
A graph-theoretic implementation of the Rabo-de-Bacalhau
transformation grammar

TIEMEN STROBBE,1 SARA ELOY,2 PIETER PAUWELS,1 RUBEN VERSTRAETEN,1

RONALD DE MEYER,1 AND JAN VAN CAMPENHOUT3

1Department of Architecture and Urban Planning, Ghent University, Ghent, Belgium
2Department of Architecture and Urbanism, Instituto Universitário de Lisboa (ISCTE-IUL, ISTAR-IUL), Lisbon, Portugal
3Department of Electronics and Information Systems, Ghent University, Ghent, Belgium

(RECEIVED April 1, 2015; ACCEPTED August 17, 2015)

Abstract

Shape grammars are rule-based formalisms for the specification of shape languages. Most of the existing shape grammars are
developed on paper and have not been implemented computationally thus far. Nevertheless, the computer implementation of
shape grammar is an important research question, not only to automate design analysis and generation, but also to extend the
impact of shape grammars toward design practice and computer-aided design tools. In this paper, we investigate the imple-
mentation of shape grammars on a computer system, using a graph-theoretic representation. In particular, we describe and
evaluate the implementation of the existing Rabo-de-Bacalhau transformation grammar. A practical step-by-step approach is
presented, together with a discussion of important findings noticed during the implementation and evaluation. The proposed
approach is shown to be both feasible and valuable in several aspects: we show how the attempt to implement a grammar on a
computer system leads to a deeper understanding of that grammar, and might result in the further development of the gram-
mar; we show how the proposed approach is embedded within a commercial computer-aided design environment to make the
shape grammar formalism more accessible to students and practitioners, thereby increasing the impact of grammars on design
practice; and the proposed step-by-step implementation approach has shown to be feasible for the implementation of the
Rabo-de-Bacalhau transformation grammar, but can also be generalized using different ontologies for the implementation.

Keywords: Architectural Design; Graph Grammar; Implementation; Shape Grammar

1. INTRODUCTION

Spatial grammars are rule-based, generative, and visual form-
alisms for the specification of spatial languages. Spatial gram-
mars include set grammars, graph grammars, shape grammars,
and other kinds of grammars for describing spatial languages.
This “uniform treatment” of grammars is introduced in the
work of Krishnamurti and Stouffs (1993), and also used in later
work of Hoisl and Shea (2011) and McKay et al. (2012). The
potential of shape grammars (a specific kind of spatial gram-
mar) as a theoretical framework for analyzing and generating
(architectural) designs has been demonstrated through a broad
range of formal studies (Stiny, 1977; Koning & Eizenberg,
1981; Flemming, 1987; Duarte, 2005). However, many exist-
ing grammars in architectural design (and other design disci-
plines) are developed on paper, and relatively few grammars
have been implemented computationally thus far. Some excep-

tions can be found, including the work of Aksamija et al.
(2010), Granadeiro et al. (2013), and Grasl (2012). Neverthe-
less, the computer implementation of shape grammars remains
an open research question, because there seems to be no defi-
nite answer in the literature on how shape grammars can be
implemented to a computer system. For example, a recent over-
view of McKay et al. (2012) summarizes the key limitations,
benefits, and open challenges of the main representative shape
grammar implementations to date. The question how to imple-
ment shape grammars is also an important research question,
because computer implementations are beneficial in many
cases, including to automate several aspects of design analysis
and generation (especially for grammars that are too extensive
to explore manually), to learn from the computer implementa-
tion about the design of the shape grammar itself, and to extend
the impact of shape grammars toward design practice and com-
puter-aided design (CAD) tools by providing tools to apply
shape grammars in practice.

In this paper, we describe a method for the implementation
of a shape grammar, originally developed on paper, on a com-

Reprint requests to: Tiemen Strobbe, Department of Architecture and
Urban Planning, Ghent University, J. Plateaustraat 22, Ghent 9000, Belgium.
E-mail: tiemen.strobbe@ugent.be

Artificial Intelligence for Engineering Design, Analysis and Manufacturing (2016), 30, 138–158.
Cambridge University Press 2016 0890-0604/16
doi:10.1017/S0890060416000032

138

https://doi.org/10.1017/S0890060416000032 Published online by Cambridge University Press

mailto:tiemen.strobbe@ugent.be
https://doi.org/10.1017/S0890060416000032

puter system using a graph-theoretic representation of this
grammar. We start from a literature review of previous re-
search efforts in which spatial grammars are implemented
to a computer system (Section 2). In particular, the definition
and characteristics of different kinds of spatial grammars are
compared, thereby focusing on shape grammars because they
are often used for analyzing and synthesizing architectural
and creative designs. In addition, an overview of previous
shape grammar implementation approaches is given. Next,
we describe the research method, in which we point out a
practical step-by-step approach for the computer implementa-
tion of shape grammars (Section 3). In the following section
(Section 4), the proposed approach is evaluated through the
implementation of the Rabo-de-Bacalhau (RdB) transforma-
tion grammar, originally developed by Eloy (2012). In par-
ticular, three relevant types of rules that are used in the
RdB transformation grammar are implemented: (1) assign-
ment rules, (2) rules to connect spaces by eliminating walls,
and (3) rules to divide spaces by adding walls. A discussion
of several issues encountered during the implementation
and an evaluation of the proposed approach is given in Sec-
tion 5. Finally, conclusions and future research are described
in Section 6.

The work presented in this paper contributes to the current
state of the art in shape grammar implementations in several
ways. First and foremost, a practical step-by-step approach is
presented for the computer implementation of a shape gram-
mar. While the proposed approach builds further on existing
research on the graph-theoretic representation of shapes, such
as recent work of Grasl (2013) and Wortmann (2013), the
proposed approach is also different because it can be applied
in different contexts, ranging from simple shape grammars to
more complex grammars. Second, the implementation of the
RdB transformation grammar (Eloy, 2012) is in itself a useful
contribution, because it demonstrates how shape grammar
implementations can also be used in more complex (architec-
tural) design situations. In most papers on shape grammar im-
plementations, the approach is validated through a rather
straightforward “showcase” grammar, while the RdB trans-
formation grammar is more complex due to the parallel repre-
sentation of designs, rule conditions, and so forth. However,
it is also an example of a grammar that can be used in archi-
tectural design practice. One of the most common criticisms
to shape grammars is that there is little evidence of their use in
practice, so the implemented RdB transformation grammar
serves as an example application in architectural design prac-
tice, in particular, the development of a (semi)automated
methodology for supporting mass housing refurbishment.
Third, the case study of implementing the existing RdB trans-
formation grammar reveals several findings on how grammar
designers can learn from the implementation about the design
of the original grammar, and about the implications on the
original grammar itself. Fourth, the proposed approach is em-
bedded within a commercial CAD environment to make the
shape grammar formalism more accessible to students and
practitioners (architects and product designers), and there-

fore it might increase the impact of shape grammars on design
practice.

2. RELATED WORK

In this section, we compare the definition and characteristics
of different kinds of spatial grammars. In particular, we focus
on shape grammars because they are often used for analyzing
and synthesizing architectural and creative designs. We also
provide a literature review of previous research efforts in
which a graph formalism is used for shape grammar imple-
mentations.

2.1. Spatial grammars

Grammars in general are formal mathematical structures for
specifying languages. All different kinds of grammars (string
grammars, shape grammars, graph grammars, and set gram-
mars) share certain definitions and characteristics (Krishna-
murti & Stouffs, 1993). In particular, a grammar is defined
as a four-tuple (N, T, R, I) where N is a finite set of nonterm-
inal entities; T is a finite set of terminal entities; R is a finite set
of rewriting rules or productions; and I is an initial entity, a
subset of N < T.

A rewriting rule (or production) has the form left-hand side
! right-hand side and can be considered as an IF–THEN
statement. The left-hand side contains entities from T and
N, but cannot be empty. The right-hand side also contains en-
tities from T and N, but can be empty. A rule can be applied if
the left-hand side of the rule matches a part of the given ob-
ject, under a certain transformation (f). If this is the case, the
matching part of the given object is replaced by the right-hand
side of the rule, under the same transformation f. As a result, a
grammar defines a language that contains all objects gener-
ated by this grammar.

Spatial grammars, in particular, are specific kinds of gram-
mars that operate on objects in a Euclidean space E2 (for two-
dimensional objects) or E3 (for three-dimensional objects).
Krishnamurti and Stouffs (1993) describe four kinds of gram-
mars that can serve as spatial grammars: string grammars, set
grammars, graph grammars, and shape grammars. String
grammars deal with a single string of symbols, in which
each symbol corresponds to a geometrical entity represented
as a graphical icon. Set grammars deal with spatial objects
that are described as sets of geometrical entities. For example,
three-dimensional solids can be represented as collections of
faces, edges, and vertices. An example that combines string
and set grammars can be found in the work of Woodbury
et al. (1992). Graph grammars deal with a set of entities
(nodes) where some pairs of entities are connected by links
(edges). A common characteristic of string grammars, set
grammars, and graph grammars is that spatial objects are rep-
resented using symbolic entities: strings, sets, and graphs, re-
spectively.

Unlike other spatial grammars, shape grammars operate di-
rectly on spatial objects (shapes), rather than through symbolic

Graph-theoretic shape grammar implementation 139

https://doi.org/10.1017/S0890060416000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060416000032

entities (Stiny, 2006). A powerful feature of shape grammars is
that shapes and their properties can be reinterpreted continu-
ously during the process of rule application, allowing emer-
gence of shape features or properties that are not apparent in
the initial definition of the shapes (Knight, 2003). In shape
grammar theory, algebras are used to represent shapes. An al-
gebra Uij consists of a set of geometrical shapes defined in di-
mension i ¼ 0, 1, 2, or 3, which are points, lines, planes, and
solids, respectively. These shapes are combined in a dimension
j � i. Labels and weights are also introduced to define new al-
gebras Vij and Wij (Stiny, 1991).

