
A robust system reliability analysis using partitioning and
parallel processing of Markov chain

PO TING LIN,1 YU-CHENG CHOU,2 YUNG TING,3 SHIAN-SHING SHYU,4 AND CHANG-KUO CHEN4

1Department of Mechanical Engineering, Research and Development Center for Microsystem Reliability, Center for Biomedical
Technology, Chung Yuan Christian University, Chungli City, Taiwan
2Institute of Undersea Technology, National Sun Yat-sen University, Kaohsiung City, Taiwan
3Department of Mechanical Engineering, Chung Yuan Christian University, Chungli City, Taiwan
4Institute of Nuclear Energy Research, Atomic Energy Council, Chungli City, Taiwan

(RECEIVED February 18, 2014; ACCEPTED May 5, 2014)

Abstract

This paper presents a robust reliability analysis method for systems of multimodular redundant (MMR) controllers using the
method of partitioning and parallel processing of a Markov chain (PPMC). A Markov chain is formulated to represent the N
distinct states of the MMR controllers. Such a Markov chain has N2 directed edges, and each edge corresponds to a transition
probability between a pair of start and end states. Because N can be easily increased substantially, the system reliability
analysis may require large computational resources, such as the central processing unit usage and memory occupation.
By the PPMC, a Markov chain’s transition probability matrix can be partitioned and reordered, such that the system reli-
ability can be evaluated through only the diagonal submatrices of the transition probability matrix. In addition, calculations
regarding the submatrices are independent of each other and thus can be conducted in parallel to assure the efficiency. The
simulation results show that, compared with the sequential method applied to an intact Markov chain, the proposed PPMC
can improve the performance and produce allowable accuracy for the reliability analysis on large-scale systems of MMR
controllers.

Keywords: Fault Tolerance; Markov Chain; M-Partitioning; Parallel Processing; Reliability Analysis

1. INTRODUCTION

For the purpose of reliability evaluation in system designs,
different representative methods have been developed over
the years, including the fault tree, reliability block diagram,
reliability graph, event sequence diagram (Mutha et al.,
2013), Bayesian network, and Markov chain. Some literature
has indicated that, mainly due to its flexibility, the Markov
chain is the most suitable technique to analyze the reliability
of redundant systems (Liu & Rausand, 2011).

Two configurations of subsea blowout preventer control
systems, including triple modular redundancy and double
dual modular redundancy control systems, were evaluated
in terms of the probability of failure on demand, availability,
and reliability using the Markov method (Cai et al., 2012). A
Markov chain based methodology was proposed to perform
the reliability, availability, maintainability, and safety for a
hybrid redundancy system modeled as a stochastic Petri net

(Liu et al., 2013). A Markov modeling approach was applied
to the reliability analysis for a patented modular converter
system that has multiple identical and interchangeable power
converter modules in a wind turbine (Zhang et al., 2013). The
comparative reliability study concerning fault coverage on the
all-voting triple modular redundancy system, dual-duplex
system, and double 2-out-of-2 system was conducted using
the discrete-time Markov chain (Kim et al., 2005; Wang
et al., 2007). The availability, production rate, and reliability
of multistate degraded systems subjected to minimal repairs
and imperfect preventive maintenance were evaluated via
the continuous-time Markov chain (Soro et al., 2010). The re-
liability and benefits for a programmable logic controller hot
standby system, which has the manager–slave architecture
and two types of repair mechanisms, were evaluated using
a semi-Markov approach (Parashar & Taneja, 2007). A scal-
able technique based on the discrete-time Markov chain was
developed to evaluate the reliability for both nonredundant
and structural redundancy-based large circuit designs (Bha-
duri et al., 2007). A redundant system, designed with a special
failure dependency (i.e., the redundant dependency), was

Reprint requests to: Yu-Cheng Chou, Institute of Undersea Technology,
National Sun Yat-sen University, 70 Lienhai Road, Kaohsiung City 80424,
Taiwan. E-mail: ycchou@mail.nsysu.edu.tw

Artificial Intelligence for Engineering Design, Analysis and Manufacturing (2014), 28, 311–322.
Cambridge University Press 2014 0890-0604/14 $25.00
doi:10.1017/S0890060414000493

311

https://doi.org/10.1017/S0890060414000493 Published online by Cambridge University Press

mailto:ycchou@mail.nsysu.edu.tw
https://doi.org/10.1017/S0890060414000493

evaluated with respect to the system reliability through a con-
tinuous-time Markov model (Yu et al., 2007). Markov chain
models and bifurcation analysis were used to compare the de-
gree of redundancy and system reliability for several logic re-
dundancy schemes, including von Neumann’s multiplexing
logic, N-tuple modular redundancy, and interwoven redun-
dant logic (Han et al., 2005). In addition to redundant sys-
tems, different Markov models, including continuous-time/
discrete-time and full/semi/quasi Markov chains, have also
been applied to study issues on the reliability, safety, avail-
ability, and diagnosis of different other systems (Zhang
et al., 2003; Dominguez-Garcia et al., 2006; Guo & Yang,
2008; Liu et al., 2011; Lisnianski et al., 2012; Matthews &
Philip, 2012). However, no literature has been reported with
respect to partitioning and reordering a Markov chain to enable
seamless incorporation of parallel computing techniques.

This paper presents a robust reliability analysis method,
called the partitioning and parallel processing of a Markov
chain (PPMC), for systems of multimodular redundant
(MMR) controllers. A Markov chain (MC) is formulated to
represent the N distinct states of the MMR controllers. Such
an MC graph has N2 directed edges. Each edge weight repre-
sents the transition probability from the start state to the end
state. A system of b modular controllers is shown in Figure 1.
Each of the b controllers processes signals from a sensors.
Each of the a sensors has g states. Thus, the number of dis-
tinct states for this system of MMR controllers is calculated
as N ¼ abg. Because N can be drastically increased by any
of the three factors, the system reliability evaluation, which
is based on the N2 edge weights, may require large computa-
tional resources, such as the central processing unit (CPU)
usage and memory occupation.

