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Abstract

For n ≥ 3, let Qn ⊂ C be an arbitrary regular n-sided polygon. We prove that the Cauchy transform FQn

of the normalised two-dimensional Lebesgue measure on Qn is univalent and starlike but not convex in

Ĉ \ Qn.
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1. Introduction

Let µ be a regular Borel measure with compact support K ⊂ C. The Cauchy transform

of µ is defined by

F(z) = Fµ(z) =

∫

K

dµ(w)

z − w
. (1.1)

If z < K, this integral is well defined; if z ∈ K, the integral is defined in the sense of the

Cauchy principal value. It is well known that Fµ is continuous in the whole plane if K

has positive area and µ is the two-dimensional Lebesgue measure [9, page 2]. Lund,

Strichartz and Vinson [13] initiated an investigation of the Cauchy transform Fµ of a

self-similar measure. They gave a condition on µ such that Fµ is Hölder continuous in

C and proposed the Cantor set conjecture for the Cauchy transform on the Sierpiński

gasket. This conjecture was verified by Dong and Lau [4].

The Sierpiński gasket is constructed by infinite iterations of a regular triangle. For

the general case, the iterated function system

Sj(z) = e2jπi/n
+ ρ(z − e2jπi/n), ρ ∈ (0, 1), j = 0, 1, . . . , n − 1,

induces a self-similar measure µn,ρ and an attractor Kn,ρ. The chaotic behaviour of the

Cauchy transform Fµn,ρ
near Kn,ρ was studied by Dong et al. in [2, 3, 5, 6, 12]. In

particular, K4,1/2 is the square with vertices {1, i,−1,−i} and µ4,1/2 is the normalised

Lebesgue measure on K4,1/2. It is shown in [6] that the Cauchy transform Fµ4,1/2
is
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univalent outside the square K4,1/2. Indeed, the authors proved in [7] that Fµ4,1/2
is

starlike but not convex in Ĉ \ K4,1/2.

In this paper we generalise the results in [7] to regular n-sided polygons. Let Pn be

the regular n-sided polygon with vertices {ǫk = e(2k+1)πi/n : k = 0, 1, . . . , n − 1} and let

µn = 2/(n sin(2π/n))L2 be the restriction of the normalised two-dimensional Lebesgue

measure to Pn. By (1.1), we can write the Cauchy transform Fn of µn as

Fn(z) =

∫

Pn

dµn(w)

z − w
, z ∈ Ĉ. (1.2)

The normalisation of µn ensures that Fn is normalised. Then Fn is continuous in the

whole plane Ĉ [9, page 2]. In [7, 16], the authors proved that if n = 3, 4, then Fn

is univalent and starlike but not convex in Ĉ \ Pn. In these two papers the authors

calculated the specific expressions for the real and imaginary parts of F3 and F4.

However, it is almost impossible to write the specific expressions for Fn for n ≥ 5.

We use the symmetry of Fn to deal with the cases n ≥ 5. Our method is different

from [7] and [16] and also applicable to n = 4. Hence we have the following main

theorem.

THEOREM 1.1. If n ≥ 3, then Fn is univalent and starlike but not convex in Ĉ \ Pn.

Let Qn be an arbitrary regular n-sided polygon and let FQn
be the Cauchy transform

of the normalised two-dimensional Lebesgue measure restricted to Qn. Since any

two regular n-sided polygons are similar, FQn
and Fn have the same univalence,

starlikeness and convexity. Hence the following theorem follows immediately from

Theorem 1.1.

THEOREM 1.2. If n ≥ 3, then FQn
is univalent and starlike but not convex in Ĉ \ Qn.

2. Preliminaries

Let Int(Pn) be the interior of Pn and cn = 1/(n sin(2π/n)). By the Cauchy–Pompeiu

formula [1, Theorem 2.1],

Fn(z) = 2πcnz + icn

∫

∂Pn

w dw

w − z
, z ∈ Int(Pn). (2.1)

The Sokhotski–Plemelj formula [11, Theorem 7.8] implies

Fn(z) = icn

∫

∂Pn

w dw

w − z
, z ∈ Ĉ \ Pn. (2.2)

Both equations (2.1) and (2.2) contain the expression

fn(z) :=

∫

∂Pn

w dw

w − z
, z < ∂Pn. (2.3)

Our main tool in proving Theorem 1.1 is the second derivative of fn.
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PROPOSITION 2.1. For n ≥ 3, let fn be as in (2.3). Then

f ′′n (z) =
−2izn−3

cn(1 + zn)
, z < ∂Pn.

