by DNS, compared to the single-point measurements in experiments,
Bernardini & Pirozzoli (2011) computed true two-point AM correlation coefficients
as a function of the wall-normal position and found that AM effects begin to develop
at approximately Reτ = 400 where symmetry is broken in the correlation and a
secondary, off-diagonal peak forms which they argue is the onset of nonlinear AM
phenomena of the outer large-scale structures on the smaller scales in the near-wall
region. Similarly, Pathikonda & Christensen (2017b) leveraged spatially resolved
particle image velocimetry data acquired in a smooth-wall turbulent boundary layer to
compute two-point AM correlations and identified distinct off-diagonal AM signatures
that cannot be found in single-point measurements. Finally, Mathis, Hutchins &
Marusic (2011) also developed an inner–outer predictive model that connects the
large-scale behaviour in the logarithmic region to the near-wall flow features. This
was possible owing to the discovery of an almost universal signal that was extracted
from a calibration process based on AM analysis. Mathis et al. (2011) used this
framework to successfully predict the statistics of u′ up to the sixth-order moment
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and showed excellent agreement with experimental data over a wide range of Re.
More recently, Mathis et al. (2013) applied this method to predict characteristics of
the wall shear stress in smooth-wall flows.

A similar connection may be present in rough-wall turbulence as the outer region
of the flow often exhibits outer-layer similarity (Townsend 1976) to smooth-wall flow
when the roughness height is small compared to the outer length scale (meaning that
the wall shear stress and outer length scale adapt to the roughness in a universal
manner) (Raupach et al. 1991; Flack et al. 2005; Wu & Christensen 2007, among
others). This similarity exists not only for basic statistics of the flow, but also
for the overall spatial structure of the larger-scale motions that occupy the outer
region (Volino, Schultz & Flack 2007; Wu & Christensen 2010; Birch & Morrison
2011; Mejia-Alvarez, Wu & Christensen 2014, for example). Anderson (2016) utilized
large-eddy simulations (LES) of turbulence overlying cube roughness to study the
existence of AM effects in this rough-wall flow and reported enhanced AM effects
compared to smooth-wall flow. Squire et al. (2016) conducted two-probe hot-wire
measurements similar to those of Marusic et al. (2010) but for rough-wall flow and
similarly reported an enhanced AM effect coupled with a reduced superposition
effect. Finally, Pathikonda & Christensen (2017a) conducted two-probe hot-wire
measurements in flow over the realistic roughness topography studied by Wu &
Christensen (2007, 2010) and Mejia-Alvarez & Christensen (2013), Mejia-Alvarez
et al. (2014) and found a similar enhancement of the AM effect, although the degree
of enhancement was found to depend upon spanwise location relative to the irregular
roughness features as this type of roughness induces the formation of turbulent
secondary flows which lead to spanwise heterogeneity in the flow itself (Barros &
Christensen 2014; Willingham et al. 2014; Anderson, Barros & Christensen 2015).

With this background in mind, this study explores the existence of AM effects
in rough-wall turbulent channel flow using state-of-the-art fully roughness-resolving
DNS for 200< Reτ < 600. A complementary DNS of smooth-wall turbulent channel
flow at Reτ = 400 was also conducted for comparison purposes and literature data
from the smooth-wall turbulent channel flow DNS of Hoyas & Jiménez (2006)
at Reτ = 2003 were leveraged to support the conclusions made herein. While the
rough-wall simulations are at relatively low Reτ , they are the largest of their kind
to date owing to the requirement to fully resolve the flow around the roughness
to ensure that all dynamically significant scales of the flow were resolved while
simultaneously capturing the largest scales of the flow that extend multiple h in the
streamwise direction. Further, as reported by Bernardini & Pirozzoli (2011), AM
effects begin to appear in smooth-wall flow at Reτ as low as 400 (the same as the
smooth-wall simulation presented herein) and roughness is now known to enhance
the AM effect. We then leverage the AM effect to adapt the existing AM inner–outer
model of Mathis et al. (2011) to predict the statistics of high-order moments of all
three velocity components by introducing principal component analysis (PCA) to the
model structure. Thus, as the present simulations provide the spatio-temporal data
to investigate the effects of anisotropy in the universal signals obtained during the
calibration of the AM model, the utility of this modelling framework can be extended
to successfully predict the Reynolds shear stress, u′v′+, and statistics involving the
spanwise velocity fluctuations, w′.
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2. Numerical method
The governing equations solved herein are the incompressible Navier–Stokes

equations, given by

∂ui

∂t
+ uj

∂ui

∂xj
=−

∂p
∂xi
+ ν

∂2ui

∂xj∂xj
+ fi, (2.1)

∂ui

∂xi
= 0, (2.2)

where xi are the Cartesian coordinates and ui are the velocity components. The
notational convention adopted here is that u1 (u), u2 (v) and u3 (w) denote the velocity
components in the streamwise (x), wall-normal (y) and spanwise (z) directions,
respectively, while p is the pressure (density assumed to be one) and ν is the
kinematic viscosity. The forcing functions, fi, ensure constant flow rate and the bulk
Re is defined as Reb = Ubh/ν based on the average streamwise velocity, Ub, and
channel half-height, h.

The governing equations were solved with the open-source high-order spectral
element method solver NEK5000, developed at Argonne National Laboratory
(Fischer, Lottes & Kerkemeier 2014). The spectral element method is a high-order
weighted-residual finite element method. The computational domain is discretized
by partitioning it into E Nth-order hexahedral elements, where E is the number of
spectral elements and N is the order of the tensor-product polynomials within each
element. The physical space (x, y, z) is first transformed into the parametric space
(r, s, t) where −1 < r, s, t < 1. Then, all numerical operations are performed in the
parametric space; interpolation back to physical space is used for data storage and
post-processing. Flow variables are represented by the tensor-product nodal basis as

u(x, y, z)|Ωe =

N∑
i=0

N∑
j=0

N∑
k=0

ue
ijkψi(r)ψj(s)ψk(t), (2.3)

where Ωe is the computational domain for each element, ψi, ψj, ψk are the basis
functions in the parametric space (r, s, t) and ue

ijk are the nodal values of the flow
quantity at points within the element. For the incompressible Navier–Stokes equations,
the trial and test functions are chosen as the Legendre polynomials evaluated at the
Gauss–Lobatto–Legendre (GLL) quadrature points. The non-uniform distribution of
the GLL points enhances the stability of the numerical solver and allows point-wise
quadrature operations to increase the efficiency of the method. Boundary conditions
are enforced using the C0 continuity properties of the interpolating functions (Fischer
2010). In these simulations, a polynomial order of N = 7 was used to maximize
both spatial accuracy and computational efficiency for fast convergence of the
simulations. The linear terms were treated implicitly with decoupling of the pressure
and viscous terms while the nonlinear advection terms were treated explicitly using
a third-order backward differencing scheme. The velocities were solved by three
Helmholtz equations with efficient preconditioning techniques and the pressure was
solved iteratively using a high-efficiency multigrid solver.

3. Simulation set-up
Direct numerical simulations of turbulent channel flow were performed with both

walls roughened by a mat of hexagonally packed hemispheres as illustrated in
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x

y

z

H = 2h

W

L

FIGURE 1. Prototypical computational mesh and domain size for the rough-wall
simulations.

figure 1. The spectral element mesh is decomposed into two regions. Near the walls
and surrounding the hemispheres (rough-wall region), dense body-fitted elements
were employed to ensure that small turbulent scales were well-resolved around the
roughness elements. Away from the walls, the majority of the domain (core region)
was occupied by arrays of rectangular spectral element blocks aligned parallel to the
homogeneous (x–z) plane whose wall-normal spacing was determined from previously
published smooth-wall DNS at similar Re. No-slip boundary conditions were imposed
on both walls and periodic boundary conditions were applied in both the streamwise
and spanwise directions.

The domain size for all simulations was L = 8πh, H = 2h and W = 2πh in the
streamwise, wall-normal and spanwise directions, respectively. Two-point correlations
of the velocity fluctuations were found to decay approximately to zero within
half of the domain (see appendix A), which ensured that the domain was large
enough to contain the relevant turbulent structures, most importantly the large- and
very-large-scale motions. These flow features can extend several channel half-heights
in the streamwise direction in smooth-wall turbulent channel flow (Balakumar &
Adrian 2007; Mathis et al. 2009b) and likely modulate the smaller scales in the
near-wall region. This domain is about 25 times larger than the minimal computational
box sufficient to sustain turbulence statistics as suggested by Jiménez & Moin (1991).
Figure 2 shows actual configurations of hemispherical roughness, where the roughness
height, k, is the radius of the hemisphere and d is the centre-to-centre spacing between
hemispheres.

Table 1 summarizes the relevant flow and simulation parameters for each case.
Three rough-wall simulations were performed at Reτ = uτh/ν = 400, where uτ is
the friction velocity defined by uτ =

√
τw/ρ. The mean wall shear stress, τw, was

calculated by averaging the total drag at the wall divided by the projected surface
area of the wall. Note that the total drag at the wall was determined directly from the
solver by integrating the pressure and viscous stresses over the surfaces in the flow
direction. For these three rough-wall simulations, the roughness height was maintained
as k/h= 0.05 while varying the pitch-to-height ratio between roughness elements in
the range d/k = 2–4. Two additional rough-wall simulations were performed at
Reτ = 200 and 600 to investigate Re effects for which the roughness heights were
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FIGURE 2. (Colour online) Configurations of the hemispherical roughness. (a) Mesh
distribution around the hemispherical roughness. (b) Hexagonal packing of roughness
elements for simulation RH400-20-4.

k/h = 0.1 and k/h = 0.034, respectively, the element spacing was d/k = 4. All
rough-wall simulations utilized k+ = 20. In addition, table 1 summarizes parameters
for a smooth-wall channel flow simulation conducted at Reτ = 400 and smooth-wall
DNS data at Reτ = 2003 reported by Hoyas & Jiménez (2006). Both smooth-wall
cases served as baselines against which the rough-wall cases are compared.