To this end, techniques of partitioning and reordering an
MC have been conducted to reduce the complexity of an
MC graph. Lightly weighted edges are suspended based on
the threshold parameter, and the MC graph is partitioned
and reordered to produce multiple weakly connected sub-
graphs, which can be processed independently in parallel.
Therefore, parallel computing techniques can be applied to
improve or ensure the calculation efficiency. In this paper,
the task-farming paradigm is adopted for parallel processing.
The task-farming paradigm has a manager–workers pattern.

The manager is responsible for decomposing a task, distribut-
ing subtasks among workers, and gathering partial results
from workers to coordinate the final calculation for the reli-
ability evaluation. The worker processes execute in a simple
cycle: get a subtask, process the subtask, and send the result
to the manager.

The efficiency and accuracy of reliability analysis depend on
the suspension threshold, the partition level, and the availabil-
ity of parallel processors. The worst-case reliability is evaluated
to compensate for inaccuracy due to the suspended edge
weights. Higher suspension thresholds produce simpler MC
models and faster calculations but more conservative reliabil-
ities. The performance of PPMC is maximized to find the op-
timal suspension and partition levels. The proposed methodol-
ogy has been successfully integrated with the detection and
diagnosis processes in the fault-tolerant system. The simulation
results show that, compared to the sequential method applied to
an intact MC, the proposed PPMC can improve the perfor-
mance and produce allowable accuracy for the reliability anal-
ysis on large-scale systems of MMR controllers.

2. RELIABILITY ANALYSIS OF MMR
CONTROLLERS

Suppose the MMR controllers have N distinct states S ¼
f1, 2, . . . , Ng and the transitions between each state are rep-
resented in a MC. Figure 2 illustrates the graph G(S, E) of the
MC where the edge set E is composed of N2 directed edges:
fE1;1, E1;2, . . . , Ei;j, . . . , EN;Ng. Each directed edge has two
edge weights mi;j and Qi;j. The prior one is the transition prob-
ability that the state i moves to the state j while the later one
represents the rate of change of the transition probability.
The total transition probability that the state i moves to every
state, including itself, equals 1, namely,

XN
j¼1

mi,j ¼ 1 8i: (1)

Fig. 1. N-state Markov chain for multimodular redundant controllers. Fig. 2. N-state Markov chain for multimodular redundant controllers.

P.T. Lin et al.312

https://doi.org/10.1017/S0890060414000493 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060414000493

Therefore, the total rate of change of probability is zero, as in

XN
j¼1

Qi,j ¼ 0 8i: (2)

Given a vector of the initial state probabilities,

p(0) ¼ 1e1 þ
XN
i¼2

0ei,

at the time t ¼ 0, the vector of the state probabilities,

p(t) ¼
XN
i¼1

pi(t)ei,

is desirable for the evaluation of the system reliability.
For most MCs, the time-dependent state probabilities can

be evaluated using the described method. However, the com-
putational complexity increases dramatically when the num-
ber of states increases in the MMR controllers. It is very dif-
ficult to solve the large-scale eigenvalue problem and obtain
the state probabilities in allowable working time. To this end,
we will focus on the discrete-time approach, which requires
less calculation.

2.1. Discrete-time MC

With the Markov property, the state variable X(n þ 1) at the
time n þ 1 depends only upon its state at the time n, X(n)
That is, given the present state of the system X(n), the future
state of the discrete-time MC (DTMC) X(n þ 1) is indepen-
dent of its previous discrete-time states X(0), X(1), . . . ,
X(n 2 1). A DTMC with the finite state space S is time homo-
geneous if Equation (3) holds.

mi,j ; P[X(nþ 1) ¼ jjX(n) ¼ i] ¼ P[X(1) ¼ jjX(0) ¼ i] (3)

for n � 0 and i, j ¼ 1 . . . N. For the DTMC, mi;j is called the
one-step transition probability at the time n. In this paper, we
assume the one-step transition probability remains constant
for all times n. The state probabilities will be calculated using
the given one-step transition probabilities.

We are interested in the probabilities

P X(n) ¼ j½ � 8j [S and n � 0:

Statistically, the probability

P X(n) ¼ j½ �
is calculated by

P X(n) ¼ j½ � ¼
XN
i¼1

P X(0) ¼ i½ �P X(n) ¼ jjX(0) ¼ i½ �: (4)

Equation (4) is further rewritten in the matrix form as in

p(n) ¼ A(n)� p(0), (5)

where

p(n) ¼
XN
j¼1

P[X(n) ¼ j]ej

indicates the state probabilities at n;

p(0) ¼
XN
i¼1

P[X(0) ¼ i]ei

is for the initial probabilities; and

A(n) ¼
XN
i¼1

XN
j¼1

P X(n) ¼ jjX(0) ¼ i½ �ejei

is the matrix of the n-step transition probabilities. Because the
DTMC is assumed to be time homogeneous, the matrix A(n)
can be calculated by the nth power of A (Stewart, 2009), as in

p(n) ¼ A00 � p(0): (6)

To sum up, the transition probabilities of the DTMC are
calculated by the matrix operations in Equation (6). The ma-
trix multiplication algorithm has message-passing character-
istics and is more applicable in message-passing systems,
such as distributed memory based cluster of computers. In
Section 3, the MC is partitioned into smaller systems in order
to distribute the loads to several computers. In Section 4, the
parallel processing of the MC is introduced.

3. PARTITIONING OF A MC

This section presents the partitioning of a large-scale MC.
The lightly weighted edges are suspended based on the
threshold parameters, and the MC is partitioned into multiple
weakly connected subgraphs using the sparse matrix parti-
tioning. The created subgraphs can be processed individually
to produce partial results, which are combined to form the
complete state probability distribution at a desired time instant.

