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This paper is the follow-up of a previous study (Manna, Vacca & Verzicco, J. Fluid
Mech., vol. 700, 2012, pp. 246–282) that numerically investigated the effects of a
harmonic volume forcing on the turbulent pipe flow at a bulk Reynolds number of
'5900. There, the investigation was focused on the time- and space-averaged statistics
of the first- and second-order moments of the velocity, the vorticity fluctuations and
the Reynolds stress budgets in order to study the changes induced on the mean current
by the oscillating component. The amplitude of the latter was used as a parameter for
the analysis. However, as the flow is inherently unsteady, the phase-averaged statistics
are also of interest, and this is the motivation and subject of the present study. Here,
we show the variability of the above quantities during different phases of the flow
cycle and how they are affected by the amplitude of the oscillation. It is observed
that when the ratio of the oscillating to the time-constant velocity component is of
the order of one (β 'O(1)), the phase-averaged profiles are appreciably influenced by
the pulsation, although only small deviations of the time-averaged counterparts have
been documented. In contrast, when that ratio is increased by one order of magnitude
(β ' O(10)) the phase- and cycle-averaged quantities differ considerably, especially
during the decelerating part of the cycle. In more detail, the amplitude and the phase
of all turbulence statistics show significant variations with β. This variability has
important implications in the dynamics and modelling of these flows. Since the data
have been obtained by direct numerical simulations and validated by comparisons
with experimental studies, the results could be used for validation of codes, testing
of turbulence models or measurement procedures.
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1. Introduction
Pulsating flows are of interest in many engineering applications such as industrial,

environmental and biological flows. This class of problems is characterized by
a superposition of a steady flow onto a harmonic-like time-varying component
typically generated by a rotating or popped valve in a mechanical engineering
context. Alternatively, the oscillation may be induced by a variable displacement
pump, or by a wave–current boundary layer interaction in a coastal environment.
Another context where these problems might be relevant is that of blood circulation.
Typical parameters are a peak Reynolds number of ≈6500 during the systole and a
mean Reynolds number of ≈1400 averaged over the heart cycle. The ratio between
the oscillating and the mean streamwise velocity is ≈6 although the waveform is not
purely sinusoidal and it is determined by a complex interaction between the heart
and the impedance of the circulatory system (Caro et al. 1978; de Tullio et al. 2009).
Finally, the ratio between the radius of the aorta and the Stokes layer thickness yields
Ω ≈ 12 (see below for the definition), which classifies the flow as the ‘high-frequency
regime’.

As a matter of fact, and despite their great environmental and biomedical relevance,
little is known about the physics of pulsating turbulent flows even in simple
geometries. One of the reasons lies in the enhanced complexities added by the
oscillatory component of the motion which increases the relevant similarity parameters
from one (in the case of steady flow) to three (Akhavan, Kamm & Shapiro 1991).
While several choices are possible, a convenient triplet is (Yellin 1966) Reb, Ω and
β with

Reb = UbD
ν
, Ω = R

δ
, β = Uo

Ub
, (1.1a−c)

where D, Ub and ν are the pipe diameter, the steady component of the bulk velocity
and the fluid kinematic viscosity respectively. The pipe radius is R = D/2, while
δ =√2ν/ω is the Stokes layer thickness, ω = 2π/T being the pulsation, with T the
oscillation period. Finally, Uo is the amplitude of the oscillating component of the
bulk velocity (with zero time average).

The available literature on pulsating pipe flows has been extensively reviewed in a
previous paper (Manna, Vacca & Verzicco 2012), to which the reader is referred for
further references.

While nearly the entire literature has dealt with pulsating pipe or channel flows with
β values less than one (the current-dominated (CD) regime) (Shemer & Kit 1984;
Tardu & Binder 1993; Scotti & Piomelli 2001; He & Jackson 2009) (see table 1 in
Manna et al. 2012), very few studies have focused on values of β beyond unity (the
wave-dominated regime).

Lodahl, Sumer & Fredosoe (1998) experimentally analysed a large part of the
parameter space. Introducing the oscillation Reynolds number Reω = U2

m/(ων) (it is
easy to show that the relation ReωΩ2 = [(β Reb)/(2

√
2)(Um/Uo)]2 holds), with Um

the maximum value of the oscillatory flow at the centre of the pipe, the available
data, in the high-frequency regime (Ω > 10), have been represented in an (Reb, Reω)
plane (see figure 1). The laminar to turbulent transition was shown to depend on the
(Reb, Reω) pair. More specifically, for Reb < Reb,tr ' 2300, the flow remains laminar
until Reω reaches the transitional value in the absence of current (Reω,tr ∼ 105). For
Reb > Reb,tr, laminar conditions can only occur if Reω1 < Reω < Reω2; the difference
between Reω2 and Reω1 reduces for increasing Reb and it vanishes at Reb/Reb,tr ∼ 3.5,
with Reω/Reω,tr ∼ 0.7. In Manna et al. (2012) (hereafter referred to as MVV),
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FIGURE 1. The laminar to turbulent transition boundary (dashed line) and available data
for high-frequency regimes (Ω > 10): E, Shemer & Kit (1984); D, Tardu & Binder
(1993); @, Lodahl et al. (1998); B, Scotti & Piomelli (2001); C, He & Jackson (2009);
u, present calculations.

a few fully resolved direct numerical simulations were carried out for a fixed
value of Ω (=53) and different oscillating velocity amplitudes. Four flow conditions
characterized by different values of β were considered and a turbulent to laminar
reverse transition process was documented to occur for β=5. For β=10.6, turbulence
was accompanied by a remarkable reduction of the cycle-averaged friction coefficient
when compared with the steady value, and the first- and second-order moments
showed appreciable deviations compared with the corresponding steady ones. In
particular, the cycle-averaged vorticity and the velocity fluctuation budgets indicated
an enhanced turbulence anisotropy in the near-wall region.

In this paper the dynamics of the relevant turbulent quantities is further analysed
with respect to their time evolution within the pulsating period. To this end the phase-
averaged decomposition was employed with the objective of unravelling the transient
mechanisms and clarifying the cycle-averaged results. Particular attention has been
paid to the phase dynamics of the wall layer structure described in terms of statistical
parameters.