PROOF. Put ǫ−1 = ǫn−1 and ǫn = ǫ0. Then

f ′′n (z) =

∫

∂Pn

2w dw

(w − z)3
=

n−1∑

k=0

∫ ǫk+1

ǫk

2w dw

(w − z)3
.

Let w = ǫk + t(ǫk+1 − ǫk). The last integral above can be written as

∫ 1

0

2(ǫk+1 − ǫk) dt

(ǫk + t(ǫk+1 − ǫk) − z)2
+

∫ 1

0

2 (ǫkǫk+1 − ǫkǫk+1 + z(ǫk+1 − ǫk)) dt

(ǫk + t(ǫk+1 − ǫk) − z)3
.

These two integrals are not difficult to calculate and then sum from 0 to n − 1 to give

f ′′n (z) = 2i

n−1∑

k=0

sin(2π/n)

ǫ2
k
(ǫk − z)

= −i2n sin
2π

n

zn−3

1 + zn
, z < ∂Pn. �

In the following, we study the Laurent expansion of Fn in |z| > 1. By (2.2), the

Laurent series of Fn in |z| > 1 can be written as

Fn(z) = −icn

∫

∂Pn

w

z

∞∑

k=0

wk

zk
dw =

∞∑

k=0

ak

zk+1
, |z| > 1,

where ak = −icn

∫
∂Pn

wwkdw. It follows from Proposition 2.1 that

F′′n (z) =
2zn−3

zn + 1
=

∞∑

k=0

(k + 1)(k + 2)ak

zk+3
, |z| > 1.

Comparing the coefficients, we obtain the following result.

COROLLARY 2.2. If n ≥ 3, then

Fn(z) = 2

∞∑

k=0

(−1)k

(nk + 1)(nk + 2)znk+1
, |z| > 1, (2.4)

F′′n (z) =
2zn−3

1 + zn
, z ∈ C \ Pn.

We now write another expression for Fn. The polygon Pn is a union of n-similar

triangles. If T1 is the triangle with vertices {0, e−πi/n, eπi/n}, then

∫

T1

dL2(w)

z − w
= i cos

π

n
[(1 − ze−πi/n) log(1 − z−1eπi/n) − (1 − zeπi/n) log(1 − z−1e−πi/n)].
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This implies

Fn(z) = 2cn

n−1∑

k=0

e−2kπi/n

∫

T1

dL2(w)

ze−2kπi/n − w

=
2

n

n−1∑

k=0

ǫk
2(z − ǫk) log(1 − z−1ǫk), z ∈ C \ Pn, (2.5)

where the branches of log(1 − z−1ǫk) are chosen as follows. If z ∈ (cos(π/n),+∞), then


arg(1 − z−1ǫk) = − arg(1 − z−1ǫn−1−k) ∈ (−αn,k, 0), 0 ≤ k ≤ [n/2] − 1,

arg(1 − z−1ǫ[n/2]) = 0 if n is odd,
(2.6)

where

αn,k = arctan

(
sin((2k + 1)π/n)

cos(π/n) − cos((2k + 1)π/n)

)
.

REMARK 2.3. If z ∈ C \ Pn, we can also calculate F′′n (z) from (2.5).

Noting that Pn is invariant under the rotation e2πi/nz, we have the so-called n-fold

symmetry of Fn.

LEMMA 2.4 (n-fold symmetry). If n ≥ 3, then Fn(z) = e−2πi/nFn(e−2πi/nz) for all z ∈ C.

PROOF. By the definition of Fn,

Fn(e−2πi/nz) = 2cne2πi/n

∫

Pn

dL2(w)

z − e2πi/nw
= 2cne2πi/n

∫

e2πi/nPn

dL2(w)

z − w
= e2πi/nFn(z). �

Since Pn is symmetric with respect to the x-axis, by definition (1.2) Fn also has the

same property.

LEMMA 2.5. If n ≥ 3, then Fn(z) = Fn(z) for z ∈ C. In particular, Fn(x) ∈ R for x ∈ R.