3.1. Reduction of a MC

In this paper, we want to first reduce the complexity of the
MC in terms of eliminating the connectivity of the weakly
linked edges. Chou and Lin (2014) have eliminated the edges
of minimal probabilities in the MC and greatly reduced the re-
quired calculations. The evaluated network probability of the
reduced MC (RMC) was slightly underestimated and can be
utilized as a worst-case probability, that is, the true probabil-
ity of a MC is at least higher than or equal to the worst-case
probability in the RMC.

A binary dependency matrix D represents the connectivity
of the MC, as in

D ¼
XN
i¼1

XN
j¼1

Di,jejei, (7)

A robust system reliability analysis 313

https://doi.org/10.1017/S0890060414000493 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060414000493

where Di;j ¼ 1 when the ith state is directed to the jth one;
otherwise, Di;j ¼ 0. It is noted that Di;j ¼Dj;i only when there
exist a reversible transition between the nodes i and j; how-
ever, mi;j and mj;i do not need to be the same. Given a thresh-
old parameter t, the connectivity Di;j of the RMC is reduced
to zero ifmi;j , t. As a result, the dependency matrix becomes
sparse. We want to reorder the sparse dependency matrix and
partition them into smaller matrices in order to distribute the
computational workloads to multiple computers.

3.2. M-partitioning

Figure 3a shows an example of the partition of a 60�60 de-
pendency matrix. Each blue dot represents a nonzero element
in the matrix. The four red lines divide the matrix into 9
smaller matrices, including a M1 � M1 submatrix, a M1 �
(M2 2 M1) submatrix, . . . , and a (N 2 M2)�(N 2 M2) sub-
matrix. Each submatrix is required for the calculations of the
state probabilities in Equation (6). Given the initial permuta-
tion of the sparse matrices

Q
¼
XN
i¼1

iei,

we focus on finding the optimal permutation to minimize the
connectivity between the partitioned systems. In other words,

we want to reorder the dependency matrix such that some
submatrices are closer to zero matrices, as shown in
Figure 3b. In this way, the required matrix multiplications
are reduced.

Define a M-partition that partitions the dependency matrix
of the RMC, D, into two subsystems:

D ¼ D1 F1

F2 D2

� �
, (8)

where D1 and D2 are M�M and (N 2 M)� (N 2 M) sub-
matrices, respectively. The sizes of the off-diagonal matrices
F1 and F2 are M�(N 2 M) and (N 2 M)�M, respectively.
Meanwhile, the permutation vector is partitioned into two
vectors:

Q
1
¼
XM
i¼1

iei and
Q

2
¼

XN
i¼Mþ1

iei:

The partition parameter M is controlled to balance the compu-
tational loads for each computer. When M , N/2, the compu-
tational complexity of the first subproblem is lower; when
M . N/2, the second subproblem is more complex. Multiple
matrix partitions can be accomplished using multiple M-par-
titions.

Based on the M-partition, the calculation in Equation (9) is
partitioned as in

p1(n)
p2(n)

� �
¼ A1 C1

C2 A2

� �n p1(0)
p2(0)

� �
, (9)

where

Ak ¼
X
i[Pk

X
j[Pk

Di,jmi,jejei

is calculated based on the permutation Pk. Furthermore, the
off-diagonal matrices C1 and C2 are calculated by

X
i[P1

X
j[P2

Di,jmi,jejei

and

X
i[P2

X
j[P1

Di,jmi,jejei,

respectively. The state probabilities in the first and second
subproblems are then determined by

p1(n) ¼ An
1p1(0)þ f1(C1, C2), (10)

p2(n) ¼ An
2p2(0)þ f2(C1, C2): (11)

If the permutations of the matrices and vectors are reordered
such that the total probability in the off-diagonal matrices C1Fig. 3. Partitions of (a) an original and (b) a reordered dependency matrices.

P.T. Lin et al.314

https://doi.org/10.1017/S0890060414000493 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060414000493

and C2 are close to zero, the functions f1 and f2 in Equations
(10) and (11) become negligible. Thus, the state probabilities
can be approximated by the following equation:

pi(n) ffi An
i pi(0): (12)

3.3. Iteration process of finding the minimal coupling
between subproblems

The objective of our approach is to find the permutation order
that minimizes the total transition probability between the two
subsystems:

pC ¼
XM
i¼1

XN�M

j¼1
C1,ijþ

XN�M

i¼1

XM
j¼1

C2,ij: (13)

One of the possible methods is to diagonalize the dependency
matrix D; however, it does not ensure the coupling probability
pC is minimized for the specific M-partition. In this paper, an
effective iteration process is proposed as in the following
steps to determine the optimal permutation order:

STEP 1. Given the initial permutation Pð0Þ and dependency
matrix Dð0Þ, calculate the initial coupling probability pð0ÞC
using Equation (13).

STEP 2. Begin with C
ð0Þ
1;N2M in the upper-right off-diagonal

dependency matrix as the pivot element. The iteration number
k equals one.

STEP 3. Suppose the location of the pivot element is (i, j). If
the (i, j)th element in C

ðk21Þ
1 , or the (j,i)th element in C

ðk21Þ
2 ,

is not zero, the column number of the pivot element is denoted
as cðkÞp ; go to step 5. Otherwise, go to step 4.

STEP 4. If the pivot element is the last element C
ðk21Þ
M;1 ,

the process cannot advance further; go to step 10.
Otherwise, move to the adjacent element along the zig-zag trajec-
tory, shown in Figure 4, and consider it as the new pivot element.
Go to step 3.

STEP 5. Begin with the first column, that is, c ¼ 1. Let
PðkÞ ¼ Pðk21Þ and nðkÞC ¼ nðk21Þ

C .

STEP 6. If c ¼ cðkÞp , move to the adjacent column by c ¼
c þ 1. If c � N, go to step 7; otherwise, go to step 9.