In table 1, 1x+ and 1z+ denote the average streamwise and spanwise grid spacings,
respectively, in inner units. The domain in the wall-normal direction was discretized
non-uniformly such that the corner points of each spectral element were distributed
based on the Chebyshev collocation points given by

yj = (N + 1)
cos( j− 1)

ny − 1
, (3.1)

where yj is the location of the corner point of the jth spectral element in the
wall-normal direction, N is the polynomial order of the tensor product and ny is the
total number of elements in the wall-normal direction. For all rough-wall cases, the
wall-normal origin was positioned at the base plane of the hemispheres of both walls.
Further, 1y+min denotes the first collocation point above the wall in inner units. The
meshes around the roughness elements in all cases were developed based on a mesh
scheme described in appendix B. By refining this mesh scheme in the streamwise,
wall-normal and spanwise directions and comparing the Reynolds stresses obtained
from these meshes, the statistics produced by this mesh scheme were in good
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FIGURE 3. (Colour online) Mean streamwise velocity profiles for smooth- and rough-wall
cases at various Re. Straight line reflects the log law: U+(y+)= (1/0.41) ln(y+)+ 5.5.

agreement with those using refined meshes. Thus, the current meshes are appropriate
for the goals of this study and ensure that flow within the roughness sublayer was
well resolved. Finally, smooth- and rough-wall simulations are denoted by SM and
RH, respectively.

All simulations were carried out at Department of Defense High Performance
Computing Centers on massively parallel platforms using the MPI2.0 standards. The
statistics for the mean velocities, velocity gradients and Reynolds stresses were
collected after initial transients for approximately ten flow-through times to ensure
converged statistics, which is consistent with previous studies of turbulent channel
flow (Jiménez & Hoyas 2008, for example).

4. Flow statistics
4.1. Mean velocity profiles

Mean velocity profiles are obtained for each case by averaging the streamwise
velocity field in the wall-parallel plane at each wall-normal location. Figure 3 shows
the inner-scaled, mean streamwise velocity, U+, for all cases, including that of
the smooth-wall DNS at Reτ = 400. The log law U+(y+) = (1/0.41) ln(y+) + 5.5
is also included. While viscous stress is the only contributor to the drag in the
smooth-wall case, figure 5 highlights the increased drag produced by roughness,
including form-drag contributions to the overall wall shear stress. This increased drag
modifies the mean velocity profile by an approximately constant downward shift in
the log region of the flow, 1U+. This downward shift is observed for all rough-wall
cases and can be determined by fitting the rough-wall mean velocity profiles with the
log law as

U+(y+)=
1
κ

ln(y+)+ 5.5−1U+. (4.1)

The effective wall-normal origin, d+0 , is also determined by fitting the slope of the log
law assuming κ = 0.41. Table 2 summarizes these roughness-induced parameters for
all cases. Finally, the equivalent sand-grain roughness height, k+s , for each case can
be determined by matching the 1U+ observed to the sand-grain size that yields an
equivalent 1U+ from the measurements of Nikuradse (1933). The main observation
in figure 3 is the clustering of profiles based on the degree of packing of the surface
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Case d+0 1U+ k+s Cf Type

SM400 — — — 0.0065 —
RH200-10-4 5.6 6.6 51 0.0232 k-type
RH400-20-4 5.8 6.6 51 0.0160 k-type
RH400-20-3 10.3 6.2 43 0.0153 k-type
RH400-20-2 15.2 3.2 8 0.0097 d-type
RH600-30-4 6.0 6.6 51 0.0137 k-type

TABLE 2. Summary of the roughness-induced flow parameters: d+0 is the effective wall-
normal origin, 1U+ is the roughness function, k+s is the inner-scaled equivalent sand-grain
roughness height and Cf = 2(uτ/Ub)

2 is the skin-friction coefficient.

roughness. The closely packed (hemispheres touching) case RH400-20-2 has a mean
velocity that is intermediate to the smooth-wall cases and all other rough-wall cases.
When the packing density of the roughness elements is high (i.e. low d), they
effectively shelter one another and form narrow recirculation regions that isolate the
outer flow from the roughness sublayer (Jiménez 2004). Thus, the densely packed
roughness in the RH400-20-2 cases is classified as the ‘d-type’ roughness whereas
the cases RH400-20-3 and RH400-20-4 are commonly referred to as the ‘k-type’
roughness, based on the classification first introduced by Perry et al. (1969). Moreover,
the mean velocity profiles for the rough-wall cases at Reτ = 200 (RH200-10-4) and
600 (RH600-30-4) collapse very well in the log layer with RH400-20-4. This collapse
is consistent with previous studies (Nikuradse 1933; Colebrook & White 1937; Perry
et al. 1969, among others) wherein for ‘k-type’ roughness, the primary factor in
determining 1U+ is k+ compared to other geometrical parameters. For ‘k-type’
roughness, 1U+ can be related to k+s via the study of Nikuradse (1933) through the
fully rough asymptote given by

1U+ =
1
κ

ln(k+s )+ A− 8.5. (4.2)

Flows are commonly considered as fully rough for k+s & 70 for which the form drag
dominates over viscous contributions. In the present study, the equivalent roughness
heights k+s < 70, indicating that our rough-wall flows are still in the transitionally
rough regime. For ‘d-type’ roughness, however, ks is determined by the half-channel
height as ks ≈ 0.02h (Jiménez 2004).

The drag enhancement by roughness can be quantified by the skin-friction
coefficients Cf ≡ 2(uτ/Ub)

2 (see table 2). Compared to the smooth-wall case,
the rough-wall skin-friction coefficients are larger for all cases. In addition, as
the pitch-to-height ratio of the roughness elements is increased, the skin-friction
coefficient increases from 0.0097 for RH400-20-2 to 0.016 for RH400-20-4. This
observation is expected since increasing the pitch-to-height value promotes momentum
transfer within the roughness sublayer and enhances the pressure difference across
the roughness elements (Bailon-Cuba, Leonardi & Castillo 2009). It is also noted that
the difference is small between d/k= 3 and 4, as it has been reported that the effect
of roughness packing density saturates near d≈ 3–4k (Jiménez 2004).

4.2. Reynolds stresses
Figure 4 presents components of the Reynolds stress tensor in inner units for the
smooth- and rough-wall cases. As shown in figure 4(a), the peak streamwise normal
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FIGURE 4. (Colour online) Reynolds stress components versus y+ for the smooth- and
rough-wall cases. The inset of (a) shows u′u′+ near the roughness crests (y+= 20) for all
rough-wall cases. Legend as in figure 3.

stress, u′u′+, is reduced significantly for flows over rough surfaces. A large reduction
is observed for RH400-20-4 and similarly for RH400-20-3 owing to the break-up of
vortical structures in the streamwise direction. However, the reduction of peak u′u′+ is
less significant in the case RH400-20-2, likely due to the sheltering effect of closely
packed roughness elements, which renders this case more hydrodynamically similar
to smooth-wall flow. In addition, the location of peak u′u′+ tends to shift farther
away from the wall as the roughness elements become more compacted. Moreover,
u′u′+ exhibits an inner peak below the roughness crest y+ = 20 as shown in the
inset of figure 4(a) for the cases RH200-10-4, RH400-20-4 and RH600-30-4 with
the same k+ and packing density. The formation of this inner peak is likely due
to the vortical structures formed in the cavity between roughness elements which
promote the streamwise velocity fluctuations below the roughness crest. This effect is
weakened in the cases RH400-20-3 and RH400-20-2 with closely spaced roughness
since the strength of the vortical structures declines as the roughness elements move
closer to each other and the blocking effect of the hexagonal packing pattern becomes
relevant for higher packing densities. This trend eventually leads to the destruction of
the inner peak in u′u′+. Above the roughness crest, the profiles develop an outer peak
near y+≈ 25–30 for the rough-wall cases, owing to stronger production of turbulence
induced by the wakes of the roughness elements. Figures 4(b), 4(c) and 4(d) show
the wall-normal, v′v′+, the spanwise, w′w′+, and the shear stress, u′v′+, respectively.
When compared to smooth-wall flow, these turbulent stresses are less sensitive to
the roughness. The sheltering effect is still apparent as the profiles tend to shift
slightly towards the outer layer with increasing packing density. The shear stress,
u′v′+, falls quickly onto a straight line for y+ > 80, as expected for fully developed
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FIGURE 5. (Colour online) Representative visualizations of the instantaneous streamwise
velocity, u, normalized by the average streamwise velocity Ub, in the (a) x–y plane and
(b) y–z plane for the smooth-wall case SM400 (left) and the rough-wall case RH400-20-4
(right). Lines in the rough-wall cases (right) demarcate 5k away from the top and bottom
walls as a qualitative measure of the roughness sublayer.

turbulent channel flow. For a given roughness height and spacing, increasing Re tends
to enhance the intensity of all Reynolds stresses and shift their peaks towards the
wall.

5. Spatial structure of the flows
Figure 5 shows representative visualizations of the instantaneous streamwise velocity

u, normalized by the average streamwise velocity Ub, in the x–y and y–z planes for
the rough-wall case RH400-20-4 (right) in comparison with the smooth-wall case
SM400 (left). Intense turbulent motions are readily apparent near the wall in both
cases; however, the hemispherical roughness induces flow separation just downstream
of each element, which yields form-drag contributions to the overall drag. In addition,
roughness enhances the turbulence levels in a certain region above the roughness
crest into the log region. The horizontal lines in the rough-wall cases delineate a 5k
distance from each rough wall as a qualitative measure of the depth of the roughness
sublayer (i.e. the region near the wall where roughness directly impacts the flow).
The most intense turbulent fluctuations are primarily contained within this roughness
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FIGURE 6. (Colour online) Representative visualizations of the instantaneous Reynolds-
shear-stress contributions, u′v′, for the (a) smooth-wall case SM400 and the (b) rough-
wall case RH400-20-4 at y+ = 100 (corresponds to y= 5k for the rough-wall case). Line
iso-contours: LMRs (black, u/Um < 0.9) and HMRs (white, u/Um > 1.1) from the y+= 50
plane.

sublayer in both planes visualized. Quadrant analysis has previously shown that this
effect is strongly correlated to the vigorous ejections of low streamwise momentum
fluid away from the wall and sweeps of high streamwise momentum fluids towards
the wall. Coceal et al. (2007) showed that these events are not randomly distributed in
the flow but well organized in certain regions spanning a range of scales. Importantly,
the trains of vortices shed from the hemispherical roughness elements induce greater
ejections/sweeps of fluid away/towards the wall which strongly contributes to the
mean Reynolds shear stress.