The paper is organized as follows. In § 2 the problem is described together with the
numerical method. In § 3 the results are discussed; the phase dynamics of the mean
velocity, Reynolds stresses and vorticity is given in § 3.1 while the Reynolds stress
budget analysis is detailed in § 3.2. The conclusions are briefly outlined in § 4.

2. Problem and numerical method

The incompressible pulsating flow through a circular pipe with diameter D and
axial length Lz is driven by a time-dependent harmonic body force of prescribed mean,
amplitude and frequency. The resulting flow has a volume-averaged velocity with a
steady component Ub and a harmonically time-varying one Uo with pulsation ω. The
forcing term, later specified, is such that the desired values of the dimensionless
parameters (1.1) are obtained.
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Pulsating pipe flow with large-amplitude oscillations 275

Acronym Reb Reω Ω β δ+ T+

ST 5920 — — — — —
CD 5939 1.6× 103 53 1.0 3.71 43.23
WD1 5730 3.9× 104 53 5.0 2.03 12.91
WD2 5460 1.6× 105 53 10.6 3.02 28.62

TABLE 1. The run matrix.

We recall that the flow parameters, whose numerical values are given in table 1,
have been chosen in such a way as to cross the hook-shaped laminar/turbulent
transition boundary twice while keeping Reb (approximately) constant.

The motivation for this study stems from the fact that, as shown in figure 1, there
are no cases in the neighbourhood of the region inside which a reverse transition
occurs (Lodahl et al. 1998). Accordingly, we have investigated via direct numerical
simulation (DNS) the three flow conditions identified by the (Reb, Reω) pairs detailed
in table 1 and denoted with filled circles in figure 1.

A steady simulation at Reb= 5920 (referred to as ST) has also been performed with
the aim of comparing the pulsating dynamics with the steady one.

All pulsating cases are characterized by the same Stokes layer thickness (Ω = 53)
and an approximately constant bulk Reynolds number Reb, while the oscillating
Reynolds number Reω is changed by three orders of magnitude, thus crossing both
the lower and the upper branches of the hook-like transition boundary (see figure 1).

We solve the three-dimensional incompressible Navier–Stokes equations,

∂u
∂t
+N (u)=−∇P+L (u)+S , ∇ · u= 0, (2.1a,b)

where P = p/ρ, with p and ρ the pressure and the fluid density respectively. The
velocity components of u in cylindrical coordinates are u= (uz, ur, uθ)T= (u, v,w)T, in
the axial (streamwise), radial and azimuthal directions respectively. The differential
operators N (u) = (u · ∇)u and L (u) = ν1u represent the convective and diffusive
terms. In the present flow the source term S is given by S = (Sz, 0, 0)T with

Sz = S0 [1+ α cos(ωt)] . (2.2)

The triplet (S0, α, ω) has been prescribed so as to obtain the dimensionless parameters
given in table 1. Due to the nonlinear dependence of the velocity field upon the body
force S , it is impossible to specify a priori a triplet yielding a precise value of the
dimensionless parameters and therefore the constancy of Reb, while changing β, is
only approximate.

The data were obtained with a spectral Chebyshev algorithm for the inhomogeneous
(radial) direction and blended Fourier decomposition for the homogeneous (axial and
azimuthal) ones, which has been successfully applied to both direct and large-eddy
(Manna & Vacca 2005, 2007, 2009) simulation of turbulent flows. Efficiency was
enhanced using a multidomain technique for the elliptic operators (Manna & Vacca
1999; Manna, Vacca & Deville 2004). Given the high resolution of the simulations,
assessed a posteriori through the velocity spectra in the homogeneous directions, no
dealiasing procedure was applied.

The dimensionless axial length lz = Lz/R was set equal to 12 for the steady (ST)
and CD simulations and to 28 for the wave-dominated ones (WD1 and WD2);
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Acronym Nsub (Nz ×Nr ×Nθ ) l+z 1z+ (R1θ)+ y+w =1r+min (r1θ)+min 1t+

ST 7 (192× 12× 192) 2398 9.4 6.6 0.081 1.37× 10−2 1.70× 10−5

CD 7 (192× 12× 192) 2359 9.3 6.5 0.080 1.35× 10−2 1.67× 10−5

WD1 7 (450× 12× 192) 3008 6.7 3.5 0.044 0.74× 10−2 0.91× 10−5

WD2 7 (450× 12× 192) 4479 10.0 5.3 0.065 1.10× 10−2 1.36× 10−5

TABLE 2. Computational details.

this was necessary in order to account for the elongation of the near-wall coherent
structures as β is increased. The autocorrelation of the streamwise velocity, shown
in MVV, has confirmed the adequacy of the computational domain length. Indeed,
in the study of Chin et al. (2010) it has been shown that turbulent flows in pipes
contain some very elongated structures that extend beyond the axial length of ≈25R,
although with limited energy content. The first- and second-order statistics, however,
converge already for lengths of the order of ≈10R, and these are the main focus of
this study.

The computational domain was split radially into seven subdomains (Nsub = 7),
each one having Nr = 12 and Nθ = 192 modes in the radial and azimuthal directions
respectively. The number of Fourier modes in the axial direction was set to Nz= 192
in the steady and CD simulations. To preserve the resolution in the axial direction
the number of modes in the wave-dominated regime was increased to Nz = 450. In
table 2 some details are given on the spatial discretization of the simulations scaled
with the wall quantities computed from the friction velocity uτ =√S0R/2.

The grid resolution, comparable to that of Eggels et al. (1994), Orlandi & Fatica
(1997) and Quadrio & Sibilla (2000), satisfied the severe DNS requirements and
ensured the reliability of the data. Further comparisons of our ST case with the
results reported by Eggels et al. (1994), Orlandi & Fatica (1997) and Quadrio &
Sibilla (2000) (see MVV) confirm the quantitative agreement of the present results
with analogous cases from the literature. The CD simulation required slightly less
than 1 GB of RAM and needed approximately 150 single-core equivalent hours per
period.