STEP 7. Interchange c and cðkÞp in the permutation Pðk21Þ

and calculate the coupling probability p1 of the interchanged
off-diagonal dependency matrix.

STEP 8. If n1 , nðkÞC , nðkÞC ¼ n1 and assign the interchanged
permutation as PðkÞ. Advance to the adjacent column by c ¼
c þ 1 and go to step 6.

STEP 9. If nðkÞC ¼ nðk21Þ
C , the iteration process has been con-

verged. Go to step 10. Otherwise, update the interchanged
matrix DðkÞ using the determined permutation PðkÞ and ad-
vance to the next iteration by k ¼ k þ 1. Go to step 4.

STEP 10. The optimal permutation is P* ¼ PðkÞ and the
optimal reordered dependency matrix is D* ¼ DðkÞ.

4. PPMC

As illustrated in Section 3.2, the partitioned MC has multiple
transition probability submatrices. As also mentioned in Sec-
tion 3, these square matrices can be processed individually to
produce partial results, which are combined to form the com-
plete state probability distribution at a desired time instant.
Thus, in this paper, the task-farming paradigm is adopted
for parallel-processing purposes. The task-farming paradigm
has a manager–workers pattern, as shown in Figure 5. The
manager is responsible for decomposing a task, distributing
subtasks among workers, and gathering partial results from
workers to coordinate the final calculation for the reliability
evaluation. The worker processes execute in a simple cycle:
get a subtask, process the subtask, and send the result to
the manager. In addition, due to the task-farming paradigm’s
dynamic load balancing characteristic, the proposed method-
ology can respond well to the failure of some processors. This
feature facilitates the creation of robust applications that are
able to survive from the loss of workers or even the manager.
In this paper, for simplicity purposes, with a static load
balancing feature, the task-farming paradigm is employed
to obtain the state probability vector at any desired time in-
stant.

For a large-scale MC that has been partitioned, each of its
transition probability submatrices might still need a large
memory space for processing on a single processor. There-
fore, another level of parallelism might be required to release
or alleviate this memory burden. In addition, the MC-based
reliability evaluation is essentially a series of matrix multipli-
cations. Moreover, the message-passing programming para-
digm is one of the earliest and most widely used approaches
for programming parallel computers, mainly because it
imposes minimal requirements on the underlying hardware
(Grama et al., 2004). Furthermore, the most natural mes-
sage-passing architecture for matrix operations is a two-di-
mensional mesh, where each node in the mesh computes

Fig. 4. Determination of pivot elements along the zig-zag trajectory in the
off-diagonal dependency matrix.

A robust system reliability analysis 315

https://doi.org/10.1017/S0890060414000493 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060414000493

one element, or one submatrix, of the resultant array. The
mesh connections allow messages to pass between adjacent
nodes in the mesh simultaneously. Thus, in this paper, the
Cannon algorithm (Cannon, 1969), a memory efficient algo-
rithm based on the two-dimensional mesh framework, is
adopted for the matrix multiplication. The Cannon algorithm
uses a mesh of nodes with wraparound connections to shift
submatrices. In this paper, a node in a mesh represents a pro-
cessor in a cluster computer. An important point that has to be
mentioned is that the Cannon algorithm can also be applied to
a nonpartitioned MC for reliability evaluation purposes,
which is how this algorithm is used in this paper.

For clarity, elements, instead of submatrices, of the arrays a
and b are used to illustrate the Cannon algorithm as follows:

1. Initially, processor pi;j has elements ai;j and bi;j (0� i ,

n, 0 � j , n).
2. Elements are moved from their initial position to an

aligned position. In other words, the complete ith row
of a is left-shifted i positions, and then the complete
jth column of b is upshifted j positions. This step places
the element ai;jþi and the element biþj;i in processor pi;j.
This pair of elements are required to calculate the ele-
ment ci;j.

3. Each processor pi;j multiplies its elements.
4. The ith row of a is shifted one position left, and the jth

column of b is shifted one position upward. This step
brings together the adjacent elements of a and b, which
are also required in the computation of ci;j.

5. Each processor pi;j multiplies the elements brought to it
and adds the result to the accumulating sum.

6. Repeat Steps 4 and 5 until the final result of ci;j is ob-
tained. In other words, given n rows and n columns of
elements, a total of n 2 1 shifts need to be conducted.

Next, given that both a and b have s2 submatrices, each
submatrix has m�m elements. Thus, based on the above Can-
non algorithm, for both a and b, the initial alignment requires
a maximum of s 2 1 shift operations. Afterward, there are
other s 2 1 shift operations required for computation pur-
poses. Each shift operation performs a communication in-
volving m � m elements. Therefore, the communication
time tcomm can be determined using Equation (14):

tcomm ¼ 4 s� 1ð Þ tstartup þ m2tdata
� �

: (14)

Thus, the Cannon algorithm has a communication time
complexity of O(sm2) ¼ O(mn), where s ¼ n/m is assumed
in this paper.

As for the computation aspect, each submatrix multiplica-
tion requires m3 multiplications and m3 additions. Therefore,
with s 2 1 shifts as mentioned above, the computation time
tcomp can be determined using Equation (15):

tcomp ¼ 2sm3 ¼ 2m2n: (15)

Hence, the Cannon algorithm has a computation time com-
plexity of O(m2n).

In this paper, the Cannon algorithm is implemented
through the message-passing interface (MPI; Gropp et al.,
1998; Snir et al., 1998). MPI is a specification for building
a library that provides standard functions for writing portable
and efficient message-passing programs to be run on a variety
of parallel computers. In this paper, the selected MPI library
is a widely used open source library called MPICH2 (Gropp,
2002).

Fig. 5. Basic flowcharts for the manager and worker programs in the task-farming paradigm.