Figures 6–8 present representative visualizations of the instantaneous Reynolds-
shear-stress contributions, u′v′, for the smooth- (top) and rough-wall (bottom) cases
in the wall-parallel x–z plane at three wall-normal locations at the same instant
in time. It is well established that both smooth- and rough-wall flows embody
streamwise-elongated regions of low (u′< 0) and high (u′> 0) streamwise momentum
that alternate in the spanwise direction (Ganapathisubramani, Longmire & Marusic
2003; Tomkins & Adrian 2003; Ganapathisubramani et al. 2005; Wu & Christensen
2010, for example), whose streamwise extent can exceed multiple outer length scales
(h, for channel flow) and are thus termed very-large-scale motions (Kim & Adrian
1999) or superstructures (Hutchins & Marusic 2007b). The imprints of low momentum
regions (LMRs) and high momentum regions (HMRs) extend from the outer layer
through to the near-wall region (Hutchins & Marusic 2007a) and are believed to drive
the modulation of the small-scale, near-wall motions (Mathis, Hutchins & Marusic
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FIGURE 7. (Colour online) As in figure 6, but at y+ = 50 (corresponds to y = 2.5k for
the rough-wall case).

2009a). In addition, they contribute heavily to the Reynolds shear stress, with LMRs
producing intense ejections of low streamwise momentum fluid away from the wall
and the HMRs generating intense sweeps of high streamwise momentum towards
the wall. Further, previous studies have found that LMRs represent the x–z signature
of large-scale hairpin vortex packets which are known to occur in both smooth-
and rough-wall flows (Christensen & Adrian 2001; Ganapathisubramani et al. 2003;
Adrian 2007; Volino et al. 2007; Wu & Christensen 2010, for example). Finally, it
should be noted that these elongated LMRs and HMRs are entirely distinct from the
low-speed streaks that occur within the buffer layer of wall turbulence.

With this background in mind, figures 6–8 embody very similar features of LMRs
and HMRs in the y+ = 100, 50 and 25 wall-parallel planes, respectively, which
corresponds to y = 5k, 2.5k and 1.25k for the rough-wall cases, respectively (again,
the three wall-parallel planes for the smooth case were taken at the same instant in
time, as were the three for the rough-wall case). Line iso-contours of instantaneous
low momentum regions (LMRs; u/Um < 0.9) and high momentum regions (HMRs;
u/Um > 1.1) are also included from the y+= 50 plane to illustrate the imprints of the
outer larger-scale motions on the flow within and below the log layer (Here, Um is
the local mean streamwise velocity). These iso-contours bound the spanwise extent
of streamwise-elongated LMRs and HMRs that alternate in the spanwise direction in
both the smooth- and rough-wall flows, within which intense negative contributions
to u′v′ are noted (ejections in LMRs and sweeps in HMRs). Beginning with the
y+ = 100 fields (y= 5k for the rough-wall case, which corresponds to the outer edge
of the roughness sublayer) in figure 6, an approximately 6h-long LMR (black lines)
is apparent near z=−2.2h in the instantaneous smooth-wall field that is bounded on
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FIGURE 8. (Colour online) As in figure 6, but at y+ = 25 (corresponds to y= 1.25k for
the rough-wall case).

both sides by elongated HMRs (white lines) and within which intense u′v′ events are
apparent. Similar features are readily apparent in the instantaneous rough-wall field,
where a 5–6h-long LMR (black lines) is noted at roughly z = 0 in this field that is
also bounded on both sides by elongated HMRs and within which strong negative
u′v′ contributions are noted, although the intensity of these events is more than that
of the smooth-wall case. These features are entirely consistent with previous studies
at similar and higher Re and the striking consistency between these outer-layer spatial
features at y+= 100 of the smooth- and rough-wall flows is consistent with the notion
of outer-layer similarity where the underlying spatial structure is similar even in the
presence of roughness (Raupach et al. 1991; Flack et al. 2005; Wu & Christensen
2007, among others).

Similar LMR and HMR signatures are readily apparent in figure 7 at y+ = 50 and
figure 8 at y+ = 25. In particular, one can identify intense u′v′ events at y+ = 100
and find their signatures still apparent at these lower wall-normal locations at similar
spatial locations as they were sampled, indicating that these LMRs and HMRs
and their associated u′v′ contributions occupy this wall-normal extent, y+ = 25–100
and that roughness enhances the intensity of these events compared to smooth-wall
flow. These observations are again consistent with previous ones in smooth- and
rough-wall flow, which are interpreted as the imprint of the LMRs and HMRs in
the near-wall region and represents a distinct linkage between these regions of the
flow. Thus, consistency in these structural attributes between smooth- and rough-wall
flow, particularly the imprint of outer-layer motions in the near-wall region, explains
why AM effects have been identified in rough-wall turbulence (Anderson 2016;
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Squire et al. 2016; Pathikonda & Christensen 2017a) and set the foundation for the
physics-based modelling proposed herein.

6. More advanced statistical tools
6.1. Amplitude modulation of spatial signals

As mentioned previously, experimental measurements in smooth-wall turbulent
boundary layers (Marusic et al. 2010; Mathis et al. 2011) at high Re revealed that the
large-scale motions in the outer region amplitude modulate the small-scale motions
in the near-wall region, with this modulation increasing in strength with Re. Such
effects were initially demonstrated by decoupling temporal signals of the point-wise
measured fluctuating streamwise velocity into large- and small-scale components with
an appropriate streamwise filter scale (converted to time with Taylor’s hypothesis) that
resided between these two scales. By analysing the correlation between the large-scale
signal and the filtered envelope of the small-scale signal determined with the Hilbert
transform, Mathis et al. (2009a), Marusic et al. (2010) have shown that the near-wall
small-scale turbulence is strongly modulated by the outer-layer large-scale motions.

The scale decomposition procedure for the fluctuating streamwise velocity signal
was originally outlined by Mathis et al. (2009a). Long records of fluctuating
streamwise velocity were sampled at a sufficient rate to ensure that the small and
large scales of the flow were simultaneously captured. These fluctuating velocity
signals were originally time series and reinterpreted as spatial signals using Taylor’s
hypothesis (i.e. κx = 2πf /U). In the current DNS of turbulent channel flow, it is
more convenient and less expensive to sample data over the entire spatial domain (i.e.
entire wall-parallel planes) at instants in time and average in the spanwise direction
to ensure convergence of statistics. Therefore, all velocity signals in the current
work were sampled in space rather than time. This sampling was accomplished by
interpolating the velocity from the nodal points of the finite elements onto a uniform
grid at multiple wall-parallel planes.

Similar to the AM analysis framework reported by Mathis et al. (2009a), the
fluctuating velocity signals u′+(x) herein were decomposed spatially in the streamwise
direction using a sharp spectral filter as

u′+(x)= u′+L (x)+ u′+S (x), (6.1)

where the filter operation is applied to obtain the large-scale component

u′+L (x)=
∫

D
G(r)u′+(x− r) dr, (6.2)

with the kernel of the sharp spectral filter given by

G(x)=
sin(2πx/h)

πx
. (6.3)

The cutoff wavenumber corresponds to the cutoff wavelength, λc, through

κc =
2π

λc
=

2π

h
, (6.4)

which is equivalent to the cutoff angular frequency ωc used to decompose a temporal
signal by

κc =
2π

h
=

2π/U(y)
h/U(y)

=
2π/to

U(y)
=

ωc

U(y)
. (6.5)
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Case NX NY NZ δx+ δz+ y+O
SM2000 4096 1024 3072 12.3 6.13 198.2
SM400 1280 385 640 7.85 3.93 101.4
RH200-10-4 1152 129 512 4.36 2.45 81.2
RH400-20-4 1280 385 640 7.85 3.93 101.4
RH400-20-3 1280 385 640 7.85 3.93 101.4
RH400-20-2 1280 385 640 7.85 3.93 101.4
RH600-30-4 1600 449 800 9.42 4.71 125.7

TABLE 3. Parameters of the sampled planes. NY is the number of planes in the
wall-normal direction; NX–NZ are the number of sampling points in each plane in the
streamwise and spanwise directions, respectively; δx+–δz+ are the corresponding uniform
sampling spacings; y+O is the outer-layer wall-normal reference location.

Here, t0 = h/U(y) is the eddy turnover time at any specific wall-normal location
based on the local mean velocity, U(y). The sharp spectral filter eliminates the
Fourier modes of any wavenumber |κx| greater than the cutoff wavenumber κc with
no effect on the lower modes.

The details of the sampled planes for all cases are summarized in table 3. The
spacing between sampled points in each plane was constant as indicated by δx+ and
δz+ along the streamwise and spanwise directions, respectively. These spacings were
chosen to be comparable to the grid spacings to ensure that the small-scale features
were captured and the energy in the largest scales was converged with sufficient
samples.

At a given wall-normal location, the streamwise velocity signals are decomposed in
the x-direction at every z-coordinate. An example of this spatial scale decomposition
in the near-wall region for the smooth-wall flow at Reτ = 400 is shown in figure 9.
Consistent with the experimental observations (Mathis et al. 2009a), the large-scale
signal captures the general trend of the raw fluctuating signal, with the occurrence
of the negative large-scale signal tends to amplitude modulate the small-scale signal.
This can be seen, for example, in the region of the dashed vertical lines in figure 9(c).
In contrast, the small-scale signal embodies more intermittent and intense velocity
fluctuations associated with small-scale features of the flow.

To quantify the effects of amplitude modulation, the Hilbert transform is employed
to extract the envelope of the small-scale signal as

E{u′+S }(x)=
√

u′+S
2
(x)+H{u′+S }

2
(x), (6.6)

where the Hilbert transform is given by

H{u′+S }(x)=
1
π

P
∫
∞

−∞

u′+S (r)
x− r

dr. (6.7)

Here, P is the Cauchy principal value of the integral and r is the spatial shift
in the streamwise direction. Owing to the multi-scale nature of turbulence, the
envelope returned by the Hilbert transform generally contains not only the large-scale
modulation effects but also the small-scale variations carried by the original signal.
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FIGURE 9. (Colour online) Spatial velocity decomposition and comparison with the
envelopes at y+ = 15.4 for the smooth-wall case at Reτ = 400. Vertical lines denote
regions of negative excursion of the large-scale signal. (a) Raw streamwise velocity signal.
(b) Small-scale signal, envelope and filtered envelope. (c) Large-scale signal and filtered
envelope (mean removed).

Therefore, this envelope is filtered at the same cutoff wavenumber as the large-scale
signal

EL{u′+S }(x)=
∫

D
G(r)E{u′+S }(r− x) dr, (6.8)

which thus returns the large-scale envelope of the small-scale signal, EL{u′+S }(x).
Figure 9(b) illustrates an example of the envelope of the small-scale signal and
the resulting filtered envelope for the smooth-wall case at Reτ = 400. It is readily
seen that the filtered envelope closely resembles the large-scale signal as shown in
figure 9(c).