A set E ⊂ C is said to be starlike with respect to a point w0 if the linear segment

joining w0 to every other point w ∈ E lies entirely in E. The set E ⊂ C is said to be

convex if it is starlike with respect to each of its points; that is, if the linear segment

joining any two points of E lies entirely in E (see Duren [8, page 40]). We say that an

analytic function f is starlike (or convex) in a domain D ⊂ Ĉ if f (D) is a starlike (or

convex) domain (with respect to w0). In this paper we always assume w0 = 0.

We give a result on univalent and starlike functions in an unbounded domain.

LEMMA 2.6. Let γ ⊂ C be a Jordan curve and D be the unbounded connected

component of Ĉ \ γ. Suppose that f : D→ C is analytic and has a continuous

extension to D. Then f is univalent and starlike in D if and only if f (∂D) is a Jordan

curve and arg f (z) is decreasing when z moves anticlockwise on ∂D.
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PROOF. Without loss of generality, we assume f (∞) = 0. By the Riemann mapping

theorem, we can choose a conformal map ϕ : D→ D such that ϕ(0) = ∞. Then the

starlikeness of f in D is equivalent to the starlikeness of f ◦ ϕ in D. The rest of the

proof is similar to that of Theorem 2.10 in [8] (or Lemma 3.1 in [16]). �

3. Starlikeness and convexity

In this section, we study the starlikeness and convexity of Fn in Ĉ \ Pn for n ≥ 4. By

Lemma 2.6, we need to study arg Fn(z) on ∂Pn. According to the n-fold symmetry of

Fn, we only consider Fn on one edge of Pn (see Figure 1).

If n ≥ 3, we parameterise the side ∂Pn ∩ {z : |arg z| ≤ π/n} and its image by

z(t) = cos
π

n
+ it sin

π

n
and Fn(z(t)) = u(t) + iv(t), t ∈ [−1, 1]. (3.1)

For convenience, we write z(t) in exponential form

z(t) = ρ(θ)eiθ, where ρ(θ) =
cos(π/n)

cos θ
, θ = arctan

(
t tan
π

n

)
∈

[
− π

n
,
π

n

]
. (3.2)

By Corollary 2.2 and (2.5), we obtain the smoothness of u and v.

PROPOSITION 3.1. If n ≥ 3, then u and v are C∞ in (−1, 1). Moreover,

u′′(t) + iv′′(t) = −2(sin(π/n))2ρn−3(θ)

|1 + zn(t)|2
(Rn(θ) + iIn(θ)), t ∈ (−1, 1),

where Rn(θ) = cos(n − 3)θ + ρn(θ) cos 3θ and In(θ) = sin(n − 3)θ − ρn(θ) sin 3θ.

PROOF. By the continuity of Fn(z) and (2.5),

u(t) + iv(t) = lim
r→1+

Fn(rz(t)) =
2

n

n−1∑

k=0

ǫk
2(z(t) − ǫk) log

(
1 − ǫk

z(t)

)
, t ∈ (−1, 1). (3.3)

L n

eπ i/nFn(∂Pn)

A n

A n
O

x

y

z(t)

FIGURE 1. Left: the polygon P6. Middle: the image F6(Ĉ \ P6). Right: eπi/nFn(Ĉ \ Pn) is not convex.
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Since log(1 − ǫk/z(t)) is C∞ in (−1, 1), u and v are C∞ in (−1, 1). Taking the derivatives

of both sides of the above equation, we obtain the second conclusion. �

In the following, we deal with Rn(θ) and In(θ).

LEMMA 3.2. (i) If n ≥ 4, then cos(n − 3)θ cosn θ is decreasing in (0, π/n).

(ii) If a ≥ b > 0, then sin ax/ sin bx is decreasing in (0, π/a).

PROOF. (i) The derivative of cos(n − 3)θ cosn θ is

− cosn−1 θ sin(n − 3)θ sin θ [(n − 3) cot θ + n cot(n − 3)θ] .

It is not hard to check (n − 3) cot θ + n cot(n − 3)θ > (n − 3) cot(π/n) − n cot(3π/n)> 0.

Hence cos(n − 3)θ cosn θ is decreasing in (0, π/n).

(ii) The conclusion comes from a calculation of the derivative of sin ax/sin bx. �

PROPOSITION 3.3. If n ≥ 4, then Rn(θ) > 0 and In(θ) > 0 for θ ∈ [0, π/n).