P.T. Lin et al.316

https://doi.org/10.1017/S0890060414000493 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060414000493

5. Numerical Examples

In this section, we study the MCs for three different examples
to validate the proposed PPMC method. The inputs and out-
puts of the proposed PPMC reliability evaluation mechanism
are shown in Figure 6. The inputs include all distinct states of a
system, all transition probabilities, the threshold parameter, in-
itial state probabilities, the number of time steps, the index of
the initial state, and the index (or indices) of the failure state (or
states). The outputs include the probability (or probabilities)
of the failure state (or states), and the overall system reliability.

The PPMC reliability evaluation mechanism can be applied
to all kinds of systems whose states can be modeled as a MC.
Particularly, it is suitable for systems that potentially contain a
vast number of distinct states, such as nuclear power systems
(Aldemir et al., 2006). As shown in Figure 7, it is assumed that
there are 14 sensors located at different components of a nu-
clear steam system. In addition, each sensor is assumed to
have two states indicating that a component is either function-

ing well or not functioning at all. Thus, the number of distinct
states of the system is 214 ¼ 16384. Among these states, some
of them can be defined as the failure states. The PPMC reli-
ability evaluation mechanism can be used to efficiently gener-
ate, for a specified number of time steps, the failure states’
probabilities and the overall system reliability. Therefore, if
desired, engineers can perform necessary maintenance activ-
ities, in advance, on the components related to critical failure
states. Afterward, the transition probability matrix can be
changed by increasing or decreasing probability values on
corresponding elements. Eventually, the PPMC reliability
evaluation mechanism can be used to generate new results
for necessary further improvements on the system reliability.

5.1. Example 1: 60-state MC for MMR controllers

The first example considers a randomly generated 60-state
MC, which is composed of 277 distinct directed edges.

Fig. 7. A nuclear steam system containing a large number of different states.

Fig. 6. Inputs and outputs of the parallel processing of a Markov chain reliability evaluation mechanism.

A robust system reliability analysis 317

https://doi.org/10.1017/S0890060414000493 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060414000493

Figure 8a shows the dependency matrix of the 60-state MC
while each blue dot represents one of the directed connec-
tions. The blank areas stand for no connections between the
states. Figure 8a can also be used to represent the transition
matrix; in this case, each blue dot is a nonzero transition prob-
ability mi;j.

When the size of MC is in the order of tens of states, it is
not necessary to reduce the MC using the threshold pa-
rameter. In the latter case, when the MC size is larger, the re-
duction can help improve the numerical efficiency. To uni-
formly distribute the computational workloads to five
computers, we partition the dependency matrix at the posi-
tions of M ¼ f12, 24, 36, 48g. The red lines represent the
desirable locations for matrix partitioning. According to the
desirable partitioning locations, the dependency matrix is re-
ordered such that the total probability in the off-diagonal sub-
matrices, shown in the gray areas in Figure 8b, is minimized.
The ratio of the total coupling probability and the total prob-
ability is 9.66/60 ¼ 0.16. In other words, around 84% of
workloads are uniformly distributed in the five diagonal sub-
matrices. The discrete-time state probabilities are calculated
using Equation (7).

Suppose the initial condition is given as p15(0) ¼ 1 and
pi(0) ¼ 0 for i ¼ 1 . . . 14, 16, . . . 60, the state probabilities
at time n¼ 10 are calculated using the proposed method. Fur-
thermore, the numerical performances of the PPMC method

are compared with the calculations using the original MC
in Equation (5). Three different simulation results are listed
in Table 1. The first case considers the second state as the
fail state. The original matrix multiplication shows the failure
probability is 0.07%, while the proposed method overesti-
mates the failure rate as 12.5%. A worst-case reliability,
87.50%, is then found, that is, the true probability, 99.93%,
is at least larger than or equal to the underestimation, 87.50%.

The second case shows a higher failure probability of
3.06% when the 24th state is considered as the fail state. In
this case, the proposed method is capable of finding the over-
estimated failure probability of 12.5% and the worst-case re-
liability of 87.5%. In the last case, the 30th state is considered
as the fail state. In this case, the PPMC method obtains the
worst-case reliability of 99.87%, which is just slightly lower
than the true probability of 99.88%.

5.2. Example 2: 200-state MC for MMR controllers

The second case focuses on a 200-state MC, which contains
605 directed edges. Figure 9a shows the dependency matrix
of the given MC. In this case, the MC reduction is also un-
necessary. To distribute the workloads to five computers,
the desirable partitioning locations are M ¼ f40, 80, 120,
160g, indicated by the red lines. The off-diagonal probabil-
ities are minimized to reorder the dependency matrix. As a re-
sult, the off-diagonal probability, the sum of probabilities in
the gray areas, equals 34.33, which is around 17.16% over
the total probability. The values in the off-diagonal subma-
trices will be neglected in Equation (7), yielding the underes-
timated measure of system reliability. Therefore, the worst-
case reliability can be determined.

We now want to demonstrate different types of simulation
results from the first example. Suppose the 5th state is consid-
ered as the fail state, then three different initial states are stud-
ied. The first case starts with p(0)¼ 1e32. The original matrix
multiplication shows the fail probability of 6.63% as the
PPMC overestimates the fail probability of 7.05%; therefore,
a worst-case reliability of 92.95% is determined. Another in-
itial condition considers p(0) ¼ 1e18. The proposed method
underestimates the reliability, that is, 82.83% , true probabil-
ity¼ 83.25%, and utilizes the worst-case measure as a robust

Fig. 8. The (a) original and (b) partitioned dependency matrices for the 60-
state Markov chain.

Table 1. Results of the 60-state Markov chain

Method
Index of
Fail State

Probability of
Fail State

System
Reliability

Original 2 0.07% 99.93%
PPMC 2 12.5% 87.50%
Original 24 3.06% 96.94%
PPMC 24 12.5% 87.50%
Original 30 0.12% 99.88%
PPMC 30 0.13% 99.87%

Note: PPMC, Partitioning and parallel processing of Markov chain.