In what follows we shall denote with the brackets (〈·〉) all quantities that have
been phase averaged and with an overline ( · ) those that have been cycle averaged.
Changes within the period, i.e. the modulation in the oscillating cycle, are computed
as the difference between phase- and cycle-averaged quantities ( ·̃ = 〈·〉 − · ). The
prime symbol (·′) is used to indicate the deviation of the instantaneous values from
the phase-averaged quantities. Denoting by Nc and Ntot the number of cycles and the
number of samples used to describe the in-cycle variations respectively, the following
definitions are adopted:

〈 f (r, tn)〉 = 1
Nc lz2π

Nc∑
i=1

∫ 2π

0

∫ lz

0
f (z, r, θ, tn + (i− 1) T)dzdθ n= 1, . . . ,Ntot,

(2.3)

f (r)= 1
Ntot

Ntot∑
n=1

〈 f (r, tn)〉. (2.4)

We divide the oscillating period T into eight evenly spaced intervals, i.e. Ntot=8 and
tn = (n− 1)T/8, and denote by φn = (n− 1)π/4 the corresponding phases. Moreover,
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FIGURE 2. Mean velocity profiles in inner coordinates: ——, ST case; — · —, CD case;
· · · · · ·, WD1 case; - - - -, WD2 case. The thin solid line is given for reference with κ =
0.41 and B= 5.5, the standard values for turbulent channel and pipe flows.

the data are shown as a function of the phase φn, with φ0 such that Ũ(φ3)=Uo. For
the sake of brevity the subscript n is omitted in the following and the phases are
directly specified with the corresponding angle.

The phase-averaged statistics have been evaluated by processing 50 flow cycles. In
order to assess the convergence of the results, some statistics have been computed
using only 30 periods and the results for the Reynolds stresses have shown a
maximum deviation of 3 % with respect to the same quantities computed using the
whole data set. The database, stored in single precision, consists of 400 files for a
total size of 20 GB (β = 1 case) and 46 GB (β = 10.6 case).

3. Results
3.1. Velocity profiles and Reynolds stress analysis

In MVV it was shown that the time-averaged radial profiles of the streamwise
velocity behaved very differently depending on the specific flow regime. In particular,
the WD1 case was shown to be laminar with a parabolic Poiseuille-like profile, while
the CD flow recovered the steady ST case. The WD2 case instead had an intermediate
behaviour, still displaying a logarithmic region although with an upward shift that
indicated some drag reduction. Moreover, it was shown that the oscillating flow obeys
the Stokes solution in both current- and wave-dominated regimes. Therefore, the flow
appears to be essentially uncoupled in the CD regime and one-way coupled in the
wave-dominated one.

It is worth mentioning that the transitional aortic blood flow in an adult human,
although the oscillating component is not purely harmonic, is in the wave-dominated
regime since β' 6. Perhaps also this highly pulsatile flow under certain circumstances
benefits from some drag reduction that decreases the load on the myocardial muscle.

This mean flow dynamics, summarized in figure 2, applies only to the cycle-
averaged profiles, while the phase-averaged statistics show very different features.

In the following we will analyse only the CD and WD2 cases since the WD1 flow,
obtained for β = 5.0, completely relaminarized and yielded phase-averaged profiles
that were just the decoupled superposition of a steady Poiseuille and a Stokes flow.
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FIGURE 3. Radial distributions of the phase-averaged streamwise velocity in inner
coordinates: (a) β = 1; (b) β = 10.6; ——, mean value; - - - -, phase-averaged values. In
this and the following figures, the profiles at different phases Φ are shifted upward by a
suitable fixed amount in each panel.

In figure 3 the phase-averaged velocity profiles are shown in inner coordinates, for
both the β = 1 (CD) and β = 10.6 (WD2) cases. Given the high value of Ω , the
logarithmic region might be expected not to be altered by the pulsating flow and
therefore its virtual origin to be displaced by a constant amount for each phase φ.
This conjecture is based on the unproven assumption that current and oscillating flows
decouple for large enough values of y/δ, and the collected data corroborate the above
idea for the profiles outside the wall layer (y+ > 40). The magnitude of the shift is
obviously phase- and β-dependent, as clearly shown in figure 3. The reverse flow
region in the range of the cycle π6 φ 6 (7/4)π is evident for both values of β, and
looking at the curvature of the velocity profiles therein it can be anticipated that large
turbulent kinetic energy production will occur during the oscillating period due to the
high local values of the shear (see also § 3.2).

In MVV it has been shown that, in the CD regime, the long time-averaged
turbulence intensities did not appreciably differ from the corresponding ones in the
ST case. Conversely, in the WD2 case, while the cross-stream components undergo
substantial reductions, the streamwise one appears to be enhanced in magnitude for
y+ < 80 and reduced elsewhere.

Figures 4(a) and 4(b) show the radial distributions of the phase-averaged modulation
of the streamwise turbulence intensity normalized with the time-averaged wall friction
velocity, for the β = 1 and β = 10.6 cases respectively. In both cases the perturbation
can be viewed as a wave generated next to the wall at the beginning of the
decelerating phase (φ'π/2) and propagating in the bulk with a penetration length of
approximately 40 wall units. During this inward propagation the disturbance undergoes
an amplification, and it reaches its maximum at y+ ' 8 (respectively y+ ' 7) for the
β = 1 (respectively β = 10.6) case at the same phase φ ' 5π/4, with a subsequent
decay, independent of the β value. The lifetime of the described phenomenon, that is,
the time needed by the disturbance to span those 40 wall units from its birth until its
death, is larger than the oscillating period but smaller than twice this value in both
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FIGURE 4. Radial distributions of the phase-averaged streamwise turbulence intensity
modulation in inner coordinates: (a) β = 1; (b) β = 10.6.
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FIGURE 5. Radial distributions of the phase-averaged cross-stream turbulence intensity
modulation in inner coordinates: (a) β = 1; (b) β = 10.6.

the wave- and current-dominated regimes. With obvious approximation associated
with the identification of those beginning and ending phases, it can be stated that
the above-described lifetime is approximately 7π/2, independent of the β value.
Therefore, during the cycle two peaks are observed, one from the newly generated
amplifying wave and the other from the preceding decaying perturbation. Figure 4
also shows that the CD case is characterized by a perturbation of reduced intensity
compared with the WD2 one.

Using a single space–time constant value as the reference velocity scale (results
not shown), the modulation of the streamwise turbulence intensity in the WD2 case
remains larger than the corresponding CD one.