Adopting the approach of Mathis et al. (2009a), the amplitude modulation of
a fluctuating velocity signal, u′+, is formally defined as the correlation coefficient
between the large-scale envelope of the small-scale signal, EL{u′+S }, and the large-scale
signal, u′+L , at any two wall-normal positions y+1 and y+2 as

AM{u′+} = Ru(y+1 ; y
+

2 )=
EL{u′+S }(y

+

1 ) u′+L (y
+

2 )√
EL{u′+S }(y

+

1 )
2

√
u′+L (y

+

2 )
2
. (6.9)

Note that each term of this correlation coefficient is first calculated individually at
every z-coordinate and then averaged across the z-direction. While the framework of
amplitude modulation has been predominantly applied to just the streamwise velocity
component, its use is extended to all three velocity components in the smooth- and

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

89
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.899


Modelling smooth- and transitionally rough-wall turbulent channel flow 425

rough-wall flows studied herein. Following the definition given in Talluru et al. (2014),
the AM correlation coefficients for v′ and w′ are defined by

AM{v′+} = Rv(y+1 ; y
+

2 )=
EL{v

′+

S }(y
+

1 ) u′+L (y
+

2 )√
EL{v

′+

S }(y
+

1 )
2

√
u′+L (y

+

2 )
2
, (6.10)

and

AM{w′+} = Rw(y+1 ; y
+

2 )=
EL{w′+S }(y

+

1 ) u′+L (y
+

2 )√
EL{w′+S }(y

+

1 )
2

√
u′+L (y

+

2 )
2
. (6.11)

Figure 10 demonstrates the AM correlation coefficients in the wall-normal direction
for all velocity components extracted from the DNS of turbulent channel flows
over various rough surfaces (refer to table 1 for case labels). Here, the large-scale
signal is taken as that embodied in u′ regardless of the velocity component considered,
consistent with Talluru et al. (2014), as v′ and w′ primary reflect signatures of smaller
and intermediate scales of the flow while u′ embodies larger-scale ones (Jiménez &
Hoyas 2008).

In the aforementioned experimental studies, AM effects were investigated using
single-point measurements, so the AM correlation coefficient was defined by setting
y+1 = y+2 in (6.9). In this regard, the large scales were correlated with the filtered
envelope of the small scales at the same wall-normal location. Equivalent single-point
AM correlation coefficients were calculated for the DNS cases herein are shown
in figure 10(a,c,e) for u′, v′ and w′, respectively. For the streamwise velocity
component, Ru, the correlation coefficient shows a strong AM effect near the wall
in the smooth-wall cases (the current Reτ = 400 DNS and the Reτ = 2003 from
Hoyas & Jiménez (2006)). This is particularly evident for the higher-Re smooth-wall
case which is quite consistent with the results reported by Mathis et al. (2009a)
for Reτ = 2800 as reproduced in figure 10(a). However, in contrast to previous
boundary-layer observations, the absence of high negative correlation beyond the log
region is observed in the smooth-wall channel cases. Mathis et al. (2009a) attributed
this strong negative correlation in turbulent boundary layers to intermittency in the
wake region. As the present channel flows are fully developed, no such wake region
exists near the centreline and thus this negative correlation region is not noted herein
and the correlation instead exhibits a relatively flat shape in the log region. This
observation agrees with the results reported by Mathis et al. (2009b) wherein they
compared AM effects in turbulent boundary-layer, pipe and channel flows and showed
that such behaviour in the outer region is dependent on the flow geometry. Similar
trends are observed herein for the AM correlation coefficients for the wall-normal,
Rv, and spanwise, Rw, velocity components as shown in figures 10(c) and 10(e),
respectively. Thus, the large-scale signature amplitude modulates the small-scale
velocity fluctuations across all three velocity components, consistent with experimental
results reported by Talluru et al. (2014) in a turbulent boundary layer and recent DNS
work in a minimal channel reported by Yin, Huang & Xu (2018).

The effects of roughness are clear in the single-point AM correlations presented in
figure 10(a,c,e). For all velocity components, the presence of roughness enhances the
degree of AM in the immediate region above the roughness, but still deep in the
roughness sublayer, compared to smooth-wall flow at the same Reτ , implying that
localized small-scale structures in the near-wall region of rough-wall flow experience
enhanced modulation by the large-scale structures. With regard to element spacing,
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FIGURE 10. (Colour online) Amplitude modulation correlation coefficients for the smooth-
and rough-wall cases. (a,c,e) Single-point AM; (b,d, f ) two-point AM (y+O for each case is
listed in table 3). The single-point AM in smooth-wall flow at Reτ = 2800 from Mathis
et al. (2009a) is also included for comparison and is labelled as MHM2800. Vertical line
denotes the location of the roughness crest k+ = 20.

the degree of modulation is approximately the same for most wall-normal positions,
except very close to the roughness crest where the greatest enhancement is found in
the case with the closest-packed hemispheres. This localized effect diminishes as the
element spacing increases. Further, the single-point AM correlations collapse very well
in the outer-layer region between the smooth- and rough-wall cases at fixed Reτ = 400,
further evidence of outer-layer similarity for these surface conditions. This outer-layer
similarity of AM effects between the smooth and rough cases suggests that roughness
alters the flow up to approximately y+= 100, or 5k from the wall. This latter measure
of the roughness-sublayer thickness is in agreement with previous observations for 3-D
roughness (Flack, Schultz & Connelly 2007; Wu & Christensen 2007). Interestingly,
for the rough cases, the zero crossings of Ru, Rv and Rw occur below the log region,
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in contrast to that of the SM2000 high-Re case presented, where the zero crossings
for all three correlations occur at approximately the same wall-normal location (y+≈
100) in the log region. This behaviour is expected since the large-scale structures
become progressively energetic and have stronger modulation effects as Re increases.
Nevertheless, the wall-normal trends of the DNS cases presented herein share very
similar overall characteristics to this higher-Re smooth-wall case.

Though these single-point AM correlation coefficients provide a reasonable estimate
of the degree of AM of the outer large scales on the small scales (Mathis et al.
2009a), this approach presumes that the large-scale signal at the single-point
wall-normal location is fully reflective of the true large-scale signature in the outer
region. While studies of smooth-wall flow show this assumption to be valid when
comparisons are made between single- and two-point AM correlations, roughness
directly perturbs the flow near the wall, which could include perturbation of the
large scales as well. Thus, additional insight about the interactions between the
inner, small-scale and outer, large-scale turbulence can be gained by computing the
synchronized two-point AM correlation coefficients, where the large-scale signal is
taken directly from the outer layer. Doing so directly demonstrates how near-wall
turbulence is modulated by the larger-scale motions in the outer layer in an nonlinear
manner that is free of cross-contamination that may occur in the single-point AM
approach. As shown in figure 10(b,d, f ), the two-point AM correlation coefficients
show consistent Re trends for all velocity components and surface conditions. It is
more evident that the AM effect is enhanced by roughness and this measure of AM
effects is less sensitive to the element spacing. Furthermore, the presence of AM in
the Reτ = 400 smooth-wall case as well as all roughness cases is consistent with the
work by Bernardini & Pirozzoli (2011) who reported the onset of AM effects in a
DNS of a compressible turbulent boundary layer at Reτ as low as 400.

6.2. Principal component analysis
With the presence of AM effects clearly established via both single- and two-point
AM correlation coefficients, this physics is leveraged to achieve a physics-based
model of higher-order statistics of all Reynolds stress components in smooth- and
rough-wall flow. The anisotropy of wall turbulence results in non-zero correlation
between the streamwise and wall-normal velocity components which represents the
Reynolds shear stress. While the predictive work of Mathis et al. (2011) and Talluru
et al. (2014) focused exclusively on the normal components of the Reynolds stress
tensor, Agostini & Leschziner (2016) and Yin et al. (2018) have proposed models
to predict the joint probability density functions (PDFs) of (u′, v′) and (u′, w′). To
model these anisotropies in a similar manner, principal component analysis (PCA), a
tool often used to study the dynamics of turbulent coherent motions (Sirovich 1987),
is exploited herein to account for such effects to predict off-diagonal terms of the
Reynolds stress tensor. The PCA method is commonly used as a tool in studying
large and complex sets of data that are generally correlated, to reveal the underlying
relations and hence allow interpretations that would not be ordinarily possible. In
this regard, PCA is a statistical procedure that transforms the original set of variables
into a new set of linearly uncorrelated variables, termed the principal components.
Geometrically, this transformation can be understood as rotating the original axes and
the velocity fluctuations along a new coordinate system aligned with the principal
components. By definition, the principal components are orthogonal to each other and
ordered from the largest to the smallest correlation magnitude.
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The application of PCA in turbulent channel flow is simplified as only the
streamwise and wall-normal velocity fluctuations, u′ and v′, are correlated (the
one-point correlations of w′ with u′ and v′ are zero in turbulent channel flow;
higher-order moment predictions of w′ are postponed to the next section). Consider
the linear transformation defined by

y=
[
ξ

η

]
=

[
c11 c12
c21 c22

] [
u′
v′

]
= Cx, (6.12)

where y = [ξ, η]T represents the set of principal components, x = [u′, v′]T is the set
of original velocity components, and C is a unitary rotation matrix (x and y in this
section should not be confused with coordinate directions). We assume that ξ and η
represent the first and second principal components, respectively. If we denote Σx and
Σy as the covariance matrices of x and y, respectively, then they are related by the
matrix C as

Σy = CΣxC
T . (6.13)

Let (λ1, e1), (λ2, e2) be the eigenvalue–eigenvector pairs of the covariance matrix Σx,
where λ1 > λ2 > 0. The first step of PCA (Johnson & Wichern 2014) is to diagonalize
the covariance matrix of the original velocity components Σx as

Σx =QΛxQ
T, (6.14)

where Q denotes the orthogonal matrix whose columns are the eigenvectors e1 and e2,
while Λx is the diagonal matrix with eigenvalues λ1, λ2 along the main diagonal. It
is identified that

C =

[
c11 c12
c21 c22

]
=
[
e1 e2

]T
=QT, (6.15)

and
y=QTx. (6.16)

Note that the original velocity components can be recovered by transforming the
principal components back according to x=Qy.