P.T. Lin et al.318

https://doi.org/10.1017/S0890060414000493 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060414000493

estimator of the system probability. Finally, when the 99th
state is considered as the initial state, a lower reliability of
77.01% is found using the original calculations. Even for
the special situation of low reliability, the proposed method
is capable of finding the worst-case reliability, that is,
75.32%. Table 2 lists the detailed information about the simu-
lation results.

5.3. Example 3: 480-state MC for MMR controllers

The final example considers a large-scale MC that contains
480 states. Figure 10a shows the dependency matrix with 1899 blue dots, that is, there are 1899 distinct directed edges

in the MC. In a large problem like this, the matrix reduction
can effectively improve the numerical performances. We as-
sume the threshold parameter is t¼ 0.1. Figure 10b shows the
dependency matrix of the reduced MC, which now only con-
tains 710 directed edges. The matrix permutation is then reor-
dered and the resultant dependency matrix is shown in
Figure 10c. The total off-diagonal probability equals
110.37, which is around 23% of the total probability. How-
ever, 77% of the workloads are uniformly distributed to eight
different computers. The red lines represent the given parti-
tioning locations M ¼ f60, 120, 180, 240, 300, 360, 420g.

Table 3 lists two different cases of the simulations. The first
case considers the 10th and 406th states as the initial and fail

Fig. 9. The (a) original and (b) partitioned dependency matrices for the 200-
state Markov chain.

Table 2. Results of the 200-state Markov chain

Method
Index of

Initial State
Probability
of Fail State

System
Reliability

Original 32 6.63% 93.37%
PPMC 32 7.05% 92.95%
Original 18 16.75% 83.25%
PPMC 18 17.17% 82.83%
Original 99 22.99% 77.01%
PPMC 99 24.68% 75.32%

Note: PPMC, Partitioning and parallel processing of Markov chain.

Fig. 10. The (a) original, (b) reduced, and (c) partitioned dependency
matrices for the 480-state Markov chain.

A robust system reliability analysis 319

https://doi.org/10.1017/S0890060414000493 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060414000493

states. The proposed method is able to find the worst-case re-
liability, 99.04%, which is slightly lower than the true mea-
sure, 99.75%. In the other case, in which the 432nd and
31st states are the initial and fail states, the PPMC method ob-
tains an underestimation of the system reliability, that is,
70.79% ,, true probability ¼ 99.90%, due to the errors
from the matrix reduction and approximated calculation in
Equation (7). However, the proposed method still guarantees
that the true system reliability is at least larger than or equal to
the underestimated measure.

5.4. Numerical performances in Example 3

A 25-node cluster computer is used to run example 3 in the
following scenarios:

1. Evaluate the system reliability of the original MC at the
10th time step by serial matrix multiplication method
using one CPU.

2. Evaluate the system reliability of the original MC at the
10th time step by the Cannon algorithm using 16 CPUs.

3. Evaluate the system reliability of the partitioned MC at
the 10th time step by applying serial matrix multiplica-
tion method on eight diagonal submatrices using eight
CPUs.

All of the nodes of the cluster computer have identical key
specifications, including a dual core CPU, 1-GHz core CPU
frequency, and 1.837 GB of memory. Due to homogeneous
hardware features, the time spent by each CPU to finish its
tasks is almost the same even though the computation time
is still defined as the longest time spent by any CPU. More-
over, for each scenario, the computation time only changes
very slightly in every execution. Thus, the average of 10 com-
putation times is provided for each scenario. As shown in
Table 4, in scenario 1, a single CPU needs to process
230,400 data points; in scenario 2, each of the 16 CPUs needs
to process 14,400 data points; in scenario 3, each of the 8
CPUs needs to process 3600 data points. The average compu-
tation times for scenarios 1, 2, and 3 are 25501, 2397, and 74
ms, respectively. The speedup ratios for scenarios 1, 2, and 3
are 1, 10.6, and 344.6, respectively.

There are two factors that affect the accuracy of reliability
evaluation: the reductions of directed edges with transition
probabilities lower than the selected threshold parameter

and the unconsidered edges in the off-diagonal matrix. Lin
et al. (2014) have further investigated the numerical perfor-
mance of PPMCs with various level of threshold parameter t.
In Example 3, 1899 distinct directed edges in Figure 10a
deduced to 710 edges when t ¼ 0.1 was considered. Fewer
edges would be reduced as a lower threshold parameter is
considered but the complexity of MC increases. More edges
would be reduced as a higher threshold parameter is utilized
but the accuracy of reliability evaluation may be jeopardized.
A proper selection of threshold parameter has been found re-
lated to the distribution of transition probabilities in the MC.
For more information, please refer to Lin et al. (2014).

6. Conclusions

In this paper, the method of PPMC has been presented to per-
form a robust reliability analysis for complex systems, such as
MMR controllers. The number of different states N can be
easily increased by three factors, including the number of
modular redundant controllers, the number of sensors each
controller manages, and the number of states each sensor
indicates. The proposed method partitioned the complex
MC and solved for a worst-case reliability using parallel com-
putational processes. In PPMC, a threshold parameter has
been chosen to reduce the dependency of MC in terms of
eliminating the edges of negligible probabilities between dif-
ferent states. A M-partitioning procedure has been developed
to gather together M states that are mutually related and de-
composed the complex problem into multiple subproblems,
which are lowly dependent from each other. In addition, cal-
culations regarding the submatrices can be performed inde-
pendently in parallel. This research is the first attempt to
reduce, partition, and reorder a MC, in order to enable seam-
less incorporation of parallel computing techniques for
resource-efficient calculations. Compared with the sequential
method applied to a nonpartitioned MC, the proposed PPMC
reduces the overall computation time, lowers the amount of
memory required on a single processor, and produces allow-
able accuracy for the reliability analysis on large-scale sys-
tems of MMR controllers in the three demonstrated examples.