Figures 5 and 6 depict the phase-averaged modulation of the radial and azimuthal
turbulence intensity across the pipe radius, using an identical scaling to that in
figure 4. As for the streamwise component, the WD2 regime shows larger modulation
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FIGURE 6. Radial distributions of the phase-averaged azimuthal turbulence intensity
modulation in inner coordinates: (a) β = 1; (b) β = 10.6.

of both stresses, which again behave as travelling waves, disappearing within 40 wall
units. While the azimuthal component is characterized by the presence of the two
peaks during the cycle for both β values, such a peculiarity has not been detected for
the radial component. In the wave-dominated regime, the largest positive modulation
of the radial (respectively azimuthal) component occurs at φ = π (respectively
φ = 3π/4), while the largest negative one is located at φ = 0 (respectively φ = π).
In the CD regime, figures 4(a)–6(a), taken collectively, indicate that the in-cycle
modulations are remarkably large while the long time-averaged diagonal components
of the Reynolds stresses are not significantly affected by the time-varying forcing
(see figure 8 of MVV). On comparing figures 4(b)–6(b) it turns out that, close
to the wall, positive modulations of the streamwise component of the turbulent
intensity are accompanied by negative modulations of the other two components, in
the decelerating phase. Likewise, negative modulations of the

√
u′u′ correspond to

positive ones of both
√
v′v′ and

√
w′w′, during the accelerating phase, 0 6 φ 6 π/2.

Therefore, it follows that while in the decelerating phase an enhanced turbulence
anisotropy close to the wall is observed, in the accelerating phase a tendency to
recover a more isotropic turbulence character occurs. The genesis of this return and
departure from the anisotropy has to be investigated in terms of energy generation
and distribution mechanisms. This entails the inspection of both the turbulent kinetic
energy production and the pressure–strain role modulation, which will be addressed
later on.

The use of a single space–time constant value as the reference velocity scale (results
not shown) indicates that the modulation of both radial and azimuthal turbulence
intensities in the wave-dominated case is smaller than the corresponding modulation
in the CD one.

The radial profiles of the turbulent shear stress modulation, in inner coordinates, are
characterized by a dynamics similar to the normal components of the Reynolds stress
tensor, with the phase variations in the β = 1 case significantly smaller than those at
β = 10.6. A close inspection of the data of figure 7(a,b) reveals the presence of a
time-varying disturbance propagating in the radial direction with a double peak, for
both the CD and WD2 cases. The radial extent of the interaction region is slightly
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FIGURE 7. Radial distributions of the phase-averaged turbulent shear stress modulation in
inner coordinates: (a) β = 1; (b) β = 10.6.
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FIGURE 8. Radial distributions of the phase-averaged 〈Q4/Q2〉 ratio in inner coordinates:
(a) β = 1; (b) β = 10.6.

larger than those of the normal Reynolds stress components and roughly equal to 50
wall units. In the very first 10 wall units, the turbulent shear stress modulation appears
to be positive for π/2 6 φ 6 5π/4 and negative in the remaining part of the cycle.
This phenomenon is important for the comprehension of the temporal variation of the
turbulent production term in the 〈u′u′〉 budget, addressed later in § 3.2.

Considering a single space–time constant value as the reference velocity scale
(results not shown), the modulation of the turbulent shear stress in the WD2 case
remains slightly larger than the corresponding CD one.

Returning now to the modulation of the turbulent shear stress and recalling the
relevance of the negative values of the 〈u′v′〉 correlation with respect to the energy-
producing events, we present in figure 8(a,b) the radial profiles of the phase-averaged
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FIGURE 9. Space–time diagrams of the streamwise turbulence intensities (a) and (c) and
the turbulent shear stresses (b) and (d), in inner coordinates: (a) and (b) β = 1; (c) and
(d) β = 10.6.

ratio between the fourth (sweep) and second (ejection) quadrant events, for the current-
and wave-dominated cases respectively. The sign of the radial component has been
changed, in order to use the customary terminology to refer to ejections as events
pertaining to the second quadrant, and sweeps to the fourth one.

Focusing on the β=1 data, figure 8(a) shows a persistent dominance of the ejection
events (second quadrant) away from the wall and of the sweep events close to the wall
(fourth quadrant, y+ 6 15), in the whole period. Conversely, in the wave-dominated
case (β = 10.6) the fourth and second quadrant events are always comparable, for
y+ 6 10, and the peak appearing in the buffer layer should be interpreted as the
consequence of the near-wall reduction of the fourth quadrant events. Moreover,
the temporal modulation of the 〈Q4/Q2〉 ratio sheds light on the prevailing role
of the ejections over the sweeps, in the near-wall region, just after the maximum
acceleration instant (0 6 φ 6 π/4). This is possibly the effect of an alteration of the
splatting mechanism associated with lumps of fluid converging rapidly towards the
wall which are expected to enhance the turbulence components parallel to the wall.
This enhancement is usually explained in terms of an energy transfer from the radial
component to the axial and azimuthal ones (Moin & Kim 1981).

On the basis of this alteration, it is therefore reasonable to expect that the amount
of turbulent energy transferred from the radial to the streamwise and azimuthal
components, through pressure–strain interaction, will reduce for 0 6 φ 6 π/4, in
the wall region. The analysis of the modulation of the pressure–strain term in the
turbulent kinetic energy budgets, postponed to the § 3.2, supports this hypothesis.

The characteristics of the above-mentioned travelling wave are better understood in
a space–time diagram, like those given in figure 9, in which the streamwise turbulence
intensities and the turbulent shear stresses, in inner coordinates, are represented, for
the β = 1 and β = 10.6 cases. These figures report instantaneous realizations, lasting
two periods, averaged in the homogeneous z–θ directions, and therefore they are
not exactly periodic over the selected time span. Concentrating on the contour level
corresponding to the maximum value in figure 9(a,c), it is readily inferred that the
perturbation is most intense in the region 10 6 y+ 6 20 (respectively 7 6 y+ 6 14)
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FIGURE 10. Radial distributions, in inner coordinates of the amplitudes of the first three
modes, of the streamwise turbulence intensities (a) and (c) and the turbulent shear stresses
(b) and (d): (a) and (b) β = 1; (c) and (d) β = 10.6.

in the β = 1 (respectively β = 10.6) case. As far as the turbulent shear stress is
concerned, figure 9(b,d) shows that the region of most intense activity is similar in
extension although shifted further away from the wall (25 6 y+ 6 50).

