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Abstract An initial boundary-value problem for the modified Korteweg–de Vries equation on the half-
line, 0 < x < ∞, t > 0, is analysed by expressing the solution q(x, t) in terms of the solution of a
matrix Riemann–Hilbert (RH) problem in the complex k-plane. This RH problem has explicit (x, t)
dependence and it involves certain functions of k referred to as the spectral functions. Some of these
functions are defined in terms of the initial condition q(x, 0) = q0(x), while the remaining spectral
functions are defined in terms of the boundary values q(0, t) = g0(t), qx(0, t) = g1(t), and qxx(0, t) =
g2(t). The spectral functions satisfy an algebraic global relation which characterizes, say, g2(t) in terms
of {q0(x), g0(t), g1(t)}. It is shown that for a particular class of boundary conditions, the linearizable
boundary conditions, all the spectral functions can be computed from the given initial data by using
algebraic manipulations of the global relation; thus, in this case, the problem on the half-line can be
solved as efficiently as the problem on the whole line.
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1. Introduction

In this paper, the general method announced in [4] for solving boundary-value prob-
lems for two-dimensional linear and integrable nonlinear partial differential equations is
applied to the modified Korteweg–de Vries (mKdV) equation on the half-line.

This method, which was further developed in [5–7,9], is based on the simultaneous
spectral analysis of the two eigenvalue equations of the associated Lax pair. It expresses
the solution in terms of the solution of a matrix Riemann–Hilbert (RH) problem formu-
lated in the complex plane of the spectral parameter. The spectral functions determining
the RH problem are expressed in terms of the boundary values of the solution. The fact
that these boundary values are, in general, related can be expressed in a simple way in
terms of a global relation satisfied by the corresponding spectral functions.
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The rigorous implementation of the method to the nonlinear Schrödinger equation on
the half-line is presented in [9]. The application to the sine-Gordon equation in laboratory
coordinates and to the Korteweg–de Vries equation with dominant surface tension is
presented in [7]. In the present paper, this methodology is applied to the mKdV equation
on the half-line.

The paper is organized as follows.
In § 2, we review the general methodology and study the direct spectral problem for-

mulated in terms of the simultaneous spectral analysis of the associated Lax pair: we
define appropriate eigenfunctions and spectral functions and study their properties.

In § 3, the inverse spectral problem is formulated as a matrix RH problem, the solution
of which gives the solution of the mKdV equation with prescribed initial and boundary
data provided that the spectral functions satisfy an algebraic relation, the ‘global rela-
tion’.

In § 4, we show that for particular boundary conditions it is possible to solve the
problem on the half-line with the same effectiveness as the problem on the whole line
(solved by the inverse-scattering transform method).

In § 5, following the nonlinear steepest descent method [1,3], we obtain the long-time
asymptotics of the solution.

2. Lax pair, eigenfunctions and spectral functions

2.1. Problem formulation. Lax pair and closed 1-form

The mKdV equation
qt − qxxx + 6λq2qx = 0, λ = ±1 (2.1)

admits the Lax pair formulation

ψx − ikσ3ψ = Q(x, t)ψ, (2.2 a)

ψt + 4ik3σ3ψ = Q̃(x, t, k)ψ, (2.2 b)

where

σ3 =

(
1 0
0 −1

)

and

Q(x, t) =

(
0 q(x, t)

λq(x, t) 0

)
, (2.3 a)

Q̃(x, t, k) =

(
−2iλq2k −4qk2 + 2iqxk − 2λq3 + qxx

λ(−4qk2 − 2iqxk − 2λq3 + qxx) 2iλq2k

)
. (2.3 b)

Let σ̂3 = adσ3 denote the commutator with respect to σ3,

σ̂3A := [σ3, A] = σ3A − Aσ3.
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Then
eσ̂3A = eσ3Ae−σ3

for any 2 × 2 matrix A. Let
µ := ψei(−kx+4k3t)σ3 .

Then (2.2 a) becomes

µx − ikσ̂3µ = Q(x, t)µ, (2.4 a)

µt + 4ik3σ̂3µ = Q̃(x, t, k)µ. (2.4 b)

These equations can be rewritten as

d(ei(−kx+4k3t)σ̂3µ) = W, (2.5)

where W is the exact 1-form defined by

W (x, t, k) = ei(−kx+4k3t)σ̂3(Qµdx + Q̃µdt). (2.6)

The problem we are dealing with is the initial boundary-value problem for the mKdV
equation in the domain {0 < x < ∞, 0 < t < T}, T � ∞. We use the following steps.

Step 1. Assuming that the solution of the mKdV equation, q(x, t), exists, express it via
the solution of a matrix RH problem. For this purpose, we make use of the following.