In the architectural design domain, shape grammars are of-
ten used for analyzing and generating creative designs (Stiny,
1977; Koning & Eizenberg, 1981; Flemming, 1987; Duarte,
2005). Relatively few such shape grammars have been imple-
mented to a computer system, with some exceptions available
(Aksamija et al., 2010; Grasl, 2012; Granadeiro et al., 2013).
Typically, the user of such unimplemented shape grammars is
meant to interpret the grammar and manually apply the rules
in order to generate designs (see the work of Chase, 2002, for
an overview of interaction strategies with shape grammars).
In contrast, for computer implementations of shape gram-
mars, the computer system should automatically determine
where and how rules are to be applied. While human design-
ers are extremely good at recognizing possible rule applica-
tions and readily make meaning from visual fragments, there
is general agreement that the ability of computer systems for
shape recognition and interpretation is below human capaci-
ties. For example, Jowers et al. (2010) have successfully ap-
plied automatic object recognition techniques (in particular,
a method called Hausdorff distance) to interpret shapes with-
out an underlying representation. However, this implementa-
tion is also limited; for example, it may not be able to identify
spaces in a floor plan, while a (trained) human person can al-
most immediately detect different spaces by just looking at
the floor plan. While computer systems often rely on prede-
fined representations in order to interpret given information,
shape grammars rely on emergence and continuously chang-
ing representations, thus making them not particularly amen-
able for computer implementation. Even for shape grammars
that do not support emergence, the detection of applicable
rules is a complex task to solve for computers, such as finding
subshapes for rule application (Krishnamurti, 1981).

A large spectrum of shape grammar types can be identified
(Knight, 1999; Yue & Krishnamurti, 2014), including sub-
shape-driven versus label-driven shape grammars, nonpara-
metric versus parametric shape grammars, rectilinear versus
curvilinear shape grammars, and shape grammars with or
without emergence enabled. As Yue and Krishnamurti
(2014) point out, the complexity and choice of the implemen-
tation approach depends on the type of shape grammar to be
implemented. In this paper, we propose an implementation
approach that consists of translating a shape grammar to a
graph-theoretic equivalent grammar. Graphs provide an ele-
gant way to describe topological compositions and incidence
relations of spatial objects, but can also account for geometri-

cal properties by associating attributes to the graph objects.
Moreover, practical solutions and algorithms for (sub)graph
matching and automatic rule application exist in the literature
(Taentzer, 2004; Geiß et al., 2006). This graph-based ap-
proach is applicable for shape grammars that are either sub-
shape driven or label driven and support parametric shapes.
Another important benefit of using such a graph-based imple-
mentation approach is that shape grammars can also be imple-
mented with emergence enabled. A short discussion of this
can be found in Section 3.1 and other research work of Grasl
(2013) and Wortmann (2013); however, enabling emergence
is not the main topic of this paper. An aspect that is not con-
sidered in this paper is how to support curvilinear shapes, but
a good discussion of this can be found in the work of Jowers
and Earl (2011). An overview of existing shape grammar im-
plementations, including graph-based approaches and other
approaches, is presented in the following section.

2.2. Previous implementation approaches

The implementation of shape grammars has been the subject
of many research efforts since the original conception of
shape grammars in the 1970s (Stiny & Gips, 1971). The di-
lemma, addressed by Gips (1999), is the tension between
the visual nature of shape grammars and the inherently sym-
bolic nature of computer representations and processing. An
overview of more recent research efforts is given in the
work of Gips (1999; Chase, 2010). Chase (2010) summarizes
the main representative shape grammar implementation sys-
tems (Li et al., 2009; Correia et al., 2010; Ertelt & Shea,
2010; Hoisl & Shea, 2011; Jowers & Earl, 2011; Trescak
et al., 2012). These systems are analyzed and compared in
terms of form, semantics, definition interface, and generative
capabilities. McKay et al. (2012) analyze these systems ac-
cording to four characteristics: representation and algorithms,
user interaction and interface, support for particular prob-
lems, and support for specific stages of the development
process. Currently available implementations, although still
prototypes and each focusing on just a few particular aspects,
have made valuable contributions on enabling subshape rec-
ognition, emergence, parametric rules, and curvilinear
shapes, and present more user friendly interfaces and flexible
representation processes.

A fundamentally different approach toward shape gram-
mar implementation is the use of graphs as an underlying
framework for representing shapes. Graphs are data structures
that represent a set of entities (nodes) where some pairs of en-
tities are connected by links (edges). Graphs offer a natural
framework to model spatial entities (solids, faces, edges,
and vertices) and the relations between these entities. The
use of graphs to represent spatial shapes or designs is not un-
common in the architectural design domain. For example,
Fitzhorn (1990) uses graphs to represent three-dimensional
solids, and Steadman (1976) describes a graph-theoretic rep-
resentation of architectural arrangements. If graphs are used
to represent shapes or designs, graph rewriting systems can

T. Strobbe et al.140

https://doi.org/10.1017/S0890060416000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060416000032

be used to create new graphs out of an original graph, sim-
ilarly to how it occurs for shape grammars. Graph grammars
are used for divergent purposes, but they can also be used to
develop formal languages of spatial objects. Among the first
attempts to describe such formal languages is the approach of
Fitzhorn (1990). In this approach, a graph grammar is defined
to generate boundary representations of three-dimensional
solids. These solids are defined as sets of geometrical enti-
ties (solid, face, edge, and vertex) and their corresponding topo-
logical relations. The production rules of the grammar are de-
fined as Euler operators in order to generate solids that are
syntactically correct. This approach was adopted and ex-
tended in the work of Heisserman (1994). In this approach,
three-dimensional solids are represented as labeled boundary
graphs, and boundary solid grammars are used to develop
spatial languages. Other examples include the work of Shea
and Cagan (1999), in which graphlike shapes are applied to
produce structural forms, and the work of Helms and Shea
(2012) on representing designs as graphs. In other recent
work, it has been demonstrated how graph grammars can
also represent parametric shape grammars, and how emer-
gence, a foundational feature of shape grammars, can be sup-
ported (Grasl, 2013; Wortmann, 2013). In the recent work of
Grasl and Economou (2013), a graph-based shape grammar
library called GRAPE is proposed that provides a general
framework for graph-based shape grammar implementations.

In conclusion, several shape grammar implementation sys-
tems are available, each having a specific focus and purpose.
The shared focus of these systems is to allow designers or
shape grammar users to implement their shape grammar on
a computer system. Still, computer implementations of com-
plex shape grammars are seldom. An interesting counterex-
ample can be found in the work of Grasl (2012), in which a
graph-theoretic equivalent of the Palladian shape grammar
is described that can generate the same language of Palladian
villas as the original shape grammar introduced by Stiny and
Mitchell (1978). In the next section, an approach for the im-
plementation of shape grammars is proposed that builds fur-
ther on existing research on the graph-theoretic representation
of shapes and shape grammars (Grasl, 2013; Wortmann,
2013), but it is also more general than previous approaches,
and it can be applied in different contexts.

3. METHOD: IMPLEMENTING A SHAPE
GRAMMAR

In order to translate a shape grammar, specified on paper, to a
computer-amenable and graph-theoretic grammar, several
steps are needed. In this section, a step-by-step approach is
given to define a graph-theoretic representation of the shape
grammar to be implemented.

3.1. Step 1: Defining the ontology

The first step in the proposed translation of a shape grammar
to a graph-theoretic grammar is to construct an ontology that

defines the node types, node properties, and relations between
the nodes. A graph is a mathematical structure that represents
relations between nodes. Therefore, the node types that are
used and the possible relations between different node types
of the graph-theoretic grammar must be defined. In other
words, this corresponds to defining an ontology beforehand,
which allows computers to more easily interpret given visual
information in terms of this predefined ontology. The prede-
fined ontology should describe the different entities consid-
ered and how they relate to other entities (spaces, walls,
edges, vertices, and other kinds of geometric, semantical,
or spatial entities). This ontology determines what informa-
tion can be expressed in the computerized grammar and
how this information will be interpreted by the computer sys-
tem. The definition of an ontology depends on the given
shape grammar and on the envisioned functionality of the
grammar implementation; for example, if the given shape
grammar concerns only two-dimensional shapes, the ontol-
ogy needed is more limited than for shape grammars that op-
erate with more complex semantic entities (such as walls,
spaces, and other architectural concepts).

As an example, an ontology with six different node types is
considered: vertex, edge, space, wall, door, and window.
With such an ontology, the computer system is able to recog-
nize both geometrical entities (vertex and edge) and nongeo-
metrical entities (space, wall, door, and window. In addition,
seven different relations among the predefined node types are
defined: edge-vertex, space-edge, space-vertex, edge-wall,
wall-door, wall-window, and access-to. In the domain of
graph grammars, a type graph provides a useful way to repre-
sent which node types are allowed and which edge types can
be used to define relations between the nodes (which is ex-
actly the ontology). Figure 1 shows the type graph for the
six node types and seven edge types. Both geometrical and
nongeometrical node types are shown as circles, using differ-
ent colors to indicate the different types. The multiplicity of a
node type specifies the number of other nodes (using a lower
and upper bound) that can be connected to this node, using a
given edge type. Depending on whether the multiplicity is de-
fined at the end or source of the edge type, this defines the
number of incoming or outgoing edges, respectively. If an in-
definite number of connections is allowed, this is indicated
using an asterisk.