The main advantage of the proposed method is its capabil-
ity of efficiently performing the reliability analysis of a MC in
various engineering problems. It also assumes a worst-case
scenario when compared to evaluation of the true system re-
liability, which is conservative in its nature. The proposed

Table 4. Computation times for three scenarios

No. of
CPUs

No. of Data
Points/CPU

Computation
Time (ms)

Speedup
Ratio

Scenario 1 1 480×480 25501 1
Scenario 2 16 120×120 2397 10.6
Scenario 3 8 60×60 74 344.6

Note: PPMC, Partitioning and parallel processing of Markov chain.

Table 3. Results of the 480-state Markov chain

Method
Index of

Initial State
Index of
Fail State

Probability of
Fail State

System
Reliability

Original 10 406 0.25% 99.75%
PPMC 10 406 0.96% 99.04%
Original 432 31 0.10% 99.90%
PPMC 432 31 29.22% 70.79%

Note: PPMC, Partitioning and parallel processing of Markov chain.

P.T. Lin et al.320

https://doi.org/10.1017/S0890060414000493 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060414000493

method is also anticipative in the advances in the field of
computing sciences, which could further reduce the compu-
tational parameters. However, PPMC currently assumes the
transition probabilities between different states are known
and remain constant. Furthermore, the decision of threshold
parameter for the reduction of MC is not automatically deter-
mined. It is expected that the numerical performances of
PPMC depend on proper selection of the threshold parameter.
The methodology developments include the adaptiveness to
the dynamic transition probabilities between different states,
the optimal selection of threshold parameter for MC reduction
with the consideration of the distribution of the probability
density, the enhancement of the numerical efficiency of the
decomposition procedure, and the improvement of the nu-
merical accuracy of the reliability analysis. These develop-
ments are expected to make the proposed method competitive
in the implementation of evaluating and analyzing MCs in
complex engineering systems.

ACKNOWLEDGMENTS

This research was supported by the Atomic Energy Council of Taiwan
(Grant 1012001INER010), the Ministry of Science and Technology of
Taiwan (Grants 101-2628-E-033-001-MY3, 102-2218-E-033-002-
MY2, and 102-2221-E-033-020), the Research and Development Cen-
ter for Microsystem Reliability at Chung Yuan Christian University,
and the Center for Biomedical Technology at Chung Yuan Christian
University.

NOMENCLATURE

a An array in the Cannon algorithm
A Transition matrix
Ai i-th partitioned transition matrix
b Another array in the Cannon algorithm
c Column number
cp Column number of the pivot element in

dependency matrix
Ci ith coefficient
D N×N dependency matrix
Di ith partitioned dependency matrix
Dij Connectivity parameter, where Dij ¼ 1 when the

ith and jth states are connected; otherwise, it is
zero.

ei ith normal basis
m Dimensional parameter of submatrices for

multiple processors
M Dimensional parameter for the partitioned

matrix
n Time parameter in the computer processing
N Number of states in Markov chain
p Vector of transition probabilities
pC Total probability of the partitioned Markov

chains couple with each other
pi ith partitioned vector of transition probabilities

pI Total coupling probability for the interchanged
dependency matrix

P(A) Probability of A
P(A | B) Conditional probability of A given B
Q Infinitesimal generator of continuous-time

Markov chain
s A dimensional parameter
S Finite state space
t Time
X(t) Variable with Markov property at time t
li ith eigenvalue
mi,j Transition probability (failure/recovery rate) of

the state i moves to the state j
vi ith eigenvector
d A small number
pi,j A processor with elements ai,j and bi,j

P N×1 permutation vector
Pi ith partitioned permutation vector
t Threshold parameter
Fi ith off-diagonal dependency matrix
Ci ith off-diagonal transition matrix

Superscripts

′ Derivative with respect to time
* Optimal solution
(k) kth iteration in finding the optimal partition
(n) nth step in computer processing

REFERENCES

Aldemir, T., Miller, D., Stovsky, M., Kirschenbaum, J., & Buccim, P. (2006).
Current State of Reliability Modeling Methodologies for Digital Systems
and Their Acceptance Criteria for Nuclear Power Plant Assessments.
Washington, DC: US Nuclear Regulatory Commission.

Bhaduri, D., Shukla, S.K., Graham, P.S., & Gokhale, M.B. (2007). Reliabil-
ity analysis of large circuits using scalable techniques and tools. IEEE
Transactions on Circuits and Systems I 54(11), 2447–2460.

Cai, B., Liu, Y., Liu, Z., Tian, X., Li, H., & Ren, C. (2012). Reliability anal-
ysis of subsea blowout preventer control systems subjected to multiple er-
ror shocks. Journal of Loss Prevention in the Process Industries 25,
1044–1054.

Cannon, L.E. (1969). A cellular computer to implement the Kalman filter al-
gorithm. PhD Thesis. Montana State University.

Chou, Y.-C., & Lin, P.T. (2014). An efficient and robust design optimization
of multi-state flow network for multiple commodities using generalized
reliability evaluation algorithm and edge reduction method. International
Journal of Systems Science. Advance online publication. doi:10.1080/
00207721.2013.879228

Dominguez-Garcia, A.D., Kassakian, J.G., & Schindall, J.E. (2006). Reliability
evaluation of the power supply of an electrical power net for safety-relevant
applications. Reliability Engineering & System Safety 91(5), 505–514.

Grama, A., Gupta, A., Karypis, G., & Kumar, V. (2004). Introduction to Par-
allel Computing. Essex: Pearson Education.

Gropp, W. (2002). MPICH2: A new start for MPI implementations. Proc. 9th
European PVM/MPI Users’ Group Meeting on Recent Advances in Par-
allel Virtual Machine and Message Passing Interface.

Gropp, W., Huss-Lederman, S., Lumsdaine, A., Lusk, E., Nitzberg, B., Sa-
phir, W., & Snir, M. (1998). MPI: The Complete Reference—The MPI-
2 Extensions. Cambridge, MA: MIT Press.