(a) Define proper solutions of (2.5) (eigenfunctions) analytic and bounded (in k) in
domains forming a partition of the Riemann sphere C̄ = C ∪ {∞}.

(b) Define spectral functions s(k), S(k) such that:

(1) they determine an RH problem;

(2) s(k) is determined by the initial conditions q(x, 0) = q0(x), 0 < x < ∞;

(3) S(k) is determined by the boundary values q(0, t) = g0(t), qx(0, t) = g1(t),
qxx(0, t) = g2(t), 0 < t < T ;

(4) they satisfy an algebraic global relation, expressing the fact that q0(x), g0(t),
g1(t) and g2(t) being the initial and boundary values for the mKdV equation,
cannot be chosen arbitrary.

Step 2. Given s(k) and assuming that g0(t), g1(t) and g2(t) are such that the associated
S(k), together with s(k), satisfy the global relation, prove that the solution of the RH
problem constructed from s(k) and S(k) generates the solution of the initial boundary-
value problem for the mKdV with initial data q(x, 0) = q0(x) and boundary values
q(0, t) = g0(t), qx(0, t) = g1(t), qxx(0, t) = g2(t).

Step 3. Find a class of boundary conditions, for which S(k) can be calculated explicitly
in terms of the given initial data.

Step 4. Study the long-time asymptotics of the solution q(x, t).
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Figure 1. Domains of analyticity and boundedness of eigenfunctions.

2.2. Eigenfunctions and spectral functions

We assume that there exists a real-valued function q(x, t) with sufficient smoothness
and decay satisfying (2.1) in {0 < x < ∞, 0 < t < T}, T � ∞.

Define µn(x, t, k), n = 1, 2, 3 as 2 × 2-matrix-valued solutions of the integral equations

µn(x, t, k) = I +
∫ (x,t)

(xn,tn)
ei(kx−4k3t)σ̂3W (y, τ, k), (2.7)

where (x1, t1) = (0, T ), (x2, t2) = (0, 0), (x3, t3) = (∞, t), and the paths of integration
are chosen to be parallel to the x- and t-axes,

µ1(x, t, k) = I +
∫ x

0
eik(x−y)σ̂3(Qµ1)(y, t, k) dy

− eikxσ̂3

∫ T

t

e−4ik3(t−τ)σ̂3(Q̃µ1)(0, τ, k) dτ, (2.8 a)

µ2(x, t, k) = I +
∫ x

0
eik(x−y)σ̂3(Qµ2)(y, t, k) dy

+ eikxσ̂3

∫ t

0
e−4ik3(t−τ)σ̂3(Q̃µ2)(0, τ, k) dτ, (2.8 b)

µ3(x, t, k) = I −
∫ ∞

x

eik(x−y)σ̂3(Qµ3)(y, t, k) dy. (2.8 c)

The domains where the exponentials are bounded are separated by the three lines such
that L0∪L1∪L2 = {k ∈ C | Im k3 = 0}. The relevant domains in the k-plane are denoted
by I, . . . ,VI (see figure 1).

Let the columns of a 2× 2 matrix µ be denoted as (µ(1) µ(2)). Then the columns of µn

are analytic and bounded in the following domains in the complex k-plane (determined
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by the domains of boundedness of the exponentials involved in the relative integral equa-
tions):

eigenfunction domain of analyticity and boundedness

µ
(1)
1 (x, t, k) {k | Im k � 0, Im k3 � 0} = IV ∪ VI

µ
(2)
1 (x, t, k) {k | Im k � 0, Im k3 � 0} = I ∪ III

µ
(1)
2 (x, t, k) {k | Im k � 0, Im k3 � 0} = V

µ
(2)
2 (x, t, k) {k | Im k � 0, Im k3 � 0} = II

µ
(1)
3 (x, t, k) {k | Im k � 0} = I ∪ II ∪ III

µ
(2)
3 (x, t, k) {k | Im k � 0} = IV ∪ V ∪ VI

µ1 (for T < ∞) and µ2 are entire functions of k. Thus, in each domain I, . . . ,VI, one has
a 2× 2-matrix-valued eigenfunction, analytic and bounded, consisting of the appropriate
vectors µ

(k)
n , n = 1, 2, 3, k = 1, 2.