The distributions of (u′+, v′+) for both smooth- and rough-wall flow are illustrated
in figure 11 at four wall-normal locations. These scatter plots illustrate differences
in the intensity of coupled u′ and v′ events between smooth- and rough-wall flow,
particularly in the near-wall region where roughness enhances the intensity of these
velocity fluctuations and thus their contributions to the Reynolds shear stress. With
increasing wall-normal position, these differences between smooth- and rough-wall
flow subside. As noted above, the principal components in this plane are obtained
by projecting the original velocity components onto the principal axes denoted by
solid (smooth) and dashed (rough) lines in the scatter plots. Therefore, it is readily
seen that the distribution of the principal components can be obtained by rotating the
original distribution to the new coordinate system formed by the principal axes. While
the principal components of smooth- and rough-wall flow presented here show slight
deviations, the differences for all flow cases can be quantified by calculating the angle
between the new coordinate system aligned with the principal components and the
original coordinate system, denoted by φ, measured in the clockwise direction with
respect to the streamwise direction. Then (6.15) is simply,

QT
= C =

[
cos φ −sinφ
sin φ cos φ

]
. (6.17)
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FIGURE 11. (Colour online) Distribution of (u′+, v′+) at four wall-normal positions. Solid
lines denote principal axes for SM400; dashed lines denote the principal axes for RH400-
20-4.

Figure 12 presents the angle φ(◦) as a function of wall-normal position for all
flow cases. The angle varies almost linearly with wall-normal distance, reaching
approximately 20◦ near the centre of the log region. In the rough-wall cases, the
angle of rotation for closely packed roughness elements (d/k= 2 case) is consistently
reduced for all wall-normal positions as reflected in the RH400-20-2 trends. For the
cases with larger element spacings (d/k = 3–4), however, the magnitude is slightly
larger than the smooth-wall cases near the roughness crest. Of note, all rough-wall
cases approach the present Reτ = 400 smooth-wall trends in the outer layer, indicative
of outer-layer similarity outside the roughness sublayer. However, the higher Re
smooth-wall flow of Hoyas & Jiménez (2006) has a lower value of φ in the log
layer, indicating that this angle has Re dependence. The effect of Re on PCA clearly
deserves more scrutiny.

7. Generalized predictive inner–outer interactions model
As noted earlier, Mathis et al. (2011) proposed a model to predict statistics of

the streamwise velocity fluctuations in the near-wall region based on measurements
of large-scale velocity signals in the outer layer where the model is calibrated. The
mathematical formulation of the model is given by

{u′+(y+)}p = u∗(y+){1+ βu′+OL(y
+

O, θL)} + αu′+OL(y
+

O, θL), (7.1)
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FIGURE 12. (Colour online) Angle of rotation of the principal axes of (u′+, v′+) for the
smooth- and rough-wall cases. Vertical line denotes the location of the roughness crest
k+ = 20.

where {u′+(y+)}p is the predicted fluctuating velocity signal in the near-wall region,
u∗(y+) is the universal signal that would exist if no AM effects were imparted by
the outer-layer, large-scale signal, and the constants α, β and θL are determined
while determining the universal signal. To calibrate the predictive model, two-point
simultaneous sampling of data is typically performed for a range of wall-normal
positions close to the wall (traversed vertically) with a reference wall-normal position
in the outer region (fixed). This reference location, y+O , is generally not important
as long as it resides in the log region. Note that in Mathis et al. (2011), the
wall-normal locations were selected based on the empirical relation y+O = 3.9Re1/2

τ

which corresponds approximately to the centre of the log region. The reference
locations herein were chosen slightly further from the wall than that calculated by
the empirical relation to reduce the influence of roughness on the log region for the
lower-Re cases by ensuring that the outer position always sat outside the roughness
sublayer. This reference location is used for the evaluation of the model (7.1) for all
surface cases; the y+O for each case is listed in table 3.

For large Re, the outer-layer, large-scale signals impart a strong ‘footprint’ on
the small-scale activities near the wall. This effect is understood as superimposing
low-wavenumber signatures by the outer large-scale structures on the near-wall
fluctuating signals. Therefore, one expects to see certain correlations between the
inner and outer large-scale components of the velocity signals. The large-scale
components are obtained by filtering the synchronized fluctuating signals at the inner
and outer planes with the same cutoff wavenumber used previously (κc = 2π/h).
Then, the maximum cross-correlation between the two filtered large-scale signals is
determined corresponding to the largest influence on the near-wall cycles imposed by
the large-scale structures residing in the log region. For spatial signals, the correlation
is further averaged in the spanwise direction to ensure statistical convergence. The
superposition coefficient, α, is determined as the maximum of the cross-correlation
between the two large-scale components, while the mean inclination angle of the
large-scale structures, θL, is based on the streamwise offset 1xm/h associated with the
peak cross-correlation. Using α and θL obtained as part of the calibration process, one
can remove the footprint of the outer large-scale signal on the near-wall, small-scale
flow, resulting in the de-trended signal, u′+d (y+), given by

u′+d (y
+)= {u′+(y+)}c − αu′+L (y

+

O, θL)= u∗(y+)[1+ βu′+L (y
+

O, θL)]. (7.2)
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Here, {u′+(y+)}c is the fluctuating velocity signal used for calibration and u′+L (y
+

O, θL)

is the filtered outer large-scale signal shifted in the streamwise direction by an amount
that corresponds to θL. With α, θL and u′+d across the channel now known from this
analysis, the universal signal u∗ and the constant β can be determined from the de-
trended signal by iterating values of β such that the degree of AM of the universal
signal u∗ is zero. Mathematically, this implies that given β, one must determine the
signal u∗ using (7.2) such that AM{u∗} = 0, where the coefficient of AM is calculated
with respect to u′+L (y

+

O, θL). Hence, the universal signal represents the near-wall, small-
scale signal with minimal influence from the outer-layer large-scale motions. Mathis
et al. (2011) compared the universal signal calibrated by measurements in a turbulent
boundary layer at Reτ = 7300 to a channel flow at Reτ = 1000 and found reasonable
agreement between them. They therefore argued that the behaviour of a universal
signal follows the low-Re flow in which the large-scale influence is weak. In this
regard, β represents a measure of the degree to which small-scale turbulence is being
modulated by the outer large-scale events. Thus, one would expect that β would share
similar wall-normal trends as the two-point AM correlation coefficients.

The predictive model in (7.1) is established once u∗ and the constants α, θL and
β are determined across the inner region. The effectiveness and robustness of the
model can be validated by examining the predicted small-scale signal according to
(7.1). Note that in the calibration process, the filtered outer large-scale velocity signal,
{u′+L (y

+

O, θL)}c, is extracted from the lower wall of the turbulent channel to obtain the
model constants and universal signal. During the validation process, the input large-
scale velocity signal, {u′+L (y

+

O, θL)}p, is obtained from the opposite wall at the reference
wall-normal location (given in table 3) and spatially filtered with the same cutoff
wavenumber as in the calibration process. Then, the filtered outer large-scale signal is
shifted in the streamwise direction to account for the inclination angle θL associated
with the universal signal u∗ at each y+ in the inner region. In general, the large-
scale signal used for prediction is not necessarily synchronized with the corresponding
universal signal obtained during calibration. Hence, by switching the Fourier phases of
the outer large-scale signal used for calibration, {u′+L (y

+

O, θL)}c, with the one used for
prediction, {u′+L (y

+

O, θL)}p, without altering the spectral density of the individual signal,
one obtains the synchronized large-scale signal. Finally, the prediction of the near-wall,
small-scale signal is readily obtained using (7.1). Further details of this method can
be found in Mathis et al. (2011).

7.1. Predictions of u′ and v′

While the original model, i.e. (7.1), proposed by Mathis et al. (2011), focused on
predicting the statistics of u′, it is possible to extend the model to other velocity
components to make predictions of the full Reynolds stress tensor. Figure 13(a,c,e)
compares the statistics of the Reynolds stresses calculated from DNS (lines) against
those predicted by the original model (open symbols), where the outer large-scale
signal u′ is used for the calibration and prediction of both u′ and v′ in the near-wall
region. Note that during the calibration for v′, the constants are determined using
the near-wall large-scale components of v′. It is also found that the superposition
coefficient for v′ reaches only approximately 0.6 close to the reference location, as
opposed to 1.0 for u′. It is not surprising that the predictions of the streamwise
Reynolds stress, u′2, agree well with that calculated from DNS for both smooth
and rough-wall flows. For the wall-normal, v′2, and shear, u′v′, stresses, however,
the statistics are over-predicted by the original model as the reference plane is
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FIGURE 13. (Colour online) Predictions of the Reynolds stresses for the smooth- and
rough-wall cases involving u′ and v′ compared with the actual statistics from DNS.
(a,c,e) Original model of Mathis et al. (2011) (7.1); (b,d, f ) PCA-adapted models using
u′+OL (unrotated PCA-adapted model; open symbols) and the outer large-scale ξ ′+OL/η

′+

OL
(consistent PCA-adapted model; filled symbols). Symbol × marks the reference location
where the large-scale signal is extracted. Vertical lines denote the location of the roughness
crest k+ = 20.

approached. Jiménez & Hoyas (2008) used spectral analysis to show that the presence
of large-scale signatures with substantial energy are present in the premultiplied
spectra of u′ all the way from very near the wall to the top of the flow, a feature
that represents the attached eddies whose dimensions scale well with the distance
from the wall. Instead, spectra of v′ and cospectra of u′v′ lack most of the energy
carried by the long-wavelength structures residing in the outer layer, and thus embody
the effects of detached eddies. The notion of attached and detached eddies, based
on Townsend’s attached-eddy hypothesis (Townsend 1976), can be related to the
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predictive model in the sense that the outer large-scale information used as input in
the model correlates better with u′ rather than v′. This is seen in figure 13(c,e) with
larger errors as the reference position is approached, since the outer layer is populated
with more large-scale structures. Very recently, Yin et al. (2018) suggested that, while
predicting the statistics of v′ is accurate via the modulation effect embodied in the
outer large-scale u′, the superposition constants should be determined by the outer
large-scale v′. Following this idea, we have proposed an alternative model that
calibrates each velocity component using the corresponding outer large-scale signal
and compared to the model using only the large-scale u′. The predicted statistics
are shown in appendix C and it is observed that the statistics of v′ are improved at
higher Re with the alternative model but the correlations between u′ and v′ are still
poorly reproduced.

Although the performance of the original model is limited by how well the outer
large-scale signals are correlated with near-wall velocity signals, incorporating PCA
to the model formulation allows one to make more robust predictions of the statistics
for the Reynolds stresses associated with u′ and v′; at least, for the modest Re
we can effectively explore with the current DNS. Since the principal components
are uncorrelated by construction, the modelling challenge is reduced to applying
the analysis of AM to the principal components (ξ ′ and η′) themselves and to
independently calibrating the predictive inner–outer model. Doing so yields two
sets of calibrated coefficients and universal signals for the two principal components,
respectively. Then, the predicted near-wall fluctuating principal components are readily
obtained in analogy to (7.1), e.g.