It is worth noting that both the streamwise turbulence intensity and the turbulent
shear stress show fluctuations with frequencies larger than the fundamental, the energy
content of which increases with β. This is particularly evident in the wall region
across the Stokes layer (3 6 y+ 6 10). To investigate this matter quantitatively, in
figure 10 we present the radial distributions of the amplitudes of the first three modes
computed by Fourier transforming the signals of the streamwise turbulence intensity
and turbulent shear stress. In the β = 1 case the energy content of the first mode is
substantially larger than the sum of the energies of the other two modes, especially
for the turbulent shear stress. On the other hand, in the β = 10.6 case the contribution
to the total energy of the second and third harmonics is far from being negligible,
especially for the streamwise turbulence intensity close to the wall. Therefore, any
phase-locked analysis employing one single mode, whatever procedure is adopted to
define it, has to be considered with caution in the wave-dominated regime.

The results presented in figures 4–7, taken collectively, support the idea that in the
very high frequency regime the amplitude of the pulsation has a definite effect on the
Reynolds stresses. They are differently affected by the unsteady mean shear according
to an energy redistribution mechanism among the several components, which will be
analysed later on. In order to further elaborate on this energy distribution, in figure 11
the phase-averaged analysis of the anisotropy index AI, as introduced in MVV, is
presented. Denoting by 〈IIb〉 the second invariant of the phase-averaged Reynolds
stress tensor,

〈IIb〉 =−1
2

( 〈u′iu′j〉
〈q′2〉 −

δij

3

)( 〈u′ju′i〉
〈q′2〉 −

δji

3

)
, (3.1)
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FIGURE 11. Radial distributions of the anisotropy index AI in inner coordinates: (a) β=1;
(b) β = 10.6; ——, mean value; - - - -, phase-averaged values.

with (u1, u2, u3) = (u, v, w) and 〈q′2〉 = 〈u′12 + u′2
2 + u′3

2〉, the anisotropy index is
now defined as 〈AI〉 = 〈IIb〉/〈II1D〉, with 〈II1D〉 = −(1/3) the value of the second
invariant in one-component turbulence. It should be recalled that the closeness to
unity of the AI is a measure of the one-dimensionality of the turbulence; likewise,
an isotropic state corresponds to AI = 0. The largest variations about the time mean
occur in the β = 1 case, and they are confined within the first 10 wall units. This
is more clearly appreciated through the instantaneous AI contour maps presented in
figure 12, from which the presence of large-AI space–time gradients close to the
wall is observed. There is a marked tendency towards higher AI values during the
decelerating phase (π/2 6 φ 6 3π/2) close to the wall. This trend is also observed
in the β = 10.6 case, although the variations about the mean are generally smaller. It
is worth noting that for β = 10.6 the AI remains much larger than the corresponding
values of the β = 1 case. This behaviour is consistent with the modulation of
the streamwise turbulence intensity associated with the previously discussed wave
dynamics of the perturbation. The above results undoubtedly show that the net effect
of the unsteady forcing is a clear tendency towards a more anisotropic behaviour
of the turbulence in the wall layer, with a reduction of the cross-stream fluctuating
components, during the decelerating phase. The cycle-averaged drag (respectively
anisotropy) reduces (respectively increases) in the sense discussed in MVV. In Touber
& Leschziner (2012) the net effect of their unsteadiness is an enhanced isotropy with
an amplification of the spanwise fluctuations, which, through a streak modification
mechanism, induces a drag reduction. There is no contradiction between the results of
the two studies dealing with similar flows although forced along different directions.

In order to characterize the structures of the wall layer and to identify those eddies
that are most effective in draining energy from the mean flow, we show (figures
13a–15a) the phase- and plane-averaged (z–θ ) vorticity fluctuations for the β = 1 case.
The corresponding plane-averaged shaded contour plots, collected over two oscillating
periods, are reported in figures 16(a)–18(a). The largest phase variations are visible
in the buffer layer (y+ ∼ 15) for all components. In this region all components show
a tendency towards values exceeding the mean in the near-maximum decelerating
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FIGURE 12. Space–time diagram of the anisotropy index 〈AI〉, in inner coordinates.
(a) β = 1; (b) β = 10.6.

instant ((3/4)π < Φ < (5/4)π) and vice versa in the near-maximum accelerating
instant ((7/4)π<Φ <π/4). Within a single oscillating cycle, these perturbations are
seen to be generated twice, with a dynamics that is quite similar for all components.
The analysis of the profiles of figures 16(a)–18(a) shows that the largest variations
occur for the azimuthal component, while the streamwise component deviates least
from the mean profiles. This is possibly a consequence of the effects of the gradient
production term in the equation of the square vorticity fluctuations, which is only
present in the azimuthal component (Tennekes & Lumley 1972). The perturbation
originating at the wall with a frequency equal to the external driving force propagates
in the wall-normal direction within the oscillating period. Figures 13(b)–15(b) and
16(b)–18(b) are the counterparts of the previous ones but in the wave-dominated
regime (β = 10.6). Unlike the CD case (β = 1), here the phase–time dynamics of the
vorticity fluctuations appears to be more involved. Not only is the amplitude of the
variations with respect to the mean larger but also the footprint of the perturbation
is different, in both size and shape, in the shaded contour plots. More interestingly,
and differently from the CD case, higher modes appear in the wall region despite the
identical applied forcing. Their frequency generation is seen to be twice the forcing
value for all components. It is worth mentioning that, unlike the radial vorticity (ωr)
which is zero at the wall (figure 14), the axial and azimuthal components produce
disturbances directly at the wall (figures 13 and 15), and the radial penetration of
the disturbance is again approximately 40 wall units, just as for the normal Reynolds
stresses. Figures 16(b) and 17(b) show that the streamwise and radial disturbance
propagation patterns are approximately similar in the interaction region outside the
Stokes layer (y+ > 5). The azimuthal component (see figure 18b) is characterized by
a different temporal evolution within the Stokes layer and outside it. While in the
former the disturbance propagation appears to be very large, in the latter it reduces
appreciably.