For particular values of x or t, the domains of boundedness of the eigenfunctions are
larger than above. Particularly, for t = 0, the domain of boundedness of µ2 are

eigenfunction domain of boundedness

µ
(1)
2 (x, 0, k) {k | Im k � 0} = IV ∪ V ∪ VI

µ
(2)
2 (x, 0, k) {k | Im k � 0} = I ∪ II ∪ III

and for x = 0 the domain of boundedness of µ1 and µ2 are

eigenfunctions domain of boundedness

µ
(1)
1 (0, t, k) and µ

(2)
2 (0, t, k) {k | Im k3 � 0} = II ∪ IV ∪ VI

µ
(2)
1 (0, t, k) and µ

(1)
2 (0, t, k) {k | Im k3 � 0} = I ∪ III ∪ V

Since the µj are solutions of the system of differential equations (2.4), they are simply
related (in the domains where they are defined),

µ3(x, t, k) = µ2(x, t, k)ei(kx−4k3t)σ̂3µ3(0, 0, k), (2.9 a)

µ1(x, t, k) = µ2(x, t, k)ei(kx−4k3t)σ̂3µ1(0, 0, k)

= µ2(x, t, k)ei(kx−4k3t)σ̂3(e4ik3T σ̂3µ2(0, T, k))−1. (2.9 b)

Introduce the spectral (2 × 2-matrix-valued) functions

s(k) := µ3(0, 0, k), (2.10 a)

S(k) = S(k; T ) := µ1(0, 0, k) = (e4ik3T σ̂3µ2(0, T, k))−1. (2.10 b)
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In what follows, s(k) and S(k) will be used to construct a matrix RH problem (more
precisely, a family of RH problems parametrized by (x, t)), the solution of which gives
the eigenfunctions µn and hence q(x, t), the solution of the mKdV problem. On the other
hand, from (2.8 c), (2.10), it follows that s(k) is determined by the initial values of q(x, t),
whereas S(k) is determined by the boundary values, namely,

s(k) = I −
∫ ∞

0
e−ikyσ̂3(Qµ3)(y, 0, k) dy, (2.11 a)

S(k; T ) =
(

I +
∫ T

0
e4ik3τσ̂3(Q̃µ2)(0, τ, k) dτ

)−1

, (2.11 b)

where µl(x, 0, k), l = 1, 2, 3 are the solutions of the integral equations

µ1(0, t, k) = I −
∫ T

t

e−4ik3(t−τ)σ̂3(Q̃µ1)(0, τ, k) dτ, (2.12 a)

µ2(0, t, k) = I +
∫ t

0
e−4ik3(t−τ)σ̂3(Q̃µ2)(0, τ, k) dτ, (2.12 b)

µ3(x, 0, k) = I −
∫ ∞

x

eik(x−y)σ̂3(Qµ3)(y, 0, k) dy. (2.12 c)

Note that Q(x, 0) is determined by q(x, 0), whereas Q̃(0, t, k) is determined by q(0, t),
qx(0, t) and qxx(0, t).

2.3. Symmetry properties

Since q(x, t) is real valued, the matrices U(x, t, k) and V (x, t, k) in the Lax pair (2.2 a)
written in the form

ψx = Uψ, ψt = V ψ

satisfy the following symmetry relations,

U(−k) = U(k̄), V (−k) = V (k̄) (2.13)

and

σ1U(k̄)σ1 = U(k), σ1V (k̄)σ1 = V (k) for λ = 1, (2.14 a)

σ2U(k̄)σ2 = U(k), σ2V (k̄)σ2 = V (k) for λ = −1, (2.14 b)

where

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
.

In turn, relations (2.13) and (2.14) imply

ψ(−k) = ψ(k̄) (2.15)
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and

σ1ψ(k̄)σ1 = ψ(k) for λ = 1, (2.16 a)

σ2ψ(k̄)σ2 = ψ(k) for λ = −1. (2.16 b)

Particularly, it follows from (2.16) that the spectral matrices s(k) and S(k) can be written
as

s(k) =

(
a(k̄) b(k)

λb(k̄) a(k)

)
, S(k) =

(
A(k̄) B(k)

λB(k̄) A(k)

)
. (2.17)

2.4. Global relation

The initial and boundary values of a solution of the mKdV equation (taken as the
traces of q, qx and qxx at x = 0) are not independent. It turns out that the relations
between the initial and boundary values of the solution can be expressed in a surprisingly
simple form in terms of the corresponding spectral functions.