{ξ ′+(y+)}p = ξ ∗(y+){1+ βξξ ′+OL(y
+

O, θLξ )} + αξξ
′+

OL(y
+

O, θLξ ), (7.3)
{η′+(y+)}p = η∗(y+){1+ βηη′+OL(y

+

O, θLη)} + αηη
′+

OL(y
+

O, θLη). (7.4)

From (6.12), the predicted velocity fluctuations are obtained by (dropping subscript p
for simplicity)

u′(y+)= c11(y+)ξ ′(y+)+ c21(y+)η′(y+),
v′(y+)= c12(y+)ξ ′(y+)+ c22(y+)η′(y+),

}
(7.5)

where the coefficients cij are obtained by calculating the eigenvectors of the covariance
matrix at each wall-parallel plane near the wall, i.e. (6.15), of the velocity signals u′
and v′ extracted from the DNS data. Therefore, the Reynolds stresses can now be
predicted according to

u′2 = c2
11ξ
′2 + c2

21η
′2,

v′2 = c2
12ξ
′2 + c2

22η
′2,

u′v′ = c11c12ξ ′2 + c21c22η′2.

 (7.6)

Note that the ξ ′η′ term does not appear in the expressions above since the principal
components are orthogonal to each other by definition and this cross-correlation is
thus zero.

The filled symbols in figure 13(b,d, f ) represent the Reynolds stresses predicted
using the principal components formulation described in (7.3) and (7.4), compared
against the statistics calculated from DNS (lines). Overall, the predictions are in
excellent agreement with the simulations for both smooth-wall (even in the higher Re
simulation of Hoyas & Jiménez (2006)) and the present rough-wall cases, including
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FIGURE 14. (Colour online) As in figure 13, but for third-order statistical moments.

v′v′, and u′v′. Recall that the principal components are obtained by rotating the axes
of u′ and v′ to the principal axes. Consequently, the large-scale information originally
carried by u′+OL is effectively transferred to both principal components. Therefore,
this PCA-adapted model yields more consistent correlations between inner and outer
signals compared to the original model as it embodies anisotropies inherent in the
flow, resulting in improved predictions of statistics associated with v′.

In the formulation of the PCA-adapted model, the outer large-scale signals can
be rotated by an angle that is either consistent with the outer principal components
or with the near-wall principal components, e.g. φ(y+O) or φ(y+), respectively. These
two sets of predictions are indistinguishable and are therefore not shown. The solid
symbols in figure 13(b,d, f ) as discussed above correspond to rotating the near-wall
and outer-layer signals according to their local principal components – which can
be quite different – so this formulation is termed the ‘consistent’ PCA-adapted
model. Alternatively, one could still utilize the PCA-based model but instead leave
the outer large-scale signals unrotated. Thus, the outer large-scale component of u′
would be used to calibrate and predict the near-wall principal components ξ ′ and
η′, respectively, and is termed the ‘unrotated’ PCA model. These results are also
included in figure 13(b,d, f ) and are represented by the open symbols. Interestingly,
this variant of the model accurately predicts u′u′ well, but results in considerable
differences in other components with Re. These differences are primarily due to poor
correlation between the outer large-scale signal, u′, and the near-wall second principal
component, η′.

The efficacy of the PCA-adapted models is further investigated by examining
higher-order statistics involving u′ and v′, as shown in figures 14–17. These
higher-order predictions are obtained in a similar fashion as the Reynolds stresses. In
particular, third- (figures 14 and 16) and fourth-order (figures 15 and 17) moments,
including cross-correlation terms, are computed using the original model of Mathis
et al. (2011) (panels a and c of each figure) as well as both the consistent and
unrotated PCA models (panels b and d of each figure), with the former represented
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FIGURE 15. (Colour online) As in figure 13, but for fourth-order statistical moments.

by solid symbols and the latter by open symbols. As one would expect, predictions
of u′3

+

and u′4
+

by all three models agree very well with the original statistics for
the smooth- and rough-wall cases. However, as with v′v′+, the original model poorly
predicts v′3

+

and v′4
+

compared to the PCA-adapted models, although the consistent
version provides the most accurate reconstruction of these v′ statistics. Interestingly,
all three models perform equally well in predicting the third-order cross-correlation
ones. However, similar to the Reynolds shear stress, the fourth-order cross-terms
are severely over-predicted by the original model and notably over-predicted by
the unrotated PCA-based model, while the consistent PCA-based model accurately
reconstructed these statistics. Finally, since the consistent PCA-adapted model is
formulated for the specific purpose of accurately predicting near-wall statistics based
on outer-layer information, it is not surprising to note small deviations in some of
the higher-order statistics in the outer region for this model. Despite these outer-layer
deviations, the consistent PCA-adapted model performs very well in predicting
near-wall behaviour based on outer-layer flow information.

7.2. Predictions of w′

The previous section was devoted to the prediction of joint statistics of u′ and v′

owing to their interdependence in wall turbulence. As shown in § 6.1 (figure 10), one
can observe an important AM correlation between the near-wall w′ and outer-layer u′.
Spectral analysis of w′ (Jiménez & Hoyas 2008) has shown that long-wavelength
signatures are present over the entire flow thickness, although not as strong as u′,
implying that w′ is also an attached variable in the spirit of Townsend’s attached
eddy hypothesis (Townsend 1976).

These observations, while important, are not sufficient to formulate a useful
predictive model for statistics of w′. From the Reynolds stress balance equations,
the only mechanism of production of w′ fluctuations is the pressure strain, where
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FIGURE 16. (Colour online) As in figure 13, but for the third-order cross-correlated
statistical moments.

it acts as a sink for u′ and a source for v′ and w′; the net pressure strain, or the
pressure dilatation, being zero in incompressible flow. This consequence complicates
the situation because, for w′, the transport field (the source of its energy) is the
pressure, which has long-range interactions and is difficult to model. Nevertheless, it
is known that p′ derives its intensity from u′, although it is not known which region
in space and wavenumber predominantly contribute to it. Since near-wall statistics
of u′ can be inferred from the outer large-scale u′OL, a major conclusion of AM, it
make sense to directly consider the relationship between the near-wall w′ and the
outer-layer u′ in more detail. To do so, we consider the two-point correlation between
the near-wall w′ and the outer-layer u′ in the x–z plane with a two-point separation
vector (1x+, 1z+). This x–z correlation between w′ on a near-wall plane (y+i ) and u′
on an outer-layer plane (y+O) is given by

ρiO(1x+, 1z+; y+i ; y
+

O)=
w′+iL (x+, z+; y+i ) u′+OL(x+ +1x+, z+ +1z+; y+O)√

w′+iL (x+, z+; y+i )2
√

u′+OL(x+, z+; y+O)2
. (7.7)

Figure 18 presents iso-contours of this two-dimensional, off-plane, two-point
correlation coefficient for the smooth-wall case SM400 in comparison with the
higher-Re smooth-wall case, SM2000. The inner plane is located at y+i = 20 in both
cases, while the outer reference location is y+O = 100 for SM400 and y+O = 200 for
SM2000, respectively. An anti-symmetric correlation between w′iL and u′OL is noted
in the x–z plane. Here the positive/negative peaks are no longer located along the
x-axis where 1z+ = 0, but with an offset in the spanwise direction whose distance
increases with Re. This spanwise offset is similar to the experimental results reported
by Volino et al. (2007) who also found that u′ and w′ in the same wall-parallel planes
are correlated on both spanwise sides. The observed spanwise offset implies that, in
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FIGURE 17. (Colour online) As in figure 13, but for the fourth-order cross-correlated
statistical moments.

order to extend the original model, equation (7.1), for w′ statistics, one must calibrate
the velocity component w′ with both a streamwise and a spanwise shift. Thus, the
original model can be modified as

{w′+(y+)}p =w∗(y+){1+ βwu′+OL(y
+

O, θx, θz)} + αwu′+OL(y
+

O, θx, θz), (7.8)

where θx and θz are the inclination angles in the streamwise and spanwise directions,
respectively. For simplicity, w′+ is calibrated with u′+OL and not with ξ ′+OL or η′+OL as the
rotation angle of PCA is only relevant when considering cross-interactions, like those
between u′ and v′. Equivalent results are obtained if ξ ′+OL is used above instead.

Although both the positive and negative peaks shown in figure 18 can be used to
calibrate the model, for simplicity, only the negative peak is used herein. However,
equivalent results can be obtained if the positive peak is used. The magnitude of
the superposition coefficient for all flow conditions is shown in figure 19. Unlike the
trends generally observed for u′, |αw| reaches a peak value (less than 1) below the
reference location and gradually diminishes further away from the wall. It is also seen
that the superposition coefficient tends to grow as the Re increases. Overall, consistent
trends are observed between the smooth- and rough-wall flows at the same Re, except
that the peak values are increased and move closer to the reference location in the
presence of roughness. Finally, the coefficient magnitude is reduced near the roughness
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FIGURE 18. (Colour online) Two-point cross-correlation coefficient, ρiO(1x+, 1z+),
between wiL and uOL in the x–z plane. Contour lines: case SM400 (dark lines: positive ρiO;
light lines: negative ρiO) with increment/decrement of 0.2 times the peak values. Shaded
contours: case SM2000 (light shade: positive ρiO; dark shade: negative ρiO). The outer
plane is located at y+O = 100 for SM400 and y+O = 200 for SM2000. The inner plane is
located at y+= 20 for both cases. Markers: ‘+’ denotes the positive peak and ‘×’ denotes
the negative peak. Larger markers refer to the higher-Re case.
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FIGURE 19. (Colour online) Superposition coefficient αw (magnitude). Vertical line
denotes the location of the roughness crest k+ = 20.

crest with closely packed hemispheres compared to topographies with larger element
spacings. Note that the superposition coefficients can be alternatively calibrated using
the outer large-scale w′ and the results and associated discussion can be found in
appendix C.