3.2. Budgets
In this section we present the phase-averaged transport equation for all normal stresses
which, following the nomenclature of MVV, reads

〈I〉 = 〈P〉 + 〈T〉 + 〈Π〉 + 〈D〉 − 〈ε〉. (3.2)

In (3.2) the terms 〈P〉, 〈T〉, 〈Π〉, 〈D〉, −〈ε〉 and 〈I〉 indicate the production, the
turbulent transport, the velocity–pressure gradient, the viscous diffusion, the dissipation

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

17
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2015.17


286 M. Manna, A. Vacca and R. Verzicco

0 20 40 0 20 40 60 0 20 40 0 20 40 6060 60

0.1

0.2

0.3

0.4

0.5

0.1

0.2

0.3

0.4

0.5(a) (b)

FIGURE 13. Radial distributions of the streamwise vorticity fluctuation intensities in inner
coordinates: (a) β = 1; (b) β = 10.6; ——, mean value; - - - -, phase-averaged values.
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FIGURE 14. Radial distributions of the radial vorticity fluctuation intensities in inner
coordinates: (a) β = 1; (b) β = 10.6; ——, mean value; - - - -, phase-averaged values.

and the inertia terms respectively. Obviously 〈I〉 = 0. They are as follows:〈
∂u′u′

∂t

〉
︸ ︷︷ ︸

〈I〉

= −2〈u′v′〉d〈u〉
dr︸ ︷︷ ︸

〈P〉

−1
r

〈
∂
(
ru′2v′

)
∂r

〉
︸ ︷︷ ︸

〈T〉

+2
〈

p′
∂u′

∂z

〉
︸ ︷︷ ︸

〈Π〉

+ 1
Re

1
r
∂

∂r

(
r
∂〈u′2〉
∂r

)
︸ ︷︷ ︸

〈D〉

− 2
Re

[〈(
∂u′

∂z

)2
〉
+
〈(

∂u′

∂r

)2
〉
+
〈

1
r2

(
∂u′

∂θ

)2
〉]

︸ ︷︷ ︸
〈−ε〉

,

(3.3)
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FIGURE 15. Radial distributions of the azimuthal vorticity fluctuation intensities in inner
coordinates: (a) β = 1; (b) β = 10.6; ——, mean value; - - - -, phase-averaged values.
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︸ ︷︷ ︸
〈−ε〉

. (3.5)

We begin the analysis by focusing on the production term 〈P〉 of the streamwise
component of the CD case, which is seen to be strongly modulated by the unsteady
forcing in both amplitude and peak position (figure 19). This is not surprising since
the unsteady forcing changes the radial profile of 〈u〉, the r-derivative of which
enters directly in the production term. It should be recalled, however, that the
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FIGURE 16. Root mean square of the streamwise vorticity (ωz) in the Φ–y+ plane:
(a) β = 1; (b) β = 10.6.
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FIGURE 17. The same as figure 16 but for ωr.
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FIGURE 18. The same as figure 16 but for ωθ .

corresponding cycle-averaged production shows no significant differences compared
with the steady flow distribution (see figure 14 of MVV). Thus, in this respect, the
phase-dependent modulations of both u′v′ and du/dr do not appreciably alter the
time-averaged production term. A small negative production corresponding to a sink
of energy is observed in the phase range π<φ < 7π/4 and for y+< 7; this evidences
the occurrence of kinetic energy transfer from the small scales to the larger ones
(Tsinober 2001). Although it is most marked for the production term, this in-cycle
variation characterizes all the terms of the budget. Noticeably, the modulation of the
time rate of change of the streamwise turbulent energy 〈I〉 is in general agreement
with the one of the production; the latter term attains its maximum at φ=π at y+∼ 9
with a value ('0.78) that is more than three times larger that the maximum of the
time-averaged distribution (MVV). Likewise, the viscous diffusion shows a negative
peak that closely follows that of the positive production.

In the wave-dominated regime (WD2 case of figure 20) the phase modulation of all
terms appears to be more pronounced. The general trend of all terms is similar to the
one previously discussed for the β = 1 case. Again, the maximum production occurs
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FIGURE 19. (Colour online) Phase-averaged streamwise velocity fluctuation energy
budget: β = 1.

at φ = π at y+ ∼ 7 with a value of 2.8, which represents the triple of the maximum
of the time-averaged distribution (MVV). Unlike the CD case, negative values of the
production are seen to occur at all times for y+ < 15 in small pockets. Once more,
the phase variations of the inertial term of the streamwise turbulent energy and the
viscous diffusion are significant. Incidentally, let us recall that large values of inertia
terms imply large temporal changes of the streamwise turbulent energy. The phase
modulation of the dissipation appears to be more pronounced in comparison to the β=
1 case and the maximum values occur in the region 3< y+ < 10. The peak negative
value of ε occurs at φ=3π/4 and its value is 1.54 times larger than the time-averaged
maximum (MVV).

To investigate the interaction between the large-amplitude unsteady forcing and
the shear stress modulation in the rapid oscillation regime, we decompose the
phase-averaged production term as

〈P〉 =−2u′v′
du
dr︸ ︷︷ ︸

〈Pcc〉

−2u′v′
dũ
dr︸ ︷︷ ︸

〈Pco〉

−2ũ′v′
du
dr︸ ︷︷ ︸

〈Poc〉

−2ũ′v′
dũ
dr︸ ︷︷ ︸

〈Poo〉

, (3.6)

which follows from the definition of 〈P〉 after using the decomposition 〈·〉 = · + ·̃. A
similar splitting of the production term has been employed to study the drag reduction
phenomenon resulting from the application an oscillatory spanwise wall motion to
a fully developed channel (Touber & Leschziner 2012) and to a space-developing
boundary layer (Skote 2013). In the above equation the direct term 〈Pcc〉 (respectively
〈Poo〉) represents the rate at which the mean (respectively modulating) Reynolds
stress does deformation work against the mean (respectively modulating) shear.
Likewise, the cross-term 〈Pco〉 (respectively 〈Poc〉) represents the rate at which the
mean (respectively modulating) Reynolds stress does deformation work against the
modulating (respectively mean) shear. The long-time average of 〈Pcc〉 and 〈Poo〉
coincides with the terms Pc and Po, introduced on p. 69 of MVV; that is, they
also contribute to the cycle-averaged intensity, while the 〈Pco〉 and 〈Poc〉 terms
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FIGURE 20. (Colour online) Phase-averaged streamwise velocity fluctuation energy budget:
β = 10.6.
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FIGURE 21. (Colour online) Phase-averaged radial distribution of production terms: β= 1.

do not. Moreover, in the very-near-wall region, an order of magnitude analysis
trivially suggests that both 〈Pco〉 and 〈Poo〉 in the β = 10.6 case are nearly one order
of magnitude larger than the corresponding ones in the CD regime.