PROOF. By Lemma 3.2, Rn(θ) cosn θ = cos(n − 3)θ cosn θ + (cos(π/n))n cos 3θ is

decreasing. Hence Rn(θ) > 0.

Note that

In(θ)

sin θ
=

sin(n − 3)θ

sin θ
− cosn(π/n)(4 cos2 θ − 1)

cosn θ
.

It is easy to check that (4 cos2 θ − 1)/ cosn θ is increasing in (0, π/n). This, together

with Lemma 3.2, shows that In(θ)/ sin θ is decreasing. Then In(θ) > 0, since

In(π/n)= 0. �

We now show the monotonicity of u and v.

PROPOSITION 3.4. For n ≥ 4, let u and v be given by (3.1). Then:

(i) u is strictly decreasing in [0, 1] and u(t) = u(−t) > 0;

(ii) v is strictly decreasing in [−1, 1] and v(t) = −v(−t).

PROOF. By Lemma 2.5,

u(t) = u(−t) and v(t) = −v(−t), t ∈ [−1, 1].

So it is sufficient to consider t ∈ (0, 1). Let θ be defined as in (3.2). Then θ ∈ (0, π/n)

for t ∈ (0, 1). Propositions 3.1 and 3.3 show that u′′(t) < 0 and v′′(t) < 0 in (0, 1).

(i) It follows from (2.5) that

F′(x) =
2

n

n−1∑

k=0

ǫk
2 log

(
1 − ǫk

x

)
, x > cos

π

n
.

By (3.3),

u′(0) + iv′(0) = lim
x→cos(π/n)

i sin
π

n
F′(x).
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Since Fn(x) ∈ R and F′n(x) ∈ R, we see that u′(0) = 0 and hence u(t) is strictly

decreasing in [0, 1]. Therefore

u(t) > u(1) = lim
r→1+

Re F(reπi/n) > 0,

where the last inequality comes from the Laurent series (2.4).

(ii) Corollary 2.2 implies

lim
x→+∞

x2F′n(x) = −1 and F′′n (x) =
2xn−3

1 + xn
> 0, x > cos

π

n
.

We obtain F′n(x) < 0, and hence v′(t) < v′(0) < 0. �

REMARK 3.5. If n = 3, it is easy to check that (i) holds, but (ii) does not hold. In fact,

there exists t0 ∈ (0, 1) such that v′(t) < 0 in (0, t0) and v′(t) > 0 in (t0, 1).

To study the starlikeness of Fn, we now analyse arg Fn(z(t)). Since arg Fn(z(t)) is C∞

in (−1, 1),

d

dt
arg Fn(z(t)) = Im

(
u′(t) + iv′(t)

u(t) + iv(t)

)
=

u(t)v′(t) − u′(t)v(t)

u2(t) + v2(t)
, t ∈ (−1, 1). (3.4)

By Proposition 3.4, we see that the numerator of the last term is negative. This is the

most important step in proving the starlikeness of Fn.

THEOREM 3.6. If n ≥ 4, Fn is univalent and starlike in Ĉ \ Pn.

PROOF. It follows from (3.4) and Propositions 3.4 that

d

dt
arg Fn(z(t)) < 0, t ∈ (−1, 1).

From the n-fold symmetry of Fn,

Fn(e2kπi/nz(t)) = e−2kπi/nFn(z(t)), k = 0, 1, . . . , n − 1, t ∈ [−1, 1].

Hence arg F(z) is decreasing when z moves anticlockwise on ∂Pn.

Since Fn(z(0)) ∈ R, equation (2.6) implies that arg Fn(z(0)) = 0. Consequently, by

the continuity of arg Fn(z(t)), the total variation of arg Fn(z(t)) in [−1, 1] is −2π/n,

that is,

∆t∈[−1,1] arg Fn(z(t)) = arg Fn(z(1)) − arg Fn(z(−1)) = −2π

n
.

Using the n-fold symmetry again, the total variation of arg Fn(z) on ∂Pn is −2π.

By the argument principle, Fn(∂Pn) is a Jordan curve. The theorem follows from

Lemma 2.6. �

Observing Figure 1, we can see that the domain Fn(Ĉ \ Pn) is not convex. Before

proving this fact, we need a lemma.
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LEMMA 3.7. Let Rn(θ) and In(θ) be given as in Proposition 3.1. If n ≥ 4, then

Rn(θ) cos
π

n
− In(θ) sin

π

n
> 0, θ ∈

(
− π

n
,
π

n

)
.