For unimplemented shape grammars (developed on paper),
architectural designs and objects (spaces, walls, doors, and
windows) are all represented as shapes. The power of these
shape grammars lies in the fact that shapes and their proper-
ties can be reinterpreted continuously (Stiny, 2006), allowing
the emergence of features that are not apparent in the initial
definition of a shape. For a good theoretical overview of
emergence in shape grammars, we refer to the work of Knight
(2003). Using a graph-based ontology to implement a gram-
mar, shapes are now considered in terms of finite sets of en-
tities, relations between these entities, and entity properties.
One of the main advantages is that computer systems are
now able to “interpret” the visual information using the

Graph-theoretic shape grammar implementation 141

https://doi.org/10.1017/S0890060416000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060416000032

underlying graph representation. For many simple shape
grammars, an ontology that contains only geometrical node
types (vertex and edge) would be sufficient. Moreover, in
the work of Grasl (2013) and Wortmann (2013), it is shown
that when shapes are represented as graphs with geometrical
nodes, the characteristic features of shapes (emergence and
reinterpretation of shapes) can be maintained. In particular,
GRAPE (Grasl, 2013) is a shape grammar implementation
system in which shape emergence is supported by continu-
ously translating graphs to shapes, and Wortmann (2013)
describes several algorithms to translate simple two-dimen-
sional shapes in the algebra U12 to graphs. In other words,
none of the essential features of shapes are lost when translat-
ing shapes to this kind of graphs. While (architectural) de-
signs can be represented as (collections of) shapes, and
thus be translated to graphs with only geometrical nodes,
this would result in very large graphs, especially when a lot
of semantic elements or details are involved.

In order to avoid overly large graphs, architectural design
elements (space, wall, door, and window) are treated as non-
geometrical (symbolical) entities in the ontology shown in
Figure 1. This separation of geometrical and nongeometrical
data is well established in building information modeling
(Eastman et al., 2008). In this case, the “meaning” of designs
or shapes becomes disambiguated, thereby omitting the free-
dom of interpretation that is typical for shape grammars. As
Grasl (2012) correctly points out, for many shape grammars
that focus on modeling an extensive, finite corpus of designs,
emergence is not needed or could prove to be counterproduc-
tive. Both approaches (using only geometrical node types and
using also nongeometrical node types) may have merit in dif-
ferent design situations, which indicates the importance of
letting the designer choose her own ontology.

3.2. Step 2: Constructing attributed part-relation
graphs

The second step is to construct a graph representation of the
shape grammar, based on the predefined type graph or ontol-
ogy. These graphs can be constructed in several ways, some
of which are summarized in the work of Wortmann (2013):

maximal graphs, direct graphs, complete graphs, inverted
graphs, and elaborate graphs. In the context of our proposed
implementation approach, the use of elaborate graphs is the
most appropriate, because all geometrical and nongeometri-
cal entities can then be represented as the nodes of the graph,
and their relations as the edges of the graph. In this paper, we
will consistently use the term part-relation graph to refer to
elaborate graphs, which is also the case in the work of Grasl
and Economou (2013). Moreover, a part-relation graph can
be attributed, which means that attributes are assigned to
the nodes and edges of the graph, resulting in a so-called at-
tributed part-relation graph. If such attributed part-relation
graphs are used with only geometrical node types, they sup-
port “the embedding and part relations and multiple intersec-
tions” (Wortmann, 2013); however, they can also easily be
extended with other kinds of node types (such as architectural
or semantical entities). Depending on the ontology that is
chosen beforehand, part-relation graphs can represent designs
in a compact way (compared to, for example, direct or max-
imal graphs). In order to construct attributed part-relation
graphs, the following steps are needed.

First, the geometrical topology of the shape is to be deter-
mined. The main issue here is that shapes need to be repre-
sented in such a way that the pattern shape of rules should
be detected as a (sub)shape in the given shapes. In order to
do this, maximal lines are created, after which the intersections
and endpoints of these maximal lines are calculated in order to
obtain a complete representation. Maximal lines (Stiny, 1980)
are lines created by combining all collinear line segments that
touch or overlap. The use of maximal lines results in an unam-
biguous interpretation of the shape, in which lines do not con-
sist of smaller line segments. These maximal line entities are
represented as edge nodes in the graph. In addition, the inter-
sections and endpoints of the maximal lines are detected in
the floor plan, and added as vertex nodes in the graph. The
edge-vertex relations between the edge and vertex nodes are
added to complete the geometrical topology of the graph. At
this moment, the resulting graph represents the topology of
the shape, but the shape is not limited to a specific geometrical
realization. In this sense, the graph accounts for several para-
metric variations of the shape, which can be constrained by

Fig. 1. The type graph defines the node and edge types used for the grammar implementation. If an indefinite number of nodes or con-
nections is allowed between node and edge types, this is indicated using an asterisk (*).

T. Strobbe et al.142

https://doi.org/10.1017/S0890060416000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060416000032

adding (geometrical) attributes to the nodes of the graph. The
vertex nodes are attributed with coordinate geometry to con-
strain the graph to specific geometrical shapes. In particular,
vertex nodes have x and y attributes, though this could be gen-
eralized for the three-dimensional case, for example, in the
work of Heisserman (1994) or Grasl (2013). To some extent,
this approach allows the implementation of parametric shape
grammars, because the graph can also be constrained to a set
of geometrical variations instead of a single value. Figure 2a
shows an example of a simple two-dimensional shape and
the part-relation graph constructed so far. This graph repre-
sentation highly facilitates the computation of possible rule
matches, because the two squares in the shape can be found
using an identical graph search pattern (see Fig. 2b,c). This ex-
ample illustrates how shapes represented as part-relation
graphs behave in a similar way as plain shapes, which is a result
of the maximal line representation. By continuously translating
shapes to graphs, and vice versa, the shape grammar imple-
mentation also supports the emergence of new shapes that arise
or are formed from the shapes generated by rule applications
(Grasl & Economou, 2013).

Second, nongeometrical objects in the shape, if available, are
to be determined, including walls, spaces, windows, and doors.
These objects are typically represented as shapes in handmade
drawings, and can easily be recognized by the human eye. This
is not the case for computer implementations, and representing
these entities using vertex and edge nodes in the graph would
make the graph overly large and complex. In addition, because
the calculation time of rule matching and application in graph
rewriting systems heavily depends on the number of graph ob-
jects (Strobbe et al., 2015), compact graph representations are
preferable. Following the ontology described in Figure 1, non-
geometrical objects are represented as wall, space, window, and
door nodes in the graph representation. In addition, the relations
between the different nodes are identified and added to the
graph representation, following the ontology.

Third, attributes are associated with the nodes for different
purposes: to characterize material properties of wall objects,

to include additional information about the function of
spaces, or to describe geometrical properties of doors and
windows. An example of a drawing of a floor plan and the
corresponding attributed part-relation graph is shown in
Figure 3. In the visual representation (Fig. 3, left), a wall is
drawn as a filled rectangular shape, which is a common
way to draw walls in architectural floor plans. In the graph
representation (Fig. 3, right), wall entities are defined sym-
bolically using wall nodes and their corresponding center edges
(axis lines). Attributes are used to specify the function of the
space f, to characterize element properties (thickness t and
width w), and to constrain the graph to a specific geometrical
realization (x and y).

3.3. Step 3: Adding conditional statements

In order to implement the grammar rules, both the left-hand
side and the right-hand side of the shape part of the rules
need to be described using the graph representation described
in the previous section. The left-hand side of a rule describes
the pattern graph that needs to be matched to a given graph
representation of a dwelling. The right-hand side describes
the replacement graph that will replace the matched part of
the given graph. A grammar rule can include deleting or ma-
nipulating existing graph nodes, creating new graph nodes,
and performing computations on the graph node attributes.

For graph grammar rules, additional rule application condi-
tions are needed, for example, to constrain the pattern graph to
specific geometrical realizations, or to specify other condi-
tional statements that are associated with shape grammar
rules. In the domain of graph grammar theory, such applica-
tion conditions can be defined using either attribute condi-
tions (ACs) or negative application conditions (NACs; Ehrig
et al., 2006). ACs define restrictions on the attributes of graph
objects. These ACs are defined as logical expressions using
logical operators (including the equality operator and the re-
lational operator). Therefore, ACs can be used to describe
conditional descriptive requirements, such as geometrical

Fig. 2. (a) Example of a shape of one square embedded in another, and its corresponding part-relation graph with vertex nodes (white),
edge nodes (black), and edge-vertex relations (arrow). Because the shape is represented using maximal lines, the two squares can be found
using identical graph search patterns (b and c). The node attributes are not shown in this figure.

Graph-theoretic shape grammar implementation 143

https://doi.org/10.1017/S0890060416000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060416000032

requirements (e.g., area and proportion) and functional re-
quirements. For example, considering a rule that detects a
nonhabitable space in a floor plan drawing (Fig. 3); the pat-
tern graph of this rule is associated with an AC f¼¼nhs to
constrain the matches found to spaces that have an attribute
f equal to the value nonhabitable space nhs.

NACs specify requirements for nonexistence of graph ob-
jects. While an AC is defined over attribute variables, NACs
define conditions about the nonexistence of graph nodes,
edges, or even a specific subgraph. NACs do not have a direct
equivalent in the shape grammar formalism; however, they
are useful to guide and control rule application. NACs can
be used to ensure that rules are applied only if specific graph
objects are nonexistent. For example, considering a rule that
assigns a specific function to a space in the floor plan, only
if this function has not yet been assigned to another space,
a NAC can be used to ensure that no other spaces with this
function exist.