Evaluating (2.9 a) at x = 0, t = T , we find

µ3(0, T, k) = µ2(0, T, k)e−4ik3T σ̂3µ3(0, 0, k). (2.18)

Writing µ3(0, 0, k), µ2(0, T, k) in terms of s(k), S(k) (see (2.10)) and using (2.8 c) to
evaluate µ3(0, T, k), equation (2.18) becomes

−I + S−1(k; T )s(k) + e4ik3T σ̂3

∫ ∞

0
e−ikyσ̂3(Qµ3)(y, T, k) dy = 0. (2.19)

The (1, 2) coefficient of this equation is

a(k)B(k) − A(k)b(k) = e8ik3T c+(k), Im k � 0, (2.20)

for T < ∞, where

c+(k) = c+(k; T ) =
∫ ∞

0
e−2iky(Qµ3)12(y, T, k) dy

is a function analytic for Im k < 0 which is O(1/k) as k → ∞.
In the case T = ∞, equation (2.19) becomes

a(k)B(k) − A(k)b(k) = 0, k ∈ V. (2.21)

Equations (2.20) and (2.21) are algebraic relations between the spectral functions; we
call them the global relations, because they express, in the spectral terms, the relations
between the initial and boundary values of a solution of the mKdV equation.
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2.5. Properties of spectral functions

The spectral map
S : {q0(x)} �→ {a(k), b(k)} (2.22)

is defined following (2.10 a), (2.17), by the second column of the solution µ3(x, 0, k) of
equation (2.12 c), where Q = Q(x, 0) is determined by (2.3 a) with q(x, t) replaced by
q0(x). Thus this map is the same as in the inverse-scattering theory on the whole line for
the Dirac equation

ψx − ikσ3ψ =

(
0 q0(x)

λq0(x) 0

)
ψ

restricted to the potentials with support on the half-line. The analysis of the linear
Volterra integral equation (2.12 c) gives the following properties of a(k) and b(k):

• a(k) and b(k) are analytic and bounded for Im k < 0;

• a(k) = 1 + O(1/k), b(k) = O(1/k), k → ∞.

The fact that Q is traceless, together with the behaviour as k → ∞ given above, imply
that det s(k) = 1, which, in terms of a(k) and b(k), reads

• |a(k)|2 − λ|b(k)|2 = 1, k ∈ R.

The symmetry relation (2.15) yields

• a(−k) = a(k̄), b(−k) = b(k̄).

The inverse map Q : {a(k), b(k)} �→ {q0(x)} is again the same as in the inverse-
scattering theory on the whole line; it is defined as

q0(x) = −2i lim
k→∞

k(M (x)(x, k))12, (2.23)

where M (x)(x, k) is the solution of the following RH problem.

• M (x)(x, k) is a sectionally meromorphic function relative to the real axis in the
complex k-plane.

• The limits M
(x)
± (x, ζ) of M (x)(x, k) as k approaches the real axis, k = ζ ∓ i0, are

related by the jump matrix J (x)(x, ζ),

M
(x)
− (x, ζ) = M

(x)
+ (x, ζ)J (x)(x, ζ), ζ ∈ R, (2.24)

where

J (x)(x, k) =

⎡
⎢⎢⎣

1 − b(k)
ā(k)

e2ikx

λ
b̄(k)
a(k)

e−2ikx 1 − λ

∣∣∣∣ b(k)
ā(k)

∣∣∣∣
2

⎤
⎥⎥⎦ , k ∈ R. (2.25)

• M (x)(x, k) = I + O(1/k), k → ∞.
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• We assume that if λ = −1, a(k) can have n simple zeros {kj}n
1 , n = n1 + 2n2,

where {kj}n1
1 ∈ V, {kj}n1+n2

n1+1 ∈ IV, kn1+n2+j = −k̄n1+j ∈ VI, j = 1, . . . , n2.

• If λ = −1, the first column of M (x)(x, k) can have simple poles at k = kj ,
j = 1, . . . , n and the second column of M (x)(x, k) can have simple poles k = k̄j ,
j = 1, . . . , n, where {kj}n

1 are the simple zeros of a(k), Im k < 0. The associated
residues are given by

Reskj [M
(x)(x, k)](1) =

e−2ikjx

ȧ(kj)b(kj)
[M (x)(x, kj)](2), (2.26 a)

Resk̄j
[M (x)(x, k)](2) =

λe2ik̄jx

ȧ(kj)b(kj)
[M (x)(x, k̄j)](1). (2.26 b)

Apart from the symmetry −k �→ k̄, the properties of the spectral map S and its inverse
are identical to those described in [9], where the reader can find the details.

The spectral map
S̃ : {g0(t), g1(t), g2(t)} �→ {A(k), B(k)} (2.27)

is defined following (2.10 b), (2.17), by the second column of the solution µ2(0, t, k) of
equation (2.12 b), where Q̃ = Q̃(0, t, k) is determined by (2.3 b) with q, qx and qxx replaced
by g0(t), g1(t) and g2(t), respectively,(

−e−8ik3T B(k)

A(k̄)

)
= µ

(2)
2 (0, T, k). (2.28)

The symmetry relation (2.15) gives

• A(−k) = A(k̄), B(−k) = B(k̄).