The above splitting of the phase-averaged production term is shown in figures 21
and 22 for both current- and wave-dominated cases. In the CD regime, figure 21
indicates that the positive (source) 〈Pcc〉 term overwhelms the other ones, in the
whole oscillating period. Moreover, the 〈Poo〉 contribution constantly acts as a source,
although only in the region close to the wall (y+ 6 20). In contrast, 〈Pco〉 and 〈Poc〉
exhibit sign changes. In more detail, in the negative acceleration time interval they
are positive, thus leading to the already mentioned large peak production values.
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FIGURE 22. (Colour online) Phase-averaged radial distribution of production terms:
β = 10.6.

Conversely, during the acceleration phase, i.e. 7π/4<φ <π/4, negative contributions
of 〈Pco〉 and 〈Poc〉 are encountered in the wall region. These negative contributions
are accompanied by a similar variation of the 〈I〉 term (see figure 19).

In the β = 10.6 case, figure 22 shows that 〈Poo〉 is always the leading term and,
although it is generally positive, small regions with negative values are observed.
The 〈Pcc〉 term is always positive but, unlike the β = 1 case, it is not the dominant
contribution. The terms 〈Pco〉 and 〈Poc〉 are characterized by a sign change during
the oscillating period. Unlike the CD case, close to the wall the contribution of the
〈Pco〉 term is similar in magnitude to the 〈Poo〉 term, although with an opposite sign
for 7π/4 < φ < π/2. In the decelerating phase, 3π/4 < φ < 5π/4, and for y+ < 10
all terms behave as energy sources, leading to the already mentioned peak value
far exceeding the corresponding maximum value of the β = 1 case. Because of the
strong modulation of ũ′v′ and dũ/dr within the cycle, the comparison between the
CD and WD2 cases in terms of the local 〈Poo〉 values is difficult to carry out. Such
a comparison can be performed in an integral sense, evaluating the ratio of their
volume averages and analysing its phase variation. This kind of analysis (results not
shown herein) indicates that the volume average of 〈Poo〉 in the β= 10.6 case exceeds
the corresponding CD value by a factor ranging between 14 and 27.

In the wave-dominated regime, the above results, taken collectively, put into
evidence the strong phase modulation of the turbulence intensity production term,
characterized by regions of positive (source) and negative (sink) values.

This wavy shape of the production term has been documented to stem from the
modulation of the shear dũ/dr and of the turbulent shear stress ũ′v′. The penetration
depth of the overall production, i.e. y+ < 40, is therefore determined by the radial
extent below which the above quantities are appreciable. They could be inferred either
from the streamwise velocity profile amplitude reported in figure 12(a) of MVV
(converting the y/δ ∼ 12 value in wall units), for dũ/dr, or from figure 7, for ũ′v′.

The effect of the modulation of the production term in the period is felt directly by
the streamwise normal stress through a concordant inertia term and indirectly by the
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FIGURE 23. (Colour online) Phase-averaged radial velocity fluctuation energy budget:
(a) β = 1; (b) β = 10.6.

radial and the azimuthal ones via pressure–strain interaction, as will be documented
later on. On account of the magnitude and complexity of this turbulence modulation
within the cycle and the insensitivity of the oscillating component of the velocity
profile, which has determined the modulation, it can be safely stated that the flow
is one-way coupled, not only in a time-averaged but also in a phase-locked averaged
sense. Therefore, the energy transfer from the streamwise to the other two components,
regulated by the pressure–strain term, will be affected to a great extent by this time-
varying phenomenon.

Figure 23, reporting the wall-normal turbulence budget, shows that the phase
modulation of all terms is small and independent of β. For both current- and wave-
dominated regimes, the largest variations pertain to the inertia and velocity–pressure
gradient terms.

The azimuthal turbulence budgets are shown in figure 24. Unlike the wall-normal
component, all terms appearing in the budget present appreciable phase variations
in the first 20 wall units. This is most evident for the velocity–pressure gradient
(essentially a positive term), which is mainly balanced by the dissipation and inertia
terms. Comparing the magnitudes of the modulations of the individual terms appearing
in the budget of the three components, in the wave-dominated regime, it can be easily
inferred that the energy transfer mechanism from the streamwise to the azimuthal and
wall-normal components is not effective in both a cycle-averaged and an instantaneous
sense.

Incidentally, let us observe that the flow problem analysed in Touber & Leschziner
(2012), although somewhat different from the present one, shows a similar alteration
of the wall layer structure as a result of the application of a harmonically time-varying
wall motion. The latter makes an additional production term appear in the Reynolds
stress budget (θ component), which is responsible for a turbulence generation process
in the spanwise direction (orthogonal to the mean flow) leading to a drag reduction.
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FIGURE 24. (Colour online) Phase-averaged azimuthal velocity fluctuation energy budget:
(a) β = 1; (b) β = 10.6.

This phenomenon is attributed to a distortion and deflection of the near-wall streaks, a
mechanism that ultimately leads to a complete destruction of the turbulence-generating
events. In the present study the unsteady forcing causes additional production terms in
the streamwise turbulent fluctuation budget. This term leads to an increased anisotropy
in the present study and to an increased isotropy in Touber & Leschziner (2012). In
order to investigate the temporal modulation of the energy transfer among the three
components, we split the phase-averaged velocity–pressure gradient term into the
pressure–strain 〈Φ〉 and pressure diffusion 〈Ψ 〉 terms,

〈Πu′u′〉 = 〈Φzz〉 + 〈Ψzz〉 = 2
〈

p′
∂u′

∂z

〉
+ 0, (3.7)

〈Πv′v′〉 = 〈Φrr〉 + 〈Ψrr〉 = 2
〈

p′
∂v′

∂r

〉
− 2

〈
∂ (p′v′)
∂r

〉
, (3.8)

〈Πw′w′〉 = 〈Φθθ 〉 + 〈Ψθθ 〉 = 2
r

〈
p′
(
∂w′

∂θ
+ v′

)〉
− 2

〈
p′v′

r

〉
, (3.9)

for the 〈u′2〉, 〈v′2〉 and 〈w′2〉 budgets respectively.
The phase variation of the pressure–strain distribution is shown in figure 25 for the

β=1 and β=10.6 cases. Following the notation of Hinze (1975), a negative (positive)
value of a term denotes a loss (gain) of energy; for example, a negative 〈Φzz〉 implies
energy transfer from the streamwise to the other components.