3.4. Methodology

In order to evaluate the feasibility of the implementation ap-
proach described in the previous section, we have imple-
mented part of the RdB transformation grammar, originally
developed by Eloy (2012). The implementation is based on
a JAVA development environment for graph rewriting, called
AGG (http://user.cs.tu-berlin.de/~gragra/agg/). The existing
editor in AGG is used to develop the grammar, and the avail-
able algorithms are used for automatic rule matching and rule
application (Taentzer, 2004). We have built an interface on
top of the underlying graph framework that shows a visual

representation of the shape grammar derivation process. In
other words, the graphs are used for the computer representa-
tion and computation of shapes, rules, and grammars, while a
visual representation is shown to the designer. This corre-
sponds to Tapia’s characterization of a shape grammar inter-
preter: “the computer handles the bookkeeping tasks . . . and
the designer specifies, explores, develops design languages,
and selects alternatives” (Tapia, 1999). The focus of this
paper is on the implementation of the RdB transformation
grammar to a graph-theoretic grammar, and not so much on
the interface of the presented tool. Nevertheless, several
approaches exist for providing designers with visual and in-
teractive functionality to develop and explore grammars
(McKay et al., 2012; Strobbe et al., 2015). Automated shape
grammar tools have several levels of automation, ranging
from a stand-alone tool, in which the generation of a solution
is totally controlled by the computer, to a lower level of auto-
mation, where derivation and exploration is guided by the de-
signer (Chase, 2010).

The proposed implementation approach is also embedded
within a commercial CAD environment to make the shape
grammar formalism more accessible to students and practi-
tioners. In particular, shapes drawn in a common CAD format
can be converted to attributed part-relation graphs. At the mo-
ment, it is possible to convert industry foundation classes
(IFC) files to graphs, which are described in an Extensible
Markup Language format. IFC is an object-based data model
that is intended to describe building and construction industry
data. Following the approach described in Section 3, geo-
metrical (vertex and edge) and nongeometrical entities (space,
wall, door, and window) found in the IFC model are first

Fig. 3. (Left) Example of a floor plan. (Right) Attributed part-relation graph with geometrical and nongeometrical nodes. The relations
between the nodes are indicated by edges: edge-vertex (ev), space-edge (se), space-vertex (sv), edge-wall (ew), wall-door (wd), and
wall-window (ww).

T. Strobbe et al.144

https://doi.org/10.1017/S0890060416000032 Published online by Cambridge University Press

http://user.cs.tu-berlin.de/~gragra/agg/
http://user.cs.tu-berlin.de/~gragra/agg/
https://doi.org/10.1017/S0890060416000032

added as nodes to the graph. More specifically, these entities
correspond to IfcCartesianPoint, IfcPolyline, IfcSpace, Ifc-
WallStandardCase, IfcDoor, and IfcWindow in the IFC
model, respectively. In the next step, the relations between
the nodes are determined and connected by links. Subse-
quently, when the IFC model is imported to the shape gram-
mar implementation tool, the properties of the IFC entities are
read (e.g., wall material properties, the width and height of
doors and windows, and other properties), and they are added
to the corresponding graph nodes. Figure 4 shows how the
grammar implementation system is integrated within a wider
CAD environment. A more elaborated user interface that sup-
ports enhanced exploration abilities is described in previous
work (Strobbe et al., 2015). The output results of the graph
transformation process are shown (visually) in the interface,
allowing designers to automatically generate designs in the
language of the grammar.

4. CASE-STUDY: RdB TRANSFORMATION
GRAMMAR

In this section, we describe the implementation of the RdB
transformation grammar, developed on paper by Eloy
(2012). The RdB transformation grammar provides an answer
to the need for mass refurbishment of the existing housing
stock in Lisbon, Portugal. In particular, a large part of the ex-
isting housing stock in Lisbon shows several constructional
and functional problems, resulting in unsuitable housing in
terms of contemporary comfort and accessibility standards.
The RdB transformation grammar constitutes a formal
methodology to generate alternative housing solutions that
meet the current standards, depending on specific client needs
and cost requirements. Moreover, the grammar includes var-
ious customized transformation strategies to adapt existing
RdB houses to the current standards, depending on specific
client needs. These transformation strategies describe how
an existing dwelling is transformed to meet the standards
and requirements in the form of transformation rules. In re-
cent work, Eloy and Duarte (2014) describe the process
undertaken to develop the RdB transformation grammar,

and discuss how both the knowledge of the designer and
knowledge acquired from other experiences of refurbishment
are incorporated in the grammar. The implementation of this
grammar to a computerized grammar can be seen as the next
step in the development of a (semi)automated methodology
to support mass housing refurbishment.

4.1. The original RdB transformation grammar

The original RdB transformation grammar uses a compound
representation of the designs and the rules. For example,
Figure 5 shows the compound representation of an existing
RdB dwelling using five different representations, corre-
sponding to five algebras: U12, U02.U12, U22, V02, and
W02. In particular, the algebra U12 combines lines in a
two-dimensional plane to represent floor plans of dwellings
(Fig. 5a), the algebras U02 and U12 are used to represent top-
ological relations between spaces of dwellings (Fig. 5b), and
the algebra U22 is used to represent spatial voids in floor
plans of dwellings (Fig. 5c). Further, an algebra V02 consists
of labels and is used to control rule application or to associate
nongeometrical information with shapes. In this case, labels
are attributed to each space in a RdB dwelling (Fig. 5d), for
example, habitable space (hs), nonhabitable space (nhs), ex-
isting kitchen (Xki), and existing bathroom (Xba). An algebra
W02 consists of weights and is used to incorporate shape
properties, for example, to characterize construction systems
for walls (Fig. 5e), including brick walls (dark gray), struc-
tural elements, side walls (black), and partition walls (light
gray). As a result, a dwelling is described using five different
representations in the RdB transformation grammar.

The rules of the RDB transformation grammar define the
different transformation strategies that can be applied in order
to meet the current standards and requirements. These rules
are also defined using a compound representation. First, the
rules consist of a shape part using two or more of the repre-
sentations discussed in the beginning of this section. At least
two representations are needed; for example, the graph repre-
sentation and the labels are sufficient for rules that consider
topological aspects only. However, in other cases, a combina-
tion of multiple or even all representations is needed to incor-
porate the desired design knowledge in the rules. Second, the
rules consist of a conditional part to express additional rule
application conditions considering dimensional or functional
aspects of the shape. These application conditions provide a
mechanism to control rule application toward specific limited
cases. Third, a descriptive part is added to keep track of
spaces required by the transformation strategy, spaces already
assigned to the given dwelling, and spaces still available for
assignment. In the original RdB transformation grammar,
three sets are used to control the assignment of spaces: a set
of existing spaces (E), a set of required spaces not yet as-
signed (Z), and a set of spaces already assigned to the pro-
posed dwelling (Z’). In general, the descriptive part is defined
as a transformation on a tuple of elements. Several example
rules are shown later in this paper, indicating the different

Fig. 4. Integration of the shape grammar implementation system within a
wider computer-aided design environment. The output results of the graph
transformation process are shown in the visual interface.

Graph-theoretic shape grammar implementation 145

https://doi.org/10.1017/S0890060416000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060416000032

rule parts. An extensive overview of the RdB transformation
grammar rules is given in the work of Eloy (2012).

The RdB transformation grammar provides an interesting
case study for implementation, because the grammar is exten-
sive (142 shapes rules) to explore manually, and the imple-
mentation serves as the next step in the development of a
(semi)automated approach for supporting mass housing re-
furbishment. In addition, it provides an interesting case study
to investigate the proposed implementation approach, be-
cause the grammar uses multiple representations (in different
algebras), subshape detection, labels, and parametric rules.
Another difficulty in implementing this grammar is how to
implement the large number of conditional statements that
are associated with the rules.

4.2. Translation of the original grammar
to a computerized grammar

Following the approach described in Sections 3.1–3.3, the
first step is the definition of the ontology. The RdB transfor-
mation grammar involves the transformation of existing
dwellings to dwellings that meet the current standards and cli-

ent needs. These dwellings are represented in multiple ways: a
two-dimensional floor plan, a topology graph, a spatial void
representation, and the representation of labels and weights.
The goal is to find a type graph (ontology) for an attributed
part-relation graph that can account for all these representa-
tions in one. The type graph shown in Figure 1 proves to be
sufficient for this purpose. The geometrical node types vertex
and edge are used to represent the geometry of the floor plan,
the node type space and the relation access-to are used to
represent the topology graph and spatial voids, and the
node types wall, door, and window are used to represent non-
geometrical entities in the floor plan.

In order to construct the attributed topology graph, attri-
butes are associated with the nodes to characterize construc-
tion systems for walls (brick walls, structural elements, side
walls, and partition walls), to include information about the
functionality of spaces, and to describe geometrical proper-
ties of doors and windows. In particular, information about
the construction system is added as an attribute s to the wall
nodes in the graph. In addition, labels cx, cy, wi, and he
describe the position, width, and height, respectively, of
doors and windows. In some cases, labels are used to add in-

Fig. 5. Compound representation of an existing Rabo-de-Bacalhau dwelling: (a) floor plan representation of the dwelling, (b) topological
configuration of spaces in the dwelling (continuous lines for door connections and hidden lines for adjacency between rooms), (c) repre-
sentation of spatial voids in the floor plan, (d) labels, and (e) weights. This image is reproduced from A Transformation Grammar-Based
Methodology for Housing Rehabilitation: Meeting Contemporary Functional and ICT Requirements, by S. Eloy, 2012, PhD Thesis, TU
Lisbon. Copyright 2012 by S. Eloy. Reprinted with permission.