From the Volterra integral equations (2.12 b) and (2.12 a), it follows that

• if T < ∞, A(k) and B(k) are entire functions bounded in I ∪ III ∪ V; if T = ∞,
A(k) and B(k) are defined only in I ∪ III ∪ V being analytic and bounded there.

To analyse the large-k behaviour of A(k) and B(k), one cannot use directly the Volterra
equations (2.12 b) or (2.12 a), because Q̃ contains terms of order k2 and k. Instead, one
can proceed as follows. First, we determine a polynomial (in k−1) matrix-valued function
m̃(t, k) that solves (2.4 b) approximately,

m̃(t, k) := I +
m̃1(t)

k
+

m̃2(t)
k2 +

m̃3(t)
k3 , (2.29)

such that
4ik3[σ3, m̃(t, k)] = Q̃(t, k)m̃(t, k) + R(t, k), (2.30)

where R(t, k) = O(1/k) as k → ∞.
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Substituting m̃(t, k) in the form of (2.29) into (2.30) shows that (2.30) can be satisfied
by

m̃1 = 1
2 iq

(
0 1

−λ 0

)
, (2.31 a)

m̃2 = 1
4qx

(
0 1
λ 0

)
, (2.31 b)

m̃3 = − 1
8 (2iq3 + iqxx)

(
0 1

−λ 0

)
. (2.31 c)

Notice that the existence of the approximate polynomial solution (2.29) is provided by
the special structure of the matrix Q̃ (cf. [14]).

Then, for φ(t, k) := m̃−1(t, k)µ2(0, t, k), one has the differential equation

φ′
t + 4ik3[σ3, φ(t, k)] = R1(t, k)φ(t, k), (2.32)

where R1(t, k) = −m̃−1(t, k)R(t, k) = O(1/k). The solution of (2.32) is given by the
solution of the Volterra equation

φ(t, k) = e−4ik3tσ̂3m̃−1(0, k) +
∫ t

0
e−4ik3(t−τ)σ̂3(R1φ)(τ, k) dτ. (2.33)

Now the asymptotics of φ can be obtained from (2.33); particularly, one has

φ(1)(t, k) =

(
1
0

)
+ O

(
1
k

)
for k ∈ I ∪ III ∪ V, (2.34 a)

φ(2)(t, k) =

(
0
1

)
+ O

(
1
k

)
for k ∈ II ∪ IV ∪ VI. (2.34 b)

To study the behaviour of the columns of φ(t, k) in domains where they are not
bounded, one can consider the Volterra equation for φ̃(t, k) := φ(t, k)e−8ik3tσ3 ,

φ̃(t, k) = e−4ik3tσ3m̃−1(0, k)e−4ik3tσ3 +
∫ t

0
e−4ik3(t−τ)σ3(R1φ̃)(τ, k)e−4ik3(t−τ)σ3 dτ,

(2.35)

which gives

φ̃(1)(t, k) =

(
e−8ik3t

0

)
+ O

(
1
k

)
for k ∈ II ∪ IV ∪ VI, (2.36 a)

φ̃(2)(t, k) =

(
0

e8ik3t

)
+ O

(
1
k

)
for k ∈ I ∪ III ∪ V. (2.36 b)
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Finally, from (2.34) and (2.36), one obtains

φ(1)(t, k) =

(
1
0

)
+ O

(
1
k

)
+ O

(
e8ik3t

k

)
, (2.37 a)

φ(2)(t, k) =

(
0
1

)
+ O

(
1
k

)
+ O

(
e−8ik3t

k

)
, (2.37 b)

which implies

A(k) = 1 + O

(
1
k

)
+ O

(
e8ik3T

k

)
, (2.38 a)

B(k) = O

(
1
k

)
+ O

(
e8ik3T

k

)
, k → ∞. (2.38 b)

Now the fact that Q̃ is traceless and the asymptotics (2.38) imply

A(k)A(k̄) − λB(k)B(k̄) = 1, k ∈ C (and Im k3 = 0 if T = ∞). (2.39)

The map
Q̃ : {A(k), B(k)} �→ {g0(t), g1(t), g2(t)}

inverse to S̃ is defined via the solution of an appropriate RH problem as follows (the
details are similar to those in the case of the NLS equation (see [9])),

g0(t) = −2i(M (t)
1 )12(t), (2.40 a)

g1(t) = 4(M (t)
2 )12(t) − 2ig0(t)(M

(t)
1 )22(t), (2.40 b)

g2(t) = λg3
0(t) + 8i(M (t)

3 )12(t) + 4g0(t)(M
(t)
2 )22(t) − 2ig1(t)(M

(t)
1 )22(t), (2.40 c)

where

M (t)(t, k) = I +
M

(t)
1 (t)
k

+
M

(t)
2 (t)
k2 +

M
(t)
3 (t)
k3 + O

(
1
k4

)
, k → ∞,

with M (t)(t, k) the solution of the following RH problem.