Figure 20 shows the wall-normal evolution of the inclination angles θx and θz

for w′ in inner units. For the low Re smooth-wall flow (SM400), w′+iL appears to
lag u′+OL in the streamwise direction near the wall. Away from the wall, however,
w′+iL slowly transitions to lead u′+OL in the streamwise direction as it approaches the
reference location. In particular, θx for the case SM400 increases from an acute
angle of approximately 45◦ in the near-wall region to an obtuse one above y+ ≈ 40
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FIGURE 20. (Colour online) Inclination angles θx and θz for w′. Vertical line denotes the
location of the roughness crest k+ = 20.
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FIGURE 21. (Colour online) Predictions of (a) w′2
+

and (b) w′4
+

for the smooth- and
rough-wall cases in comparison with the original DNS statistics. Symbol × marks the
reference location where the large-scale signal is extracted. Vertical line denotes the
location of the roughness crest k+ = 20. Legend as in figure 13.

and eventually reaches 180◦ close to the outer reference location. At higher Re
(SM2000), w′+iL exhibits excellent synchronization with u′+OL very close to the wall,
but begins to lead u′+OL with increasing wall-normal distance. Similar behaviours of θx

are observed for the rough-wall cases; however, the Re trend shown in the smooth
cases is not as clear in the rough cases, at least for the moderate Re studied herein.
More interestingly, at the same Re, θx near the roughness crest is gradually reduced
for narrowly spaced roughness elements, but is indistinguishable between the smooth-
and rough-wall cases if the elements are sufficiently far apart. This behaviour can be
explained by the lifting effect of fluid away from the wall owing to the presence of
roughness elements. The spanwise inclination angle, θz, is reported in figure 20(b).
Here, θz decreases as a function of y+ from approximately 50◦ for the smooth-wall
case SM400 and 40◦ for SM2000 close to the wall, to 0◦ near the reference plane.
Unlike the trends observed in θx for the rough-wall cases, a Re trend is more apparent
in θz while the effect of roughness-element spacing diminishes.

Figure 21 presents w′2 and w′4 using this modified model, equation (7.8), for both
smooth- and rough-wall cases (note that w′3 is zero by symmetry). Both w′2 and
w′4 predicted by (7.8) are in good agreement with the DNS results for all surfaces.
As these results are the initial attempt to model w′ statistics with streamwise and
spanwise offsets, definitive trends with Re cannot be established owing to the relatively
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FIGURE 22. (Colour online) Superposition coefficient, α, inclination angle, θL, and
modulation coefficient, β, for the smooth- and rough-wall cases. (a,c,e) First principal
component, ξ ′; (b,d, f ) second principal component, η′. Vertical line denotes the location
of the roughness crest k+ = 20.

moderate Re studied herein. However, the present results are clearly encouraging from
a modelling perspective.

7.3. Model coefficients and universal signals in PCA form
The ‘consistent’ PCA-based model presented herein predicts the behaviour of the
principal components, ξ and η, rather than the velocities as in the original model
of Mathis et al. (2011) as shown in (7.3) and (7.4). Therefore, each principal
component will have an associated superposition coefficient, α, inclination angle, θL,
and modulation coefficient, β. These modelling coefficients are shown as a function of
y+ in figure 22, where the solid vertical line denotes the location of roughness crests
(k+= 20). For the first principal component, the superposition coefficient αξ increases
in the near-wall region from approximately 0.3 for SM400 and 0.6 for SM2000,
respectively, to 1 near the reference position. As αξ is a measure of large-scale
phenomena, the agreement noted between the smooth- and rough-wall cases implies
that it is relatively unaffected by the presence of roughness, with a slight enhancement
near the roughness crest as the element spacing increases. However, given the same
roughness height and spacing, αξ tends to grow with Re. Similar trends are observed
for αη, except for the lower magnitudes near the wall.
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FIGURE 23. (Colour online) Amplitude of the large-scale signals based on PCA for the
smooth- and rough-wall cases. (a) First principal component, ξL; (b) second principal
component, ηL. Vertical line denotes the location of the roughness crest k+ = 20.

The inclination angle for the first principal component, θLξ , varies slowly from 10◦
to 25◦ in the range 10 < y+ < 200 in the highest Re case, consistent with previous
experiments (Mathis et al. 2011). For lower Re in both smooth- and rough-wall cases,
however, this inclination angle increases with y+, reaching approximately 60◦ close
to the reference location. In addition, it is notable that roughness has no significant
impact on θLξ , except for the case with closely packed hemispheres (RH400-20-2)
where θLξ is consistently reduced compared to the smooth-wall case owing to the
mutual sheltering of roughness elements. For the second principal component, θLη

grows slower compared to θLξ , reaching approximately 20◦ for the highest Re case and
30◦ for lower Re cases near the reference position. Roughly speaking, the behaviours
of θLξ and θLη are similar in the rough-wall cases, with the exception of the lowest
Re case, where the latter drops rapidly within the roughness sublayer.

A comparison of the modulation coefficients βξ and βη is also shown in figure 22.
Roughness enhances both βξ and βη in the near-wall region compared to the smooth-
wall result. At Reτ = 400, roughness-element spacing appears to have a weak effect
at best on βξ and βη as the results for d/k = 2–4 show only small differences. In
addition, βξ and βη grow with Re, as β is another measure of the AM effect, which
is the weakest in the Reτ = 200 case and strongest in the Reτ = 600 case among the
rough-wall simulations. This effect seems to be stronger in βη.

Note that the large-scale signals are the only terms in the predictive model that
vary between the calibration and prediction processes. Thus, the correctness of the
model depends significantly on the large scales themselves. If the amplitude of the
large-scale signals are small compared to that of the universal signals, the agreement
of the predictions reported herein might occur regardless of the correctness of the
model. Therefore, the amplitude of the large-scale signals based on PCA are reported
in figure 23 for the smooth- and rough-wall flows. For both principal components,
it is shown that the amplitude of the large-scale signal approaches a constant value
beyond y+ ≈ 100, consistent between the smooth- and rough-wall flows. Moreover,
the amplitude of the large-scale signal decreases as the Re increases and is likely to
reach an asymptotic limit at sufficiently high Re. This is expected as the separation
of scales is difficult to achieve at low Re and hence some proportion of the moderate-
to large-scale structures are counted as the large scales while low-pass filtering the
velocity signals. In comparison with the amplitude of the universal signals shown in
figure 24(a,b), the large scales of both principal components remain non-negligible
near the wall above the roughness crest. Therefore, the changes in the large-scale
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FIGURE 24. (Colour online) Statistical properties of the universal signals based on PCA
for the smooth- and rough-wall cases. (a,c,e) First principal component, ξ ∗; (b,d, f ) second
principal component, η∗. Vertical line denotes the location of the roughness crest k+= 20.

signals from the calibration to the prediction process have an impact on the predicted
statistics based on the main model.

The effect of surface conditions on the variance, skewness and kurtosis (subtracted
by 3) of the universal signals based on the principal components are shown in
figure 24. The variance of the first principal component ξ ∗, normalized by the friction
velocity, demonstrates a strong reduction in the peak values near the roughness crest,
compared to the smooth-wall cases. This reduction is stronger for ‘k-type’ roughness
as reflected in the cases with d/k= 3–4 compared to ‘d-type’ roughness as in the case
with d/k=2 (closely packed hemispheres). Moreover, although all statistical properties
of the first principal component are still Re dependent among the rough-wall cases,
they show perceivable tendency towards the high Re limits in which the variance
varies slowly while the skewness and kurtosis remain almost constant for y+ > 100
for the smooth-wall flow at Reτ =2000. Even better outer-layer consistency is noted in
the statistics of the second principal component, η∗, where a similar tendency toward
high Re trends is present for the variance as well as excellent collapse of skewness
and kurtosis observed among all cases beyond y+ ≈ 80. From the perspective of
modelling the inner–outer interactions in rough-wall flows, this outer-layer similarity
means it is conceivable that the universal signals calibrated at sufficiently high Re,
whether the surface is smooth or rough, can be used for reasonable predictions of
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FIGURE 25. (Colour online) Energy spectra of the universal signals based on PCA at
(a) y+ = k+, (b) y+ = 1.5k+ and (c) y+ = 3k+ for the smooth- and rough-wall cases. All
spectra are normalized by the friction velocity, uτ , and half-channel height, h.

the near-wall velocity signals outside the roughness sublayer based solely on the
outer-layer large-scale information.

Energy spectra of the universal signals of the first principal component, Eξ∗ξ∗/hu2
τ ,

at selected wall-normal positions are shown in figure 25. Very close to the roughness
crest, at y+ = 20, large spikes are noted in the spectra of the rough-wall flows.
The location of these energy spikes is closely related to the streamwise wavelength
characterizing the geometry of the rough surfaces. For example, the first peak for the
case RH400-20-4 corresponds to the wavelength λ = 0.349, which is approximately
equal to the separation between roughness elements (

√
3d or 4

√
3k) in the streamwise

direction (see the inset of figure 2(b) for a graphical representation of the geometry).
Additionally, a higher degree of energy content is found at large wavenumbers
in the rough-wall flows coupled with a reduction in energy at low wavenumbers
compared to the smooth-wall case. This behaviour is expected since the presence of
roughness energizes the near-wall turbulence, likely through the shedding of energetic,
small-scale, vortical motions that scale with the roughness height. As one moves away
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from the wall, the effect of surface roughness is reduced, and, at y+= 3k+, all energy
spectra at Reτ = 400 collapse onto one another, indicating that the influence of
roughness is restricted to the roughness sublayer that resides within a few roughness
heights from the wall. This collapse of energy spectra for all surface conditions is
useful as a guideline for modelling turbulence over rough surfaces.

8. Conclusions

Direct numerical simulations of turbulent channel flow over smooth and rough
surfaces, the latter consisting of hexagonally packed array of hemispheres, were
performed at Reτ = 200, 400 and 600. The normalized roughness height for all Re
was fixed at k+ = 20 while the distance between neighbouring roughness elements
varied in the range d/k = 2–4. Profiles of the mean streamwise velocity reflect its
expected downward shift owing to the enhancement in drag for all rough-wall cases
compared to smooth-wall flow. Excellent agreement of the roughness function values
was observed for all ‘k-type’ rough-wall flows, showing an effective dependence
on k+. However, the case with densely packed hemispheres, classified as ‘d-type’
roughness, showed a reduced downward shift compared to other rough-wall flows,
owing to the sheltering effect generated between closely spaced roughness elements.
In addition, the equivalent sand-grain roughness heights k+s indicate that flows studied
herein reside in the transitionally rough regime. Moreover, profiles of the Reynolds
stresses show that the roughness significantly reduced the inner peak of the streamwise
Reynolds normal stress in all rough-wall cases compared to the smooth-wall case.
However, outside the roughness sublayer the Reynolds stresses of the rough-wall
cases converge to the smooth-wall trends, supporting the occurrence of outer-layer
similarity irrespective of the surface conditions and Reτ .

These DNS data also afforded the opportunity to explore amplitude modulation
of the small-scale, near-wall flow by the larger-scale, outer-layer motions in all
three velocity components. The single-point AM correlation coefficients for all
three velocity components demonstrate enhanced modulation within the roughness
sublayer compared to the smooth-wall case, although this enhancement diminishes
with increasing wall-normal position as the rough-wall AM results converge to the
smooth-wall AM trend outside the roughness sublayer. This outer-layer consistency
between the smooth- and rough-wall flows is yet another indication of outer-layer
similarity in these flows as quantified through these inner–outer flow interactions.