T. Strobbe et al.146

https://doi.org/10.1017/S0890060416000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060416000032

formation not provided by shapes (such as the function of
spaces and information about technical appliances; e.g.,
smoke detector and temperature detector). The label f
describes the function of a space (e.g., habitable space hs
and nonhabitable space nhs). In other cases, labels are used
to control rule application or, in other words, to specify which
rules can be applied at a specific moment in the transforma-
tion process. As a result, the floor plan is represented as an at-
tributed part-relation graph that is at the same time compact
and maintains sufficient semantic meaning.

Figure 6 shows the visual and graph representation of an
existing RdB dwelling, described in the work of Eloy
(2012). For illustrative purposes, the edge types are not
shown, and only one node attribute is shown (function f).
The resulting graph contains 113 nodes, 294 edges, and
126 attributes. The graph representation is used for the com-
putation of shapes, rules, and grammars, while the visual rep-
resentation is shown to the designer. This dwelling is one pos-
sible starting point for the transformation process using the
RdB transformation grammar.

For the RdB transformation grammar, there is no prede-
fined initial shape. Instead, there are countless possibilities,
because the initial shape can be the floor plan of any existing
RdB dwelling. The development of these initial floor plan
shapes (using a graph-based representation) is not part of
the RdB transformation grammar, but they are usually drawn
in traditional CAD environments. Figure 7 demonstrates
the conversion from an initial RdB dwelling (modeled in Au-
todesk REVIT 2014) to the graph rewriting environment,
using the IFC file format. Some details of the floor plan
(e.g., balcony and constructional elements) are deliberately
left out because they are less relevant in the scope of this
experiment.

4.3. Three example rule types

In order to demonstrate the feasibility of the proposed ap-
proach, we discuss three relevant types of rules from the
RdB transformation grammar: (1) assignment rules, (2) rules
to connect spaces by eliminating walls, and (3) rules to divide
spaces by adding walls (Eloy, 2012). For each rule type, an
example rule from the original grammar is shown, together
with the corresponding implemented rule.

4.3.1. Assignment rules

Assignment rules allow the required functions to be as-
signed to the existing spaces. An example assignment rule
is shown in Figure 8. This rule transforms a nonhabitable
space (label nhs) to a new hall space (label hl) by modifying
the label from the matched space, both in the floor plan rep-
resentation and the topology representation. As mentioned in
Section 4.1, each rule contains three parts: a shape part, a con-
ditional part, and a descriptive part. The shape part of the rule
consists of a parametric shape to create correspondence be-
tween the geometries of the different spaces within the dwell-
ings studied (parameters w, l, w1, w2, l1, and l2). The condi-
tional part of the rule defines dimensional conditions (size
and area), on the one hand, and functional conditions, on
the other. In particular, a space can only be assigned as a
hall space, if this space is connected to a lift hall (label lh)
and another nonhabitable space. The descriptive part of the
rule is described as an operation on a four-tuple with the fol-
lowing format: ,Dn: Fb, Ff ; F; Z 0; E.!,Dn: Fb, Ff; F1;
Z 0 þ fF1g; E – fFg, Eþ fF1g., where Dn denotes the stage
in the derivation, Fb and Ff denote the back and front space, F
denotes the function of the space involved, Z 0 denotes the set
of spaces assigned to the proposed dwelling, and E denotes

Fig. 6. (Left) Original floor plan from a Rabo-de-Bacalhau dwelling described in the work of Eloy (2012). (Right) Attributed part-relation
graph of the floor plan. For illustrative purposes, the edge types are not shown, and only one node attribute is shown (function f).

Graph-theoretic shape grammar implementation 147

https://doi.org/10.1017/S0890060416000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060416000032

the set of existing spaces. The rule in Figure 8 removes only
the nonhabitable space that is under consideration in the rule
(using a unique identifier) from the set of current spaces E,
and adds the hall space to both the list of current spaces E
and the list of already assigned spaces Z 0. Please refer to

Eloy (2012) for an elaborated discussion on the assignment
rules of the RdB transformation grammar.

The graph representation of this rule is given in Figure 9.
The pattern graph of the rule consists of three space nodes
with the functions Fb, F, and Ff, together with the geometri-

Fig. 7. (Left) Model of a Rabo-de-Bacalhau dwelling in Autodesk REVIT 2014 and (right) visual representation of the dwelling in the
graph rewriting environment.

Fig. 8. Example rule from the Rabo-de-Bacalhau transformation grammar: assignment of hall. This image is adapted from A Transforma-
tion Grammar-Based Methodology for Housing Rehabilitation: Meeting Contemporary Functional and ICT Requirements, by S. Eloy,
2012, PhD Thesis, TU Lisbon. Copyright 2012 by S. Eloy. Adapted with permission.

T. Strobbe et al.148

https://doi.org/10.1017/S0890060416000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060416000032

cal vertex and edge nodes of the middle space. In the original
rule, the spatial void is drawn as a parametric shape in order to
apply to all different geometries that can be found. In the
implemented graph rule, the topology of all quadrilateral
shapes (square, rectangle, and parallelogram) with different
dimensions is represented. As a result, the implemented graph
rule is a parametric rule in the sense that all geometrical rea-
lizations of a quadrilateral shape can be matched. Because
most spaces in the RdB dwellings are quadrilateral, such rep-
resentation is sufficient in most cases. Nevertheless, the origi-
nal rule also includes irregular spaces (w1, w2, l1, and l2), and
therefore, a pattern graph should be implemented for each to-
pology that can be found (pentagon, hexagon, and other poly-
gons). In other words, the pattern shape of the original rule
has multiple pattern graph equivalents. Several ACs are
used to specify the conditional requirements of the original
rule: the length (Y4 – Y1) . 0.9 m, the width (X4 – X1) .

0.9 m, the area (Y4 – Y1)� (X4 – X1) , 20 m2, and some
functional conditions concerning the spaces F, Fb, and Ff.
In addition, a NAC is added to the replacement graph to en-
sure that a hall space has not already been assigned to the
dwelling. In other words, NACs provide the functionality to
keep track of the spaces already assigned, and spaces still
available for assignment. The rule morphism specifies which
graph objects of the pattern graph are preserved in the re-
placement graph, which is indicated in Figure 9 by showing
identical numbers for each graph object in both rule sides.
In this case, the replacement graph of the rule is nearly iden-
tical to the pattern graph (the rule does not change the topol-
ogy), but the f attribute is changed to hl in order to assign the
hall space in the dwelling.

The implementation of the rule on a computer system
demonstrates that the original rule is underconstrained. In par-
ticular, the pattern graph of the original and implemented rule
can be matched to two different sets in the dwelling, returning
two identical results. The space nodes with labels Fb and F
are matched to the lift hall and the entrance adjacent to the
lift hall, respectively, but the third space node with label Ff
can be matched to two different nonhabitable spaces in the
dwelling (Fig. 10). Therefore, the rule results in two distinct,
but identical, rule application results. This behavior of the
rule is difficult to foresee, because such forms of ambiguity
in the rules often remain unnoticed. However, this is not
the case for computer implementations of grammars, in
which such form of ambiguity becomes directly noticeable.
This is an example of how designers can learn from the com-
puter implementation about the grammar itself.

4.3.2. Connection rules

Connection rules connect spaces by eliminating parts of a
straight wall, thereby connecting (or enlarging) spaces. An
example rule to connect two adjacent spaces, if several con-
ditions are satisfied, is shown in Figure 11. In this case, the
representation of the rule is simplified for illustrative pur-
poses: only the conditional requirements for private spaces
are shown (bottom Fig. 11), while requirements for other
spaces are omitted. The conditional part of the rule describes
that only specific adjacent spaces can be connected, for exam-
ple, single, double, or triple bedrooms (label values be.s, be.d,
and be.t, respectively) with nonhabitable spaces and corridors
(label values nhs and co, respectively). The descriptive part of
the rule is described as an operation on a tuple, having the fol-

Fig. 9. Graph representation of the hall assignment rule, consisting of (left) a pattern graph, (right) a replacement graph, and (bottom) attrib-
ute conditions and negative application conditions. The numbers indicate the rule morphism between the pattern graph and the replacement
graph.

Graph-theoretic shape grammar implementation 149

https://doi.org/10.1017/S0890060416000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060416000032

Fig. 10. Two possible rule applications of the assignment rule. The space nodes with labels Fb and F are matched to the lift hall and the
entrance adjacent to the lift hall, respectively. The space node with label Ff can be matched to two different nonhabitable spaces in the Rabo-
de-Bacalhau dwelling.

Fig. 11. Example rule from the Rabo-de-Bacalhau transformation grammar: connecting two adjacent spaces by eliminating part of a
straight wall. Only the conditions for private spaces are shown here. This image is adapted from A Transformation Grammar-Based
Methodology for Housing Rehabilitation: Meeting Contemporary Functional and ICT Requirements, by S. Eloy, 2012, PhD Thesis,
TU Lisbon. Copyright 2012 by S. Eloy. Adapted with permission.

T. Strobbe et al.150

https://doi.org/10.1017/S0890060416000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060416000032

lowing format: ,Dn: F1, F2; w�wcs(F1, F2). ! ,Dn:
F1, F2; w 0 �wcs(F1, F2)., where w denotes the width of
the wall, and wcs denotes the wall construction system. In par-
ticular, a part (w) of the existing brick wall (wub) is demol-
ished to allow for a door opening in the wall between two
spaces (w*Ø). Please refer to Eloy (2012) for an elaborated
discussion on the connection rules of the RdB transformation
grammar.