PROOF. It is easy to check Rn(−θ) = Rn(θ) and In(−θ) = −In(θ). By Proposition 3.3,

we only need to consider θ ∈ [0, π/n). Note that

Rn(θ) cos
π

n
− In(θ) sin

π

n
= cos

(
(n − 3)θ +

π

n

)
+ ρn(θ) cos

(
3θ − π

n

)
. (3.5)

It is obvious that cos(3θ − π/n) > 0 for θ ∈ [0, π/n) and n ≥ 4. One can easily verify

cos

(
(n − 3)θ +

π

n

)
> 0 with θ ∈

[
0,
π

n

)
⇐⇒ 0 ≤ θ < (n − 2)π

2n(n − 3)
. (3.6)

If n = 4, the lemma follows from (3.6). If n ≥ 5, by (3.5) and (3.6), we only need to

consider

(n − 2)π

2n(n − 3)
< θ <

π

n
. (3.7)

Let

f (θ) = log

(
ρn(θ) cos

(
3θ − π

n

))
− log

(
− cos

(
(n − 3)θ +

π

n

))
.

Then f ′(θ) = n tan θ − 3 tan(3θ − π/n) + (n − 3) tan((n − 3)θ + π/n). The equation

(3.7) implies

π

2
< (n − 3)θ +

π

n
< π − 3θ +

π

n
, 0 < θ < 3θ − π

n
<
π

2
.

This gives f ′(θ) < 0. Thus f (θ) > 0, since f (π/n) = 0. The proof is complete. �

THEOREM 3.8. If n ≥ 4, Fn is not a convex function in Ĉ \ Pn.

PROOF. Since a rotation does not change the convexity, we prove that the domain

eπi/nFn(Ĉ \ Pn) is not convex (see Figure 1). For t ∈ [−1, 1], we introduce the notation

z(t) = cos π/n + it sin π/n and eπi/nFn(z(t)) = x(t) + iy(t). Then

x(t) = u(t) cos
π

n
− v(t) sin

π

n
, y(t) = u(t) sin

π

n
+ v(t) cos

π

n
, t ∈ (−1, 1).

It follows from Proposition 3.1 and Lemma 3.7 that

x′′(t) = −2ρn−3(θ)(sin π/n)2

|1 + zn(t)|2
(
Rn(θ) cos

π

n
− In(θ) sin

π

n

)
< 0, t ∈ (−1, 1).

Using (3.3), we decompose x′(t) as x′(t) = X1(t) − X2(t), where

X1(t) = −2 sin π/n

n

n−1∑

k=1

Im

(
ǫ1ǫk

2 log

(
1 − ǫk

z(t)

))
,

X2(t) =
2 sin π/n

n

(
cos
π

n
arg

(
1 − ǫ0

z(t)

)
− sin

π

n
log

∣∣∣∣∣1 −
ǫ0

z(t)

∣∣∣∣∣
)
.
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Since
∑n−1

k=1 ǫk
2 log(1 − ǫk/z) is analytic in {z : |arg z| < 2π/n}, it follows that

sup−1<t<1|X1(t)| < ∞. The choices of the branches of the logarithms (see (2.6)) imply
∣∣∣∣∣ arg

(
1 − ǫ0

z(t)

)∣∣∣∣∣ < 2π, t ∈ (−1, 1).

It is easy to check that limt→1 log |1 − ǫ0/z(t)| = −∞ and so limt→1 x′(t) = −∞. On the

other hand, the proof of Proposition 3.4 gives x′(0) > 0. Hence there exists a unique

Tn ∈ (0, 1) such that x′(Tn) = 0. This means that Tn is the unique maximum point of

Re eπi/nFn(z(t)) for t ∈ [−1, 1]. Let An = eπi/nFn(z(Tn)) and Ln = (An, An) denote the

open line segment jointing An and An (see Figure 1). Then

Ln ∩ (eπi/nFn(Ĉ \ Pn)) = ∅,

which shows that eπi/nFn(Ĉ \ Pn) is not convex. �

Finally, we prove Theorem 1.2.