Guo, H., & Yang, X. (2008). Automatic creation of Markov models for reli-
ability assessment of safety instrumented systems. Reliability Engineer-
ing & System Safety 93(6), 829–837.

A robust system reliability analysis 321

https://doi.org/10.1017/S0890060414000493 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060414000493

Han, J., Gao, J., Jonker, P., Qi, Y., & Fortes, J.A. (2005). Toward hardware-
redundant, fault-tolerant logic for nanoelectronics. IEEE Design & Test of
Computers 22(4), 328–339.

Kim, H., Lee, H., & Lee, K. (2005). The design and analysis of AVTMR (all
voting triple modular redundancy) and dual-duplex system. Reliability
Engineering & System Safety 88(3), 291–300.

Lin, P.T., Chou, Y.-C., Manuel, M.C.E., & Hsu, K.S. (2014). Investigation of
numerical performance of partitioning and parallel processing of Markov
chain (PPMC) for complex design problems. Proc. ASME 2014 Int. Design
& Engineering Technical Confs. and Computers & Information in Engineer-
ing Conf., IDETC/CIE 2014, Paper No. DETC2014-34652, Buffalo, NY.

Lisnianski, A., Elmakias, D., Laredo, D., & Ben Haim, H. (2012). A multi-
state Markov model for a short-term reliability analysis of a power gener-
ating unit. Reliability Engineering & System Safety 98(1), 1–6.

Liu, Y., & Rausand, M. (2011). Reliability assessment of safety instrumented
systems subject to different demand modes. Journal of Loss Prevention in
the Process Industries 24(1), 49–56.

Liu, Z., Liu, Y., Cai, B., Liu, X., Li, J., Tian, X., & Ji, R. (2013). RAMS anal-
ysis of hybrid redundancy system of subsea blowout preventer based on
stochastic Petri nets. International Journal of Security and Its Applica-
tions 7(4), 159–166.

Liu, Z., Ni, X., Liu, Y., Song, Q., & Wang, Y. (2011). Gastric esophageal sur-
gery risk analysis with a fault tree and Markov integrated model. Reliabil-
ity Engineering & System Safety 96(12), 1591–1600.

Matthews, P., & Philip, A. (2012). Bayesian project diagnosis for the con-
struction design process. Artificial Intelligence for Engineering Design,
Analysis and Manufacturing 26(4), 375–391.

Mutha, C., Jensen, D., Tumer, I., & Smidts, C. (2013). An integrated multi-
domain functional failure and propagation analysis approach for safe sys-
tem design. Artificial Intelligence for Engineering Design, Analysis and
Manufacturing 27(4), 317–347.

Parashar, B., & Taneja, G. (2007). Reliability and profit evaluation of a PLC
hot standby system based on a master-slave concept and two types of re-
pair facilities. IEEE Transactions on Reliability 56(3), 534–539.

Snir, M., Otto, S., Huss-Lederman, S., Walker, D., & Dongarra, J. (1998). MPI:
The Complete Reference—The MPI Core. Cambridge, MA: MIT Press.

Soro, I.W., Nourelfath, M., & Ait-Kadi, D. (2010). Performance evaluation of
multi-state degraded systems with minimal repairs and imperfect preven-
tive maintenance. Reliability Engineering & System Safety 95(2), 65–69.

Stewart, W.J. (2009). Probability, Markov Chains, Queues, and Simulation:
The Mathematical Basis of Performance Modeling. Princeton, NJ: Prin-
ceton University Press.

Wang, S., Ji, Y., Dong, W., & Yang, S. (2007). Design and RAMS analysis of
a fault-tolerant computer control system. Tsinghua Science & Technology
12(Suppl. 1), 116–121.

Yu, H., Chu, C., Châtelet, Ė., & Yalaoui, F. (2007). Reliability optimization
of a redundant system with failure dependencies. Reliability Engineering
& System Safety 92(12), 1627–1634.

Zhang, C.W., Zhang, T., Chen, N., & Jin, T. (2013). Reliability modeling and
analysis for a novel design of modular converter system of wind turbines.
Reliability Engineering & System Safety 111, 86–94.

Zhang, T., Long, W., & Sato, Y. (2003). Availability of systems with self-di-
agnostic components-applying Markov model to IEC 61508-6. Reliabil-
ity Engineering & System Safety 80(2), 133–141.

Po Ting Lin is a Professor in the Department of Mechanical
Engineering, Research and Development Center for Micro-
system Reliability and Center for Biomedical Technology at
Chung Yuan Christian University.

Yu-Cheng Chou is a Professor in the Institute of Undersea
Technology at National Sun Yat-sen University.

Yung Ting is a Professor in the Department of Mechanical
Engineering at Chung Yuan Christian University.

Shian-Shing Shyu is a Scientist at the Institute of Nuclear
Energy Research of the Atomic Energy Council in Taiwan.

Chang-Kuo Chen is a Scientist at the Institute of Nuclear
Energy Research of the Atomic Energy Council in Taiwan.

P.T. Lin et al.322

https://doi.org/10.1017/S0890060414000493 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060414000493

	A robust system reliability analysis using partitioning and parallel processing of Markov chain
	Abstract
	INTRODUCTION
	RELIABILITY ANALYSIS OF MMR CONTROLLERS
	Discrete-time MC

	PARTITIONING OF A MC
	Reduction of a MC
	M-partitioning
	Iteration process of finding the minimal coupling between subproblems

	PPMC
	Numerical Examples
	Example 1: 60-state MC for MMR controllers
	Example 2: 200-state MC for MMR controllers
	Example 3: 480-state MC for MMR controllers
	Numerical performances in Example 3

	Conclusions
	ACKNOWLEDGMENTS
	NOMENCLATURE
	Superscripts

	REFERENCES