• M (t)(t, k) is a sectionally meromorphic function relative to the lines Im k3 = 0 in
the complex k-plane.

• Let Ω+ = I∪III∪V, Ω− = II∪IV∪VI. Denote by M
(t)
± (t, ζ) the limits of M (t)(t, k)

as k approaches {ζ | ζ3 = 0} from Ω±. Then

M
(t)
− (t, ζ) = M

(t)
+ (t, ζ)J (t)(t, ζ), Im ζ3 = 0, (2.41)

where

J (t)(t, k) =

⎛
⎜⎜⎜⎝

1 −B(k)

A(k̄)
e−8ik3t

λB(k̄)
A(k)

e8ik3t 1

A(k)A(k̄)

⎞
⎟⎟⎟⎠ . (2.42)
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Figure 2. Domains Ω+ and Ω−.

• M (t)(t, k) = I + O(1/k), k → ∞.

• We assume that A(k) can have N simple zeros K1, . . . , KN , Kj ∈ I ∪ III ∪ V. The
first column of M (t)(t, k) has simple poles at k = Kj , and the second column of
M (t)(t, k) has simple poles at k = K̄j . The associated residues are given by

ResKj [M
(t)(t, k)](1) =

e8iK3
j t

Ȧ(Kj)B(Kj)
[M (t)(t, Kj)](2), (2.43 a)

ResK̄j
[M (t)(t, k)](2) =

λe−8iK3
j t

Ȧ(Kj)B(Kj)
[M (t)(t, K̄j)](1). (2.43 b)

3. The RH problem

Relating the vector solutions of (2.4) (analytic in domains I, . . . ,VI) by using (2.9) and
the definitions of the spectral functions (2.11), we find

M−(x, t, k) = M+(x, t, k)J(x, t, k), Im k3 = 0, (3.1)
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where M±(x, t, k) are the limit values (as k approaches {k | Im k3 = 0} from Ω±) of a
sectionally meromorphic function M(x, t, k) defined as follows,

M =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
µ

(1)
3 ,

µ
(2)
1

d(k̄)

)
, k ∈ I ∪ III,

(
µ

(1)
3 ,

µ
(2)
2

a(k̄)

)
, k ∈ II,

(
µ

(1)
1

d(k)
, µ

(2)
3

)
, k ∈ IV ∪ VI,

(
µ

(1)
2

a(k)
, µ

(2)
3

)
, k ∈ V,

(3.2)

where

d(k) = a(k)A(k̄) − λb(k)B(k̄), k ∈ IV ∪ VI, (3.3)

and

J =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 −λΓ (k̄)e−2iθ

0 1

)
, arg k = 1

3π, 2
3π,

(
1 0

Γ (k)e2iθ 1

)
, arg k = 4

3π, 5
3π,

(
1 −λΓ (k̄)e−2iθ

0 1

)

×
(

1 − λ|γ(k)|2 γ(k)e−2iθ

−λγ̄(k)e2iθ 1

) (
1 0

Γ (k)e2iθ 1

)
, arg k = 0, π,

(3.4)

with

γ(k) =
b(k)
ā(k)

, k ∈ R,

Γ (k) =
λB(k̄)

a(k)d(k)
, arg k = 0, π, 4

3π, 5
3π,

θ(x, t, k) = −kx + 4k3t.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.5)

Γ (k) is, in general, a meromorphic function in IV and VI.
The matrix function M±(x, t, k) defined by (3.2) is, in general, a sectionally meromor-

phic function of k, with possible poles at the zeros of a(k), d(k) and at the complex
conjugates of these zeros. We have assumed that

• a(k) can have n = n1 + 2n2 simple zeros in {k | Im k < 0}: {kj}n1
1 ∈ V,

{kj}n1+n2
n1+1 ∈ IV, kn1+n2+j = −k̄n1+j ∈ VI, j = 1, . . . , n2.
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We also assume that

• d(k) can have Λ = 2Λ1 simple zeros: {λj}Λ1
1 ∈ IV, λΛ1+j = −λ̄j ∈ VI, j = 1, . . . , Λ1;

• none of the zeros of a(k) in IV ∪ VI coincide with a zero of d(k).