PROOF OF THEOREM 1.2. Let Qn be a regular n-sided polygon, with centre a and

circumradius R. Since Qn is similar to Pn, there exists a constant θ ∈ [0, 2π) such that

Qn = ReiθPn + a. Let |Qn| denote the area of Qn. It is easy to check that

FQn
(z) =

1

|Qn|

∫

Qn

dL2(w)

z − w
= R−1e−iθFn(R−1e−iθ(z − a)).

Thus FQn
and Fn have the same univalence. Obviously, rotation and scaling transfor-

mations do not change the starlikeness and convexity of a set. Hence FQn
and Fn have

the same starlikeness and convexity. �

4. Open question

For an arbitrary regular n-sided polygon Qn, we have proved that the Cauchy

transform FQn
is univalent and starlike in Ĉ \ Qn. For many general polygons, we used

Mathematica to draw images of the corresponding Cauchy transforms. From these

images, we observed that:

(1) if a polygon P is convex, then the corresponding Cauchy transform FP is univalent

and starlike in Ĉ \ P;

(2) there exists a nonconvex polygon P′ such that the corresponding Cauchy trans-

form FP′ is not univalent in Ĉ \ P′.

Note that any convex set can be approximated by convex polygons. Based on our

observations, we make the following conjecture.

CONJECTURE 4.1. If K ⊂ C is a compact convex set, then the Cauchy transform of the

two-dimensional Lebesgue measure restricted to K is univalent and starlike in Ĉ \ K.

For general convex polygons, the corresponding Cauchy transforms do not have

symmetry (see Lemmas 2.4 and 2.5) and Proposition 3.4 may not hold. Since our
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proofs strongly depend on Proposition 3.4, our method fails for general convex

polygons.

The well-known criterion for univalence due to Nehari may shed some light on

Conjecture 4.1. For f analytic in D, the Schwarzian derivative of f is defined by

{ f , z} =
(

f ′′(z)

f ′(z)

)′
− 1

2

(
f ′′(z)

f ′(z)

)2

, |z| < 1.

THEOREM 4.2 (Nehari’s criterion, [14]). Let f be an analytic function in D. If the

Schwarzian derivative of f satisfies

|{ f , z}| ≤ 2

(1 − |z|2)2
or |{ f , z}| ≤ π

2

2
, |z| < 1,

then f is univalent.

Nehari’s criterion is a sufficient condition for univalence, but not necessary [10, 15].

We give two examples for which Conjecture 4.1 is true, but one of them satisfies the

conditions of Nehari’s criterion and the other does not.

EXAMPLE 4.3. The Cauchy transform of the two-dimensional Lebesgue measure

restricted to the closed unit ball D is

F
D

(z) =

∫

D

dL2(w)

z − w
=
π

z
, |z| > 1.

Obviously, F
D

is univalent and starlike in |z| > 1, that is, Conjecture 4.1 is true for D.

The Schwarzian derivative of F
D

(1/z) is 0, hence it satisfies the sufficient conditions

in Nehari’s criterion.

EXAMPLE 4.4. Let ∆ be the regular triangle with vertices {1, e2πi/3, e4πi/3}. The Cauchy

transform of the normalised two-dimensional Lebesgue measure restricted to ∆ is

F∆(z) =
4

3
√

3

∫

∆

dL2(w)

z − w
, z ∈ C.

By Theorem 1.2 or [16, Theorem 1.1], F∆ is univalent and starlike in Ĉ \ ∆.

For the triangle ∆, we can use the Schwarz–Christoffel formula and the Schwarz

reflection principle to construct a conformal mapping ϕ : D→ Ĉ \ ∆ such that:

(i) ϕ(0) = ∞, ϕ(−1) = − 1
2

and ϕ(1) = 1;

(ii) ϕ((0, 1]) = [1,+∞) and ϕ([−1, 0)) = (−∞,− 1
2
];

(iii) ϕ(w) = 1 + c
∫ −(1−w3)2/4w3

0
(ξ − 1)−1/2ξ−1/6dξ, where 0 < arg w < π/3 and the con-

stant c is given by c = e−πi/3Γ( 1
3
)(
√

3πΓ( 5
6
))−1.
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One can verify directly that

lim
x→1−
x∈(0,1)

|(1 − x2)2{F∆ ◦ ϕ, x}| = 32

9
> 2.