In the β= 1 case, the harmonic forcing induces an appreciable temporal modulation
of all pressure–strain terms, in the first 20 wall units, which however leaves the
general shape of the curves unchanged. A noticeable exception is the 〈Φzz〉 term
which, for 3π/4 < φ < 0, is characterized by the presence of positive values close
to the wall. While negative values of 〈Φzz〉 indicate transfer of energy from the
streamwise to the other two components, positive values are usually associated with
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FIGURE 25. (Colour online) Phase-averaged radial distribution of pressure–strain terms:
(a) β = 1; (b) β = 10.6.

the well-known splatting phenomenon (Moin & Kim 1981). However, inspection of
figure 8(a) indicates that the above mentioned positive 〈Φzz〉 are poorly correlated
with the corresponding 〈Q4/Q2〉 ratio. This is in agreement with results presented in
figure 18(a) of MVV, which shows that the time-averaged distributions of all 〈Φzz〉,
〈Φrr〉 and 〈Φθθ 〉 do not differ appreciably from the corresponding steady ones. In the
wave-dominated regime the situation is far more involved. The energy transfer from
the radial to the other two components (splatting effect), represented by the negative
〈Φrr〉 contribution, appears to be less effective for 0 < φ < π/4. Such a behaviour
agrees with the already documented reduction, in the near-wall region, of the sweeps
over the ejections at the end of the accelerating phase (see figure 8b). In the buffer
layer and for 3π/4<φ < 3π/2, the already documented higher production values are
accompanied by positive (respectively negative) peaks of 〈Φzz〉 (respectively 〈Φrr〉).
Recalling that positive values of 〈Φzz〉 entail a lack of energy transfer to the other
two components, this behaviour explains the modulation of the anisotropy reported in
figure 12(b) in terms of the anisotropy index for the Reynolds stress.

4. Conclusions
This paper has presented the phase-averaged analysis of a data set coming from

direct numerical simulations of pulsating pipe flow in the high-frequency regime
(Ω = 53). Among all the cases presented in MVV only the CD and WD2 cases (see
figure 2) have been analysed in detail since the others are either statistically steady
(ST) or turned out to be the superposition of laminar Poiseuille and Stokes flows
(WD1). While the study of MVV has investigated the effects of the amplitude of the
harmonic forcing on the cycle-averaged flow features, here the attention is focused
on the changes within the cycle.

The phase-averaged streamwise velocity profiles showed that the logarithmic region
was not altered by the magnitude of the pulsation, and preserved its shape within
the period. Indeed, its virtual origin was simply displaced by a constant amount for
each phase within the cycle despite the massive reverse flow region occurring at the
beginning of the flow reversal phase.
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The analysis of the phase-averaged modulation of the streamwise turbulence
intensity revealed that, in both regimes, the temporal modulation of the radial profiles
appears like a travelling wave originating underneath the Stokes layer and damped
within 40 wall units from the wall. The lifetime of this wave phenomenon is seen
to be larger than the oscillation period and smaller than twice this value. The
amplitude of such a modulation in the wave-dominated regime has been shown
to be larger than the one in the CD case, whatever the normalization adopted
(inner or outer scaling). The phase-averaged modulation of the radial and azimuthal
turbulence intensities, along with the turbulent shear stress, also behaves like a
travelling wave with similar features to those of the streamwise component, with
an amplitude that reduces on moving from the current- to the wave-dominated
regime, in either inner or outer representation. The data analysis in the CD regime
indicates that the phase-averaged Reynolds stress tensor is appreciably influenced by
the pulsation, in the whole period, although the long time-averaged data reported
in MVV were very similar to the steady values. This supports the conclusion that
the CD flow is uncoupled in a long time-averaged sense, and one-way coupled in
a phase-averaged sense. In the wave-dominated regime, positive modulations of the
streamwise component are associated with negative modulation of the other two
components in the decelerating phase, and vice versa in the accelerating phase. Thus,
an enhanced (respectively reduced) turbulence anisotropy close to the wall is observed
to occur in the decelerating (respectively accelerating) phase, as clearly evident from
the anisotropy index based on the second invariant of the phase-averaged Reynolds
stress tensor. A close inspection of the cycle modulation of the Reynolds stress
tensor revealed that, especially in the wave-dominated regime, the energy content of
the second and third harmonics of the Fourier transformed signal is far from being
negligible. Therefore, phase-averaged analysis of the turbulence intensities employing
one single mode, regardless its specific definition, has to be considered with caution.
The phase-averaged data quadrant analysis of the fluctuating velocity components
suggested that, in the wave-dominated regime, sweep and ejection events are nearly
comparable for y+<10 at all times. Moreover, at the end of the accelerating phase, the
data reveal the prevailing role of the ejections over the sweeps in the near-wall region.

In the wave-dominated regime, the analysis of the streamwise normal stress budget
indicates that the highly modulated turbulence production term is characterized by
regions of positive and negative values. This wavy shape of the production term has
been documented to chiefly depend upon the rate at which the modulating Reynolds
stress does deformation work against the modulating shear, resulting in a large inertia
term. Furthermore, the remarkable modulation occurring during the oscillation is
felt only indirectly by the radial and azimuthal normal stresses via pressure–strain
interaction, which has been shown not to be effective during part of the cycle,
causing an increased turbulence anisotropy. The analysis of the phase-averaged
pressure–strain terms revealed that in the wave-dominated regime the large-amplitude
forcing determines an alteration of the splatting mechanism close to the wall, at the
end of the accelerating phase. This agrees well with the already mentioned prevailing
role of the ejections over the sweeps.
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