In previous studies of smooth-wall turbulent boundary layers, Mathis et al. (2011)
proposed a predictive inner–outer model using the concept of AM to investigate
the statistical properties of streamwise velocity fluctuations. This model was applied
herein to the smooth- and rough-wall cases, but extended to consider predictions of all
velocity components. It was found that the calibration coefficient β closely resembles
the two-point AM coefficient and the presence of roughness tends to enhance the
modulation effect imparted by the outer-layer motions on the near-wall small-scale
motions, with this effect growing stronger with increasing Reτ .

The effect of anisotropy was also explored within the AM framework using
principal component analysis. Constructing the predictive model based on the
principal components of u′ and v′ yielded uncorrelated universal signals which
enabled prediction of correlated velocity statistics. Although the statistical properties
of the universal signals behave differently between ‘k-type’ and ‘d-type’ roughness in
the near-wall region, similarity is preserved outside the roughness sublayer for y> 3k.
Combining the universal signals derived from the principal components facilitated
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predictions of not only the moments of u′ and v′ but also moments of cross-terms i.e.
u′v′, u′2v′ and u′2v′, etc. The efficacy of this approach was validated by comparing
predictions of Reynolds stresses and higher-order moments in the near-wall region to
the true statistics computed from the DNS. For all cases presented, predictions up
to fourth-order moments, including moments between correlated variables, with the
consistent PCA-adapted model showed superior agreement with the original statistics
compared to models that do not embody anisotropy of the flow. As this model is
constructed to accurately predict near-wall statistics based on outer-layer information,
some deviations in these statistics was noted in the outer layer as the reference
position was approached. Despite these outer-layer deviations, the model performs
very well in predicting near-wall behaviour based on outer-layer flow information and
thus holds great promise for near-wall modelling of rough-wall flows.

Furthermore, the AM effect was explored for the spanwise velocity fluctuations,
w′. Development of an accurate predictive model of w′ moments required not only
a streamwise shift in the signal correlation but also a spanwise one as motivated by
two-point correlations between spanwise and streamwise velocity fluctuations in the
near-wall and outer regions, respectively. With this adaptation, the original predictive
model was generalized to accurately predict near-wall statistics of w′ based on the
knowledge of the outer-layer u′.

Finally, acknowledging the fact that flow structures are strongly modified within the
roughness sublayer, applying the predictive model presented herein to rough-wall flows
requires a better understanding of outer-layer similarity at higher Re. Nevertheless,
the results presented herein indicate that the consistent PCA-adapted model can yield
accurate predictions of near-wall statistics at lower Re. Thus, a study of its efficacy
at higher Re and for a broader spectrum of roughness parameters would allow its
potential broader applicability to be assessed.
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Appendix A. Two-point correlations of velocity fluctuations
The appropriateness of the computational domain size is demonstrated using the

two-point autocorrelation coefficients of the velocity fluctuations in the streamwise and
spanwise directions. The two-point autocorrelation coefficient is defined as

Rui(1x; y)=
u′i(x+1x, y, z) u′i(x, y, z)√
u′i(x+1x, y, z)2

√
u′i(x, y, z)2

, i= 1, 2, 3, (A 1)

with no summation over i. An analogous expression is used for the two-point
autocorrelations as a function of 1z.

Figures 26 and 27 show the two-point autocorrelation coefficients of all velocity
components in both smooth- and rough-wall cases at planes close to the roughness
crest (y+ = 20) and in the outer region (y+ = 350), respectively. As seen in
figures 26(a) and 26(b), the autocorrelation coefficients for the rough-wall case near
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FIGURE 26. Two-point autocorrelation coefficients of velocity fluctuations for the smooth-
and rough-wall cases at y+ = 20. (a,b) RH400-20-4; (c,d) SM2000. Streamwise (left) and
spanwise (right) profiles.
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FIGURE 27. As in figure 26, but for y+ = 350.

the roughness crest at y+ = 20 exhibit periodic behaviour in both the streamwise and
spanwise profiles, whose wavelength corresponds to the roughness-element spacings in
the streamwise and spanwise directions, respectively. In contrast, the autocorrelation
coefficients decay rapidly to zero in the smooth-wall case at y+ = 25 as shown
in figures 26(c) and 26(d). In the outer region at y+ = 350, shown in figure 27,
the autocorrelation coefficients for both cases decay to a value close to zero with
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FIGURE 28. Mesh refinement around the hemispherical roughness for the rough-wall case
at Reτ = 300 with k/h = 0.1 and d/k = 4. (a) Coarse (M3), 67, 584 grid points/cell;
(b) moderate (M2), 215, 040 grid points/cell; (c) fine (M1), 387, 072 grid points/cell. Box
in (a) denotes the boundary of the refined region (cell) enclosing each hemisphere.

increasing streamwise distance. Thus, these results support that the domain sizes are
appropriate for the current simulations.

Appendix B. Mesh resolution
As indicated previously, the mesh above the roughness elements was selected

according to the resolution used in previous DNS of smooth-wall flows at similar
Re (Moser, Kim & Mansour 1999). The mesh around the hemispherical roughness
were constructed using body-fitted spectral elements and the only reliable approach to
determine its appropriateness was to conduct a mesh-refinement study in a dedicated
set of simulations. A rough-wall turbulent channel flow at Reτ = 300 with k/h= 0.1
and d/k = 4 was used for this study and the different roughness cell meshes are
shown in figure 28. The resolution of this mesh scales with wall units and can
therefore be reliably used at other similar Re. As seen from figure 28(a–c), the mesh
around the roughness elements was gradually refined in the streamwise, radial and
spanwise directions, respectively. As a result, the number of grid points per roughness
cell increased from 67 584 for the coarse mesh (M3), to 215 040 for the moderately
refined mesh (M2) and to 387 072 for the fine mesh (M1), respectively, within the
refined region. Note that outside the refined region, the mesh was constructed to
ensure a smooth transition to the bulk of the computation mesh, as needed. The total
number of grid points increases from N3= 193 462 272 for M3, to N2= 533 200 896
for M2 and to N1 = 1 242 169 344 for M1, respectively. Therefore, the average grid
refinement ratio is estimated to be r= [(N2/N3)1/3 + (N1/N2)1/3]/2= 1.36. Statistics
were collected and averaged both temporally and spatially in the streamwise and
spanwise directions at planes parallel to the wall for each mesh.

Figure 29 compares the Reynolds stress profiles for different mesh resolutions. In
general, good agreements between these meshes are observed for all components of
the Reynolds stresses, although there are small differences between the fine mesh and
other two meshes in u′2 for 10< y+ < 30 due to small geometrical deviations within
the roughness sublayer. Despite these small deviations, the statistics obtained by the
coarse mesh are nearly indistinguishable from those for the refined meshes. The grid
convergence index (GCI) (Roache 1994) is also reported in table 4 and it is shown
that the GCIs for all statistics are less than 2%, which is acceptable owing to the
complex unstructured mesh studied herein. Given the large domain sizes and number
of hemispheres considered in this study, the coarse mesh was used as a reference in
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FIGURE 29. (Colour online) Comparison of the Reynolds stress for different mesh
refinement schemes around the roughness elements at Reτ = 300 with k/h = 0.1 and
d/k= 4.

Statistics |ε31| |ε21| p GCI31(%) GCI21(%)

u′2
+

0.0225 0.0255 6.883 0.3762 0.4266
v′2
+

0.0626 0.0528 5.442 1.7724 1.4960
w′2
+

0.0059 0.0087 3.647 0.3512 0.5184
u′v′+ 0.0023 0.0070 1.246 0.5971 1.8616

TABLE 4. Grid convergence parameters. εi,j = ( fi − fj)/fj where fi is the target statistics at
y+= 30 (roughness crest) for mesh i (i= 1, 2 and 3); p= ln(ε21/ε32)/ln(r) is the order of
convergence, with the grid refinement ratio r = 1.36; GCIi,j = Fs|εi,j|/(rp

− 1) is the grid
convergence index with the safety factor Fs = 1.25.

designing and constructing all meshes used in the simulations presented herein (scaled
in terms of appropriate wall units for each simulation).

Appendix C. Comparison of the extended original models

While the predictive model originally proposed by Mathis et al. (2011) exclusively
focused on predictions involving u′, several studies have attempted to extend the
model to the other velocity components. In the present study, we proposed and
made predictions of all three velocity components using simply the outer large-scale
signal u′, i.e. the ‘single-large-scale’ model. Alternatively, following Yin et al. (2018),
we tested a model that calibrates the modulation constants and the universal signals
using just u′+OL for all three velocity components but determines the superposition
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FIGURE 30. (Colour online) Predictions of the Reynolds stresses for the smooth- and
rough-wall cases compared with the actual statistics from DNS. For the predictions
involving v′ and w′, the modulation coefficients are still produced by u′+OL but the
superposition constants are produced by either u′+OL (‘single-large-scale’ model; open
symbols) or v′+OL and w′+OL (‘variant-large-scale’ model; filled symbols). Symbol × marks
the reference location where the large-scale signal is extracted. Vertical lines denote the
location of the roughness crest k+ = 20.

constants based on the corresponding outer large-scale signals. For example, the
superposition for v′ is produced by v′+OL and the same applies for w′. This model is
referred to herein as the ‘variant-large-scale’ model. Note that this model calibrates
the universal signals using the same iterative method as the original model, which
differs from the model by Yin et al. (2018) where the universal signals were replaced
by the DNS data simulated using a minimal flow unit.

The predictions of the Reynolds stresses based on the two models are shown in
figure 30 in comparison with the actual statistics from the DNS. As expected, both
models perform equally well for u′2. The ‘variant-large-scale’ model yields better
predictions for v′2 at higher Re but introduces large errors at lower Re. However, the
‘single-large-scale’ model produces more accurate and consistent predictions for w′2.
Not surprisingly, both models generate significant errors when attempting to predict
the Reynolds shear stress u′v′ as neither of the models are able to fully capture the
correlation between u′ and v′. Several higher-order statistics are also compared as
shown in figure 31. Overall, the ‘variant-large-scale’ model demonstrates improved
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FIGURE 31. (Colour online) As in figure 30, but for the higher-order statistics.

predictions for statistics involving v′ only at higher Re but the statistics for w′ are
better produced by the ‘single-large-scale’ model. Similar to u′v′, both models fail to
produce reliable predictions for the cross-product terms.
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