Thus F∆ ◦ ϕ does not satisfy the sufficient conditions of Nehari’s criterion.

REMARK 4.5. For a general convex set, it seems difficult to give an explicit formula

for the Schwarzian derivative. However, for convex polygons, we may hope to invoke

the argument principle which shows that the Cauchy transform in Conjecture 4.1 is

univalent if and only if the boundary image of the Cauchy transform is a Jordan

curve.

Acknowledgements

We wish to thank Professor Ka-Sing Lau for his suggestions and his reading of this

work. We are also very grateful to the referees for their valuable suggestions.

References

[1] S. R. Bell, The Cauchy Transform, Potential Theory and Conformal Mapping, 2nd edn (Chapman

and Hall/CRC, Boca Raton, FL, 2016).

[2] X. H. Dong and K. S. Lau, ‘Cauchy transforms of self-similar measures: the Laurent coefficients’,

J. Funct. Anal. 202(1) (2003), 67–97.

[3] X. H. Dong and K. S. Lau, ‘An integral related to the Cauchy transform on the Sierpinski gasket’,

Exp. Math. 13(4) (2004), 415–419.

[4] X. H. Dong and K. S. Lau, ‘Cantor boundary behavior of analytic functions’, in: Recent

Developments in Fractals and Related Fields, eds. J. Barrel and S. Seuret (Birkhäuser, Boston,

MA, 2010), 283–294.

[5] X. H. Dong, K. S. Lau and J. C. Liu, ‘Cantor boundary behavior of analytic functions’, Adv. Math.

232 (2013), 543–570.

[6] X. H. Dong, K. S. Lau and H. H. Wu, ‘Cauchy transform of self-similar measures: Starlikeness and

univalence’, Trans. Amer. Math. Soc. 369(7) (2017), 4817–4842.

[7] X. H. Dong, Y. Wang and P. F. Zhang, ‘The starlikeness of Cauchy transform on square’, Comput.

Methods Funct. Theory. 19(2) (2019), 341–351.

[8] P. Duren, Univalent Functions (Springer-Verlag, New York, 1983).

[9] J. Garnett, Analytic Capacity and Measure, Lecture Notes in Mathematics, 297 (Springer-Verlag,

Berlin, 1972).

[10] E. Hille, ‘Remarks on a paper by Zeev Nehari’, Bull. Amer. Math. Soc. 55 (1949), 552–553.

[11] R. Kress, Linear Integral Equations, 3rd edn (Springer, New York, 2014).

[12] J. C. Liu, X. H. Dong and S. M. Peng, ‘A note on Cantor boundary behavior’, J. Math. Anal. Appl.

408(2) (2013), 795–801.

[13] J. P. Lund, R. Strichartz and J. Vinson, ‘Cauchy transforms of self-similar measures’, Exp. Math.

7(3) (1998), 177–190.

[14] Z. Nehari, ‘The Schwarzian derivative and schlicht functions’, Bull. Amer. Math. Soc. 55 (1949),

545–551.

[15] Z. Nehari, ‘Some criteria of univalence’, Proc. Amer. Math. Soc. 5 (1954), 700–704.

[16] P. F. Zhang and X. H. Dong, ‘Starlikeness and convexity of Cauchy transform on equilateral

triangle’, Complex Var. Elliptic Equ. 65(9) (2020), 1590–1600.

https://doi.org/10.1017/S0004972720000696 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972720000696


302 P.-F. Zhang and X.-H. Dong [12]

PENG-FEI ZHANG, Key Laboratory of High Performance Computing and

Stochastic Information Processing (Ministry of Education of China),

College of Mathematics and Statistics, Hunan Normal University,

Changsha, Hunan, China

e-mail: pfzhang@link.cuhk.edu.hk

XIN-HAN DONG, Key Laboratory of High Performance Computing and

Stochastic Information Processing (Ministry of Education of China),

College of Mathematics and Statistics, Hunan Normal University,

Changsha, Hunan, China

e-mail: xhdonghnsd@163.com

https://doi.org/10.1017/S0004972720000696 Published online by Cambridge University Press

mailto:pfzhang@link.cuhk.edu.hk
mailto:xhdonghnsd@163.com
https://doi.org/10.1017/S0004972720000696

	1 Introduction
	2 Preliminaries
	3 Starlikeness and convexity
	4 Open question