The associated residue formulae are the following:

Reskj [M(x, t, k)](1) =
e2iθ(kj)

ȧ(kj)b(kj)
[M(x, t, kj)](2), j = 1, . . . , n1, (3.6 a)

Resk̄j
[M(x, t, k)](2) =

λe−2iθ(k̄j)

ȧ(kj)b(kj)
[M(x, t, k̄j)](1), j = 1, . . . , n1, (3.6 b)

and

Resλj [M(x, t, k)](1) =
λB(λ̄j)e2iθ(λj)

ḋ(λj)a(λj)
[M(x, t, λj)](2), j = 1, . . . , Λ, (3.7 a)

Resλ̄j
[M(x, t, k)](2) =

B(λ̄j)e−2iθ(λ̄j)

ḋ(λj)a(λj)
[M(x, t, λ̄j)](1), j = 1, . . . , Λ. (3.7 b)

Note that the only zeros of a(k), which generate poles of M , are those in V.
The main result on the inverse spectral problem is the following.

Theorem 3.1. Let q0(x) ∈ S(R+). Suppose that the set {g0(t), g1(t), g2(t)} of smooth
functions is such that the associated spectral functions s(k) and S(k) satisfy the global
relation (2.20) for T < ∞ and (2.21) for T = ∞ (in this case, it is assumed that g0(t),
g1(t), g2(t) belong to S(R+)), where c+(k) is analytic in {k ∈ C | Im k < 0}. Assume
that the following hold.

• If λ = −1, then a(k) has at most n = n1 + 2n2 simple zeros in {k | Im k < 0}:

{kj}n1
j=1 ∈ V, {kj}n1+n2

j=n1+1 ∈ IV, kn1+n2+j = −k̄n1+j ∈ VI, j = 1, . . . , n2.

• If λ = −1, the function d(k) has at most Λ = 2Λ1 simple zeros:

λj ∈ IV, λΛ1+j = −λ̄j ∈ VI, j = 1, . . . , Λ1.

If λ = 1, the function d(k) has no zeros in IV ∪ VI.

• None of the zeros of a(k) in IV ∪ VI coincides with a zero of d(k).

Let M(x, t, k) be a solution of the following 2 × 2 matrix RH problem.

• M is sectionally meromorphic in k ∈ C \ {k | Im k3 = 0}.

• The first column of M has simple poles at kj , j = 1, . . . , n1 and at λj , j = 1, . . . , Λ.
The associated residues satisfy (3.6) and (3.7).
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• At {k | Im k3 = 0}, M satisfies the jump conditions (3.1), where the jump matrix
J is defined in terms of the spectral functions a, b, A and B by (3.4) and (3.5).

• As k → ∞,

M(x, t, k) = I + O

(
1
k

)
. (3.8)

Then we have the following.

(1) M(x, t, k) exists and is unique.

(2) q(x, t) defined in terms of M(x, t, k) by

q(x, t) = −2i lim
k→∞

(kM(x, t, k))12 (3.9)

satisfies the mKdV equation (2.1).

(3) q(x, t) satisfies the initial and boundary conditions

q(x, 0) = q0(x),

q(0, t) = g0(t), qx(0, t) = g1(t), qxx(0, t) = g2(t).

Proof. The proof follows the same lines as in the case of the NLS equation (see [9]), so
here we just describe the main steps.

If λ = 1, the RH problem is ‘regular’ (a(k) �= 0 because, in this case, the x-differential
operation in (2.2 a) is self-adjoint and d(k) �= 0 by assumption; so M is sectionally
holomorphic). Its unique solvability is a consequence of a ‘vanishing lemma’ for the
associated RH problem with the vanishing condition at infinity M = O(1/k), k → ∞
(see [13]). If λ = −1, the ‘singular’ RH problem (with poles at zeros of a(k) and d(k))
can be mapped to a ‘regular’ RH problem coupled with a system of algebraic equations
uniquely solvable due to the symmetry properties of J (see [8]).

The proof that the constructed q(x, t) solves the mKdV equation is straightforward
and follows the proof in the case of a whole-line problem (see [11,12]).

The proof that q satisfies the initial condition q(x, 0) = q0(x) follows from the fact
that it is possible to map the RH problem for M(x, 0, k) to that for M (x)(x, k); namely,
M (x)(x, k), Im k < 0 is the analytic continuation of M(x, 0, k) from II and V into
{k | Im k < 0} and {k | Im k > 0}, respectively, because J(x, 0, k) is, in fact, analytic
and bounded in I ∪ III and IV ∪ VI. In this way, the jump conditions and the residue
relations for M(x, 0, k) are mapped to those for M (x)(x, k).