The graph representation of this rule is given in Figure 12.
The pattern graph consists of two space nodes, together with
nodes representing their shared edge, wall, and vertex enti-
ties. The geometrical and functional requirements from the
original rule are implemented as ACs. These attribute condi-
tions are described in a similar format as the original rule,
using logical conjunctions and disjunctions to express the dif-
ferent cases when the rule can be applied. Again, only the
ACs for the connection of private spaces are shown in Fig-
ure 12, for illustrative purposes only. In addition, a NAC is
added to the replacement graph to ensure that the two spaces
are not yet connected. The replacement graph adds an addi-
tional door node to the matched graph (width 0.8, 0.9, 1,
1.2, or 1.6 m) and an access-to relationship between the
two space nodes.

Depending on the given conditional requirements, this rule
can be applied to a given dwelling in many ways. Using the
original grammar rule, developed on paper, it is difficult to
detect all the possibilities where the rule can or cannot be ap-
plied, because of the large number of conditions that need to
be considered. According to previous research by Woodbury
and Burrow (2006), herein lies one of the main benefits of
CAD tools: their ability to support designers in exploring
large design spaces. A computer system can enumerate all
possible rule applications automatically. In this way, designers
benefit from computer implementations, because they can fo-
cus on selecting and exploring alternatives, leaving the under-
lying rule application and calculation tasks for the computer.

4.3.3. Division rules

Division rules divide a space by adding a wall between two
parts of the space. An example rule to divide a bathroom by
adding a wall, if several conditions are satisfied, is shown in
Figure 13. The shape part of the rule describes how a new wall
is added perpendicular to an existing wall of a space that has
been assigned as a private bathroom (label Fb has the value
ba.p). Several conditional requirements are defined, for ex-
ample, to ensure that the area of the spaces meet a predefined
comfort level: a bathroom larger than 3.5 m2 for a minimum
level of comfort, and a bathroom larger than 5 m2 for a recom-
mended level of comfort. The descriptive part of the rule is
described as an operation on a tuple with the following for-
mat: ,Dn: F1; E. ! ,Dn: F1, F2; E þ fF2g, w �
wcs(F1, F2).. In particular, a light partition wall (wul) is
added with a specific width (w) to divide the space. Please re-
fer to Eloy (2012) for an elaborated discussion on the division
rules of the RdB transformation grammar.

The graph representation of this rule is given in Figure 14.
The pattern graph of the rule consists of one space node with a
label Fb, and eight other nodes that represent four boundary
edges and four vertices of the space. The information of the
edges and vertices is needed to calculate the area and length
of the space that are dependent on the shape. Similarly to the
assignment rule in Figure 9, this rule is parametric in the
sense that all geometrical realizations of a quadrilateral shape
can be matched. For irregular shapes, different pattern graphs
should be implemented, and therefore, the original rule has
multiple graph rule equivalents. In order to create a perpen-
dicular wall, the two opposing edges need to be parallel, which
is achieved by using an AC to ensure that the slope of the two
edges is identical: (X3 – X1)/(Y3 – Y1)¼¼ (X4 – X2)/(Y4 – Y2).
The other geometrical requirements (w, l1, l2) are specified to
ensure that spaces have sufficiently large edge dimensions:
(Y3 – Y1) . 2 m, (Y4 – Y2) . 2 m, (X2 – X1) . 1 m. In order
to implement the conditional requirement of the predefined

Fig. 12. Graph representation of the adjacent space connecting rule, consisting of (left) a pattern graph, (right) a replacement graph, and
(bottom) attribute conditions and negative application conditions.

Graph-theoretic shape grammar implementation 151

https://doi.org/10.1017/S0890060416000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060416000032

comfort levels (minimum or recommended), it is necessary to
extend the type graph in Figure 1 with an additional node type
comfort level that has an attribute level. Depending on the
value of this level attribute L, a specific AC is applicable:
[L ¼¼ “minimum” ^ (X2 – X1) � (Y3 – Y1) . 5 m2]
[L ¼¼ “recommended” ^ (X2 – X1)� (Y3 – Y1) . 7.5 m2].
The replacement graph adds a light partition wall (label s
has value wul) that divides the space in two new spaces (pri-
vate bathroom and nonhabitable space). Two new vertex
nodes are created that are incident to the two existing parallel
edges. Next, a new edge node is created between the two ver-

tices, together with a new wall node. The values of the attri-
butes of the new vertex nodes depend on the area of the two
new spaces and the specified comfort level (minimum or rec-
ommended).

Finally, the RdB transformation grammar includes several
other types of rules, which are not discussed in this paper. For
example, one rule type in the grammar is used to permute
functions between spaces. This rule type is very similar to
the assignment rule type, and can thus be implemented using
the same approach. Another example is a rule for changing
the derivation stage in the transformation process. In this

Fig. 14. Graph representation of the division rule, consisting of (left) a pattern graph, (right) a replacement graph, and (bottom) attribute
conditions.

Fig. 13. Example rule from the Rabo-de-Bacalhau transformation grammar: dividing a private bathroom space by adding a wall. This
image is adapted from A Transformation Grammar-Based Methodology for Housing Rehabilitation: Meeting Contemporary Functional
and ICT Requirements, by S. Eloy, 2012, PhD Thesis, TU Lisbon. Copyright 2012 by S. Eloy. Adapted with permission.

T. Strobbe et al.152

https://doi.org/10.1017/S0890060416000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060416000032

case, labels are used to include information about the deriva-
tion stage and to control the derivation process. Lastly, the
RdB transformation grammar consists of rules for integrating
information, communications, and automation technologies
(ICAT) in the dwellings. These rules use labels to incorporate
information about the ICAT in the dwellings. Therefore,
they can be implemented as graph rules that modify the
attributes of the nodes that correspond with the locations of
the ICAT.

4.4. Results of the implementation

A part of the RdB transformation rules has been implemented
using the proposed methodology described in Section 3.4. In
particular, we have implemented rules of the rule types de-
scribed in Section 4.3: assignment rules, rules to connect spaces
byeliminating walls, and rules to divide spaces by adding walls.
An example of a derivation for a possible RdB dwelling is
shown in Figure 15. The shape rules used at each step of the

Fig. 15. Example of a derivation of a possible Rabo-de-Bacalhau dwelling. The shape rule used at each step of the derivation is shown
between the intermediary steps. For illustrative purposes, several derivation steps are merged.

Graph-theoretic shape grammar implementation 153

https://doi.org/10.1017/S0890060416000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060416000032

derivation are shown between the intermediate derivations. For
illustrative purposes, several derivation steps are merged (as in-
dicated in Fig. 15), because the changes to the floor plan are
subtle. The labels that have been used for the derivation process
are described in Table 1. The rules that have been used are
shown in Table 2. For each rule, a short description is given,
together with a reference to the original rule in the RdB trans-
formation grammar (Eloy, 2012).

5. DISCUSSION

In this section, we describe several findings and issues en-
countered during the implementation and evaluation of the
proposed approach and the RdB transformation grammar
case study. First, while human designers are able to reinter-

pret shapes and shape rules during a shape grammar deriva-
tion process, computer systems are able to “interpret” the vis-
ual information in terms of the ontology used, or in this case,
using the underlying graph representation. Therefore, emer-
gence of shape features or properties that are not apparent
in the initial definition of the shapes is not readily supported,
but we describe how computer-implemented grammars can
support emergence for shapes in the algebra in U12 in Section
3.1. The main benefits of the approach set out in this paper are
gained for extensive and complex grammars that are difficult
to explore manually, because computer systems enable easier
rule application. The proposed approach in this paper has
been evaluated for the RdB transformation grammar, which
is a complex shape grammar with multiple representations
(in different algebras), subshape detection, labels, and para-
metric rules. The computer implementation of this grammar
is a good way to quickly generate several outcomes (in the
context of the mass housing program).

Second, while several objects, such as spaces, walls, doors,
and windows, can be considered as geometrical entities from
an architectural point of view, they are treated as nongeomet-
rically in the implemented grammar. The representation of
such objects using only geometrical graph nodes (such as
vertex and edge) would result in complex graph representa-
tions. Among the main benefits of this approach is that the in-
itial shape and the pattern and replacement shape of the rules
can be represented quite intuitively, and with as little graph
objects as possible. Because rule matching is the most run-
time intensive step in the graph rewriting process, it is impor-
tant to keep the number of graph objects low. Moreover, the
calculation time of rule matching depends on the size of the
initial graph and the pattern graph. In this paper, we have
used an ontology that mixes geometrical with nongeometrical
node types. In order to validate this approach, we have gener-
ated four more derivation examples (Fig. 16), starting from
the same initial design of Figure 15 and the same inhabitants
requirements (comfort level, etc.). These results show some
variation in the placement of the dining room (either north
or south, connected to the living room), the placement of
the private bathroom, and the placement of the corridors.
The entire derivation shown in Figure 15 and the four result-
ing designs in Figure 16 can be generated in approximately 1–
2 s using a common personal computer (we used an Intel Core
2 Quad 3.00-GHz processor with 4 GB RAM and 64-bit Win-
dows 7). This experiment demonstrates how the computer-
implemented grammar might support a designer in exploring
design alternatives. Even more alternatives could be gener-
ated by taking into account the parametric variables in the
rules, and by using different inhabitants requirements. While
an extensive benchmarking of computer-implemented shape
grammars would be very interesting, it is out of scope in
this paper, and therefore it is part of our current ongoing
and future research. More details on performance measure-
ments of grammar implementations can also be found in ear-
lier research work (Grasl & Economou, 2013; Strobbe et al.,
2015).

Table 1. The labels used for the representation of housing
designs

Label Description Label Description

Nhs Nonhabitable space be Bedroom
Hs Habitable space be.s Single bedroom
Xba Existing bathroom be.d Double bedroom
Xki Existing kitchen ki Kitchen
Xla Existing laundry li Living room
Co Corridor ba.p Private bathroom
co.p Private corridor ba.g Guest bathroom
La Laundry lh Lift hall
hl Hall di Dining room
ba Bathroom ho Home office

Table 2. The transformation rules used during the derivation
process

Rule Description

Reference
to Original

Rule

Rule 1 Assignment of isolated kitchen Rule 0.1
Rule 2 Assignment of hall Rule 1.1
Rule 3 Assignment of double bedroom Rule 2.1b
Rule 4 Assignment of single bedroom Rule 2.3b
Rule 5 Permuting bedroom assignment due to area

criteria Rule 2.5
Rule 6 Assignment of main private bathroom Rule 2.6
Rule 7 Assignment of second private bathroom Rule 2.8b
Rule 8 Assignment of living room Rule 3.1a
Rule 9 Assignment of dining room Rule 3.2b
Rule 10 Assignment of isolated home office Rule 3.4
Rule 11 Assignment of guest bathroom Rule 3.11
Rule 12 Assignment of private corridors Rule 4.1
Rule 13 Assignment of corridors Rule 4.2
Rule 14 Widening the connection between two

rooms (by eliminating walls on both sides
of a door opening) Rule 7.1.i

Rule 15 Changing room dimension by moving a wall Rule 7.4b

Note: A short description is given for each rule, together with a reference
to the original rule in Eloy (2012).

T. Strobbe et al.154

https://doi.org/10.1017/S0890060416000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060416000032

Third, the implementation of the RdB transformation
grammar has shown some unexpected rule application re-
sults, largely due to the original rules being underconstrained
or ambiguous. Human designers can easily make meaning
from visual patterns in the rules, and as a result, such forms
of ambiguity in the rules often remain unnoticed. This is
not the case for computer implementations of grammars, in
which such form of ambiguity becomes directly noticeable.
As a result, the attempt to implement a grammar on a compu-
ter system leads to a deeper understanding of that grammar,
and might result in the further development of the grammar.
In this way, designers might learn from the computer imple-
mentation of their shape grammar about the grammar itself.

Fourth, as a result of the structured (graph-based) represen-
tation of computerized grammars, rewriting systems might be
used to enumerate all possible rule applications automati-
cally. Using the original grammar, developed on paper, it is
often difficult to detect all the possibilities where rules can
be applied, because of the large number of conditions that
need to be taken into account. Therefore, a computer system

might be used to handle automatic rule application and to
handle the management of possible design alternatives. In
this case, the designer can focus on selecting and exploring
these alternatives. This results in a mixed human–computer
interaction, in which the computer supports the designer
in exploring the language of a grammar, or a design space
in the more general sense. This is achieved by using a visual
interface (that has been built on top of the underlying graph
rewriting framework), which shows all the possible design al-
ternatives that can be selected at a certain point in the deriva-
tion process. Figure 17 shows a screenshot taken during the
derivation process of one RdB dwelling, in which the rules
are shown in a textual manner (top left), the current design
state is shown in a visual manner (bottom left), and the pos-
sible design alternatives are enumerated in a list (right). As
a result, the designer can navigate in the design space of the
implemented grammar, which is an important amplification
strategy for computers to support human design space ex-
ploration. In previous research work (Strobbe et al., 2015),
a more general framework for design space exploration using

Fig. 16. Four alternative automated productions of other Rabo-de-Bacalhau dwellings, based on the same initial design of Figure 15 and
the same inhabitants requirements. The resulting designs show some variation in the placement of the dining room, the private bathroom,
and the corridors.

Graph-theoretic shape grammar implementation 155

https://doi.org/10.1017/S0890060416000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060416000032

shape grammars is presented, together with more details
about the user interface and the mixed-initiative interaction
envisioned. For the RdB transformation grammar, such a hu-
man–machine interaction is beneficial, because of the large
number of conditional statements in the rules, which makes
it difficult to detect manually where the rules can be applied.

Fifth, the proposed implementation approach is evaluated
through a case study of the RdB transformation grammar,
but the proposed approach and findings should be generaliz-
able to other specific shape grammars. For example, the
graph-theoretic representation of the Palladian grammar, de-
scribed in the work of Grasl (2012), can be defined using
an ontology that contains node types for spaces, rooms, por-
ticos, center rooms, exterior, and orientation (structured in a
hierarchical manner), and edge types for describing east–
west and north–south relations. In general, the translation of
an existing shape grammar to an equivalent graph-theoretic

grammar is an interesting exercise, because designers need
to think about several aspects of their grammar in a different
way: for example, the use of multiple graph equivalents of a
parametric shape, the definition of the ontology, or the defi-
nition of conditional requirements to control rule application.
As a result, the graph-theoretic equivalent of a shape grammar
might operate using different underlying principles, leading
to an alternative understanding of the grammar at hand, which
is complementary to designing shape grammars.

6. CONCLUSION

The work presented in this paper demonstrates an approach for
a graph-theoretic implementation of a shape grammar, origi-
nally developed on paper, on a computer system. The issue
of the computer implementation of shape grammars is shown
to be important, because the computer implementation of shape

Fig. 17. Screenshot taken during the derivation process of one Rabo-de-Bacalhau dwelling (top left) : the rules are shown in a textual
manner, (bottom left) the current design state is shown in a visual manner, and (right) the possible design alternatives are enumerated
in a list. The changes in the floor plan resulting from the rule applications are indicated in red.

T. Strobbe et al.156

https://doi.org/10.1017/S0890060416000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060416000032

grammars concerned with modeling an existing corpus work
not only enables (semi)automatic rule application but also in-
fluences the design of the shape grammar itself. A practical
step-by-step approach is given for the translation of a shape
grammar to an equivalent graph-theoretic grammar. The RdB
transformation grammar, originally developed by Eloy
(2012), is used to demonstrate the details of this approach
and to evaluate the feasibility. In particular, three relevant types
of rules used in the RdB transformation grammar are discussed:
assignment rules, rules to connect spaces by eliminating walls,
and rules to divide spaces by adding walls. In order to evaluate
the feasibility of the implementation approach, a part of the
RdB transformation grammar is implemented, using a JAVA
development environment for graph rewriting. This implemen-
tation is shown to be both feasible and valuable in several as-
pects. First, the proposed approach contributes to the existing
state of the art on the graph-theoretic representation of shape
grammars. It is shown how the implementation of a shape
grammar to a computerized grammar might influence the de-
sign of the original shape grammar. Second, the work presented
in this paper can be considered as an example of how shape
grammars are implemented to a computer system, which might
in the turn increase the impact of grammars on design practice.
In particular, the development of a (semi)automated methodol-
ogy to support mass housing refurbishment is described. Third,
the proposed approach is embedded within a commercial CAD
environment to make the shape grammar formalism more ac-
cessible to students and practitioners. Some future lines of re-
search include the further integration of the proposed approach
within a CAD environment in order to allow the results to be
returned to the CAD environment, and an extensive bench-
marking of the proposed implementation approach and other
shape grammar implementations in general.

ACKNOWLEDGMENTS

The graph grammars are implemented using AGG, a JAVA develop-
ment environment for attributed graph transformation. The research
is funded by the Agency for Innovation by Science and Technology
in Flanders (IWT).

REFERENCES

Aksamija, A., Yue, K., Kim, H., Grobler, F., & Krishnamurti, R. (2010). In-
tegration of knowledge-based and generative systems for building charac-
terization and prediction. Artificial Intelligence for Engineering, Design,
Analysis and Manufacturing 24(1), 3–16.

Chase, S. (2002). A model for user interaction in grammar-based design sys-
tems. Automation in Construction 11(2), 161–172.

Chase, S. (2010). Shape grammar implementations: the last 35 years. Proc. 4th
Int. Conf. Design Computing and Cognition, Stuttgart, July 10–14.

Correia, R., Duarte, J.P., & Leitao, A. (2010). MALAG: a discursive gram-
mar interpreter for the online generation of mass customized housing.
Proc. 4th Int. Conf. Design Computing and Cognition, Stuttgart, July
10–14.

Duarte, J. (2005). A discursive grammar for customizing mass housing: the case
of Siza’s houses at Malagueira. Automation in Construction 14(2), 265–275.

Eastman, C., Teicholz, P., Sacks, R., & Liston, K. (2008). BIM Handbook: A
Guide to Building Information Modelling for Owners, Managers, Archi-
tects, Engineers, Contractors, and Fabricators. Hoboken, NJ: Wiley.

Ehrig, H., Ehrig, K., Prange, U., & Taentzer, G. (2006). Fundamentals of Al-
gebraic Graph Transformation. New York: Springer.

Eloy, S. (2012). A transformation grammar-based methodology for housing
rehabilitation: meeting contemporary functional and ICT requirements.
PhD Thesis. TU Lisbon.

Eloy, S., & Duarte, J. (2014). Inferring a shape grammar: translating design-
er’s knowledge. Artificial Intelligence for Engineering, Design Analysis
and Manufacturing 28(2), 153–168.

Ertelt, C., & Shea, K. (2010). Shape grammar implementation for machine
planning. Proc. 4th Int. Conf. Design Computing and Cognition, Stutt-
gart, July 10–14.

Fitzhorn, P. (1990). Formal graph languages of shape. Artificial Intelligence
for Engineering, Design Analysis and Manufacturing 4(3), 151–163.

Flemming, U. (1987). More than the sum of parts: the grammar of Queen
Anne houses. Environment and Planning B: Planning and Design
14(3), 323–350.

Geiß, R., Batz, G.V., Grund, D., Hack, S., & Szalkowski, A. (2006). GrGen: a
fast SPO-based graph rewriting tool. Proc. IGCT 2006, LNCS, Vol.
4178, pp. 383–397. Berlin: Springer–Verlag.

Gips, J. (1999). Computer implementation of shape grammars. Proc. NSF/
MIT Workshop on Shape Computation, Cambridge, MA, April.

Granadeiro, V., Duarte, J., Correia, J., & Leal, V. (2013). Building envelope
shape design in early stages of the design process: integrating architec-
tural design systems and energy simulation. Automation in Construction
32, 196–209.

Grasl, T. (2012). Transformational palladians. Environment and Planning B:
Planning and Design 39(1), 83–95.

Grasl, T. (2013). On shapes and topologies: graph theoretic representations
of shapes and shape computations. PhD Thesis. TU Vienna.

Grasl, T., & Economou, A. (2013). From topologies to shapes: parametric
shape grammars implemented by graphs. Environment and Planning
B: Planning and Design 40(5), 905–922.

Heisserman, J. (1994). Generative geometric design. IEEE Computer Graph-
ics and Applications 14(2), 37–45.

Helms, B., & Shea, K. (2012). Computational synthesis of product architec-
tures based on object-oriented graph grammars. Journal of Mechanical
Design 134(2), 1–14.

Hoisl, F., & Shea, K. (2011). An interactive, visual approach to developing
and applying parametric three-dimensional spatial grammars. Artificial
Intelligence for Engineering Design, Analysis and Manufacturing
25(4), 333–356.

Jowers, J., & Earl, C. (2011). Implementation of curved shape grammars.
Environment and Planning B: Planning and Design 38(4), 616–635.

Jowers, I., Hogg, D.C., McKay, A., & de Pennington, A. (2010). Shape de-
tection with vision: implementing shape grammars in conceptual design.
Research in Engineering Design 21(4), 235–247.

Knight, T. (1999). Shape grammars: six types. Environment and Planning B:
Planning and Design 26(1), 15–31.

Knight, T. (2003). Computing with emergence. Environment and Planning
B: Planning and Design 30(1), 125–155.

Koning, H., & Eizenberg, J. (1981). Frank Lloyd Wright’s prairie houses.
Environment and Planning B: Planning and Design 8(3), 295–323.

Krishnamurti, R. (1981). The construction of shapes. Environment and Plan-
ning B: Planning and Design 8(1), 5–40.

Krishnamurti, R., & Stouffs, R. (1993). Spatial grammars: motivation, compar-
ison, and new results. Proc. 5th Int. Conf. Computer-Aided Architectural
Design Futures (CAADFutures), pp. 57–74. Amsterdam: North–Holland.

Li, E., I-Kang, A., Chau, H.H., & Chen, L. (2009). A prototype system for
developing two- and three-dimensional shape grammars. Proc. 14th
Int. Conf. Computer-Aided Architectural Design Research in Asia,
pp. 717–716, Taiwan, April 22–25.

McKay, A., Chase, S., Shea, K., & Chau, H.H. (2012). Spatial grammar im-
plementation: from theory to useable software. Artificial Intelligence for
Engineering, Design Analysis and Manufacturing 26(2), 143–159.

Shea, K., & Cagan, J. (1999). Languages and semantics of grammatical dis-
crete structures. Artificial Intelligence for Engineering, Design Analysis
and Manufacturing 13(4), 241–251.

Steadman, P. (1976). Graph-theoretic representation of architectural arrange-
ment. In The Architecture of Form (March, L., Ed.), pp. 94–115. Cam-
bridge: Cambridge University Press.

Stiny, G. (1977). Ice-ray: a note on Chinese lattice designs. Environment and
Planning B: Planning and Design 4(1), 89–98.

Stiny, G. (1980). Introduction to shape and shape grammars. Environment
and Planning B: Planning and Design 7(3), 343–351.

Graph-theoretic shape grammar implementation 157

https://doi.org/10.1017/S0890060416000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060416000032

Stiny, G. (1991). The algebras of design. Research in Engineering Design
2(3), 171–181.

Stiny, G. (2006). Shape: Talking About Seeing and Doing. Cambridge, MA:
MIT Press.

Stiny, G., & Gips, J. (1971). Shape grammars and the generative specification
of painting and sculpture. Proc. IFIP Congr. (Freiman, C.V., Ed.), pp.
1460–1465. Amsterdam: North–Holland.

Stiny, G., & Mitchell, W.J. (1978). The Palladian grammar. Environment and
Planning B: Planning and Design 5(1), 5–18.

Strobbe, T., Pauwels, P., Verstraeten, R., De Meyer, R., & Van Campenhout,
J. (2015). Toward a visual approach in the exploration of shape gram-
mars. Artificial Intelligence for Engineering, Design Analysis and Man-
ufacturing 29(4), 503–521.

Taentzer, G. (2004). AGG: A Graph Transformation Environment for Mod-
eling and Validation of Software, LNCS, Vol. 3062, pp. 446–453. Berlin:
Springer.

Tapia, M. (1999). A visual implementation of a shape grammar system. Envi-
ronment and Planning B: Planning and Design 26(1), 59–73.

Trescak, T., Esteva, M., & Rodriguez, I. (2012). A shape grammar interpreter
for rectilinear forms. Computer-Aided Design 44(7), 657–670.

Woodbury, R., & Burrow, A. (2006). Whither design space? Artificial Intel-
ligence for Engineering, Design, Analysis and Manufacturing 20(2),
63–82.

Woodbury, R., Radford, A.D., Taplin, P.N., & Coppins, S.A. (1992). Tartan
worlds: a generative symbol grammar system. Proc. ACADIA ’92, pp.
211–220. Charleston, SC: Clemson University Press.

Wortmann, T. (2013). Representing Shapes as Graphs: A Feasible Approach
for the Computer Implementation of Parametric Visual Calculating.
Cambridge, MA: MIT Press.

Yue, K., & Krishnamurti, R. (2014). A paradigm for interpreting tractable
shape grammars. Environment and Planning B: Planning and Design
41(1), 110–137.

Tiemen Strobbe is a PhD Researcher in the Ugent SmartLab
research group in the Department of Architecture and Urban
Planning and the Department of Electronics and Information
Systems of Ghent University. He graduated as an engineer–
architect from Ghent University, Belgium, with a Master’s
dissertation on the applicability of parametric design strate-
gies. His interests and current PhD research focus on design
space exploration, generative design, shape grammars, and
the application of information technology in architectural de-
sign in general.

Sara Eloy is an Assistant Professor at the Department of Ar-
chitecture and Urbanism (DAU) ISCTE-IUL in Lisbon,
where she teaches Architectural Computer Aided Design,
Computation, and Building Technologies. Eloy’s research fo-
cuses on the use of shape grammar systems in architecture de-
sign, space syntax analysis, and the use of virtual and aug-
mented reality in architecture design process and evaluation
of user’s space perception.

Pieter Pauwels is a Postdoctoral Researcher in the Depart-
ment of Architecture and Urban Planning at Ghent Univer-
sity. He holds Master’s and PhD degrees (2012) in engineer-
ing–architecture, both obtained at Ghent University. During
his PhD research, he investigated how information system
support can be provided for architectural design thinking. Pi-
eter was previously a Postdoctoral Researcher at the Institute
for Logic, Language and Computation in the University of
Amsterdam. Dr. Pauwels is now working full-time on topics
affiliated with building information modeling, linked build-
ing data, and linked data in architecture and construction.

Ruben Verstraeten is an Assistant Professor in the Depart-
ment of Architecture and Urban Planning at Ghent Univer-
sity. He graduated as an engineer–architect from Ghent Uni-
versity. His PhD dissertation was focused on the automated
compliance checking mechanisms of architectural designs.
Dr. Verstraeten teaches several courses in computational de-
sign, including three-dimensional modeling, parametric de-
sign, and digital fabrication.

Ronald De Meyer is a Senior Lecturer in the Department of
Architecture and Urban Planning of Ghent University and a
Lecturer in the Department of Architecture and Design of
Hasselt University. He graduated from the Hoger Architec-
tuurinstituut van het Rijk, Antwerp, and received his PhD
with a dissertation on the development of the 19th-century
Antwerp town district Het Zuid from Leuven University.
His research involves 19th- and 20th-century construction
history, more specifically, the role of concrete and iron struc-
tures in Belgium, and the intelligent deployment of ICT tech-
nology within architectural design.

Jan Van Campenhout is a Senior Member of the Depart-
ment of Electronics and Information Systems of the Faculty
of Engineering and Architecture at Ghent University. He re-
ceived a degree in electromechanical engineering from the
University of Ghent and MSEE and PhD degrees from Stan-
ford University. Dr. Van Campenhout’s research interests fo-
cus on systems design, including the study and implementa-
tion of various forms of parallelism in information processing
systems. In the past, his research focused on the modeling and
design of short-range parallel optical interconnects from a
systems perspective. In more recent years, his interests also
include computer support of design methodology in other
areas, such as architectural design exploration.

T. Strobbe et al.158

https://doi.org/10.1017/S0890060416000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060416000032

	A graph-theoretic implementation of the Rabo-de-Bacalhau transformation grammar
	Abstract
	INTRODUCTION
	RELATED WORK
	Spatial grammars
	Previous implementation approaches

	METHOD: IMPLEMENTING A SHAPE GRAMMAR
	Step 1: Defining the ontology
	Step 2: Constructing attributed part-relation graphs
	Step 3: Adding conditional statements
	Methodology

	CASE-STUDY: RdB TRANSFORMATION GRAMMAR
	The original RdB transformation grammar
	Translation of the original grammar to a computerized grammar
	Three example rule types
	Assignment rules
	Connection rules
	Division rules

	Results of the implementation

	DISCUSSION
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