The proof that q satisfies the boundary conditions q(0, t) = g0(t), qx(0, t) = g1(t),
qxx(0, t) = g2(t) is, in turn, based on the map M(0, t, k) �→ M (t)(t, k). In this case, the
fact that the factors relating M(0, t, k) and M (t)(t, k) in the different sections I, . . . ,VI
are analytic and bounded, is a consequence of the global relation. For instance, in the
domain V,

M (t)(t, k) = M(0, t, k)

(
a/A (aB − Ab)e−8ik3t

0 A/a

)
,
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and it is the global relation (2.20) that provides the boundedness of (aB −Ab)e−8ik3t for
t � T , k ∈ V.

Since the solution of the mKdV equation for 0 < t < T depends only on the boundary
data taken for 0 < t < T , the RH problems corresponding to T and T ∗, T ∗ < T must be
related for 0 < t < T ∗. �

Theorem 3.2. Let A∗(k), B∗(k) be defined by (2.28), with T replaced by T ∗ < T ,
J∗(x, t, k) denote the corresponding jump matrix of the RH problem constructed as
in (3.4), with A(k), B(k) replaced by A∗(k), B∗(k). Let M∗(x, t, k) be the solution of
this RH problem. Then, for 0 < t < T ∗, the solutions of the corresponding RH problems,
M and M∗, are related as follows,

M(x, t, k) = M∗(x, t, k) for k ∈ II ∪ V, (3.10 a)

M(x, t, k) = M∗(x, t, k)(J∗(x, t, k)J−1(x, t, k)) for k ∈ I ∪ III ∪ IV ∪ VI, (3.10 b)

where J∗J−1 for k ∈ I ∪ III and k ∈ IV ∪ VI are the analytic continuations of J∗J−1

from arg k = 1
3π, 2

3π and arg k = 4
3π, 5

3π, respectively.

Proof. In the solitonless case, the only fact to be proved is the boundedness and the
asymptotic behaviour I + O(1/k) of J∗J−1 in the respective domains. In I ∪ III, one has

J∗(x, t, k)J−1(x, t, k) =

(
1 λ(Γ (k̄) − Γ ∗(k̄))e−2iθ(x,t,k)

0 1

)
, (3.11)

where Γ ∗ is given as in (3.5), with A(k), B(k) replaced by A∗(k), B∗(k). The (1, 2) entry
can be written as

λ(Γ (k̄) − Γ ∗(k̄))e−2iθ =
B(k)A∗(k) − B∗(k)A(k)

d(k̄)d∗(k̄)
e2ikxe−8ik3t. (3.12)

Lemma 3.3. For k ∈ I ∪ III, B(k)A∗(k) − B∗(k)A(k) = O(e8ik3T ∗
/k).

Proof. Note first that B(k)A∗(k) − B∗(k)A(k) is the (1, 2) entry of the matrix product
S−1(k; T )S(k; T ∗), which, in view of (2.10 b), can be written as follows:

S−1(k; T )S(k; T ∗) = e4ik3Tσ3µ2(0, T, k)e4ik3(T ∗−T )σ3(µ2(0, T ∗, k))−1e−4ik3T ∗σ3 . (3.13)

The solution µ2(0, t, k) of (2.4 b) for x = 0 can be expressed as

µ2(0, t, k) = M(t, T, k)e−4ik3(t−T )σ̂3µ2(0, T, k), (3.14)

where M(t, T, k) is the solution of (2.4 b) (x = 0) with respect to t satisfying the initial
condition M(T, T, k) = I. Substituting

µ2(0, T ∗, k) = M(T ∗, T, k)e−4ik3(T ∗−T )σ̂3µ2(0, T, k)
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into (3.13) gives

S−1(k; T )S(k; T ∗) = e4ik3T ∗σ3M−1(T ∗, T, k)e−4ik3T ∗σ3 . (3.15)

Taking into account that

e4ik3(T ∗−T )σ3M−1(T ∗, T, k) = M(T, T ∗, k)e4ik3(T ∗−T )σ3 ,

one finally gets

S−1(k; T )S(k; T ∗) = e4ik3Tσ3M(T, T ∗, k)e−4ik3Tσ3 . (3.16)

The same reasoning as the one used in obtaining the estimates (2.37), yields

M12(T, T ∗, k) = O

(
e−8ik3(T−T ∗)

k

)
, (3.17)

which, together with (3.16), proves the lemma. �

Finally, assuming the solitonless case, the desired behaviour of J∗J−1 for k ∈ I ∪ III
follows from the lemma and the fact that d(k̄)d∗(k̄) = I + O(1/k), e2ikx and e8ik3(T ∗−t)

are bounded (for x > 0, 0 < t < T ∗). In the soliton case, one can directly verify that the
above map transforms correctly the residue conditions.

The analogous facts for k ∈ IV ∪ VI follows from symmetry consideration. �

4. Linearizable boundary conditions

Since

Γ (k) = λ
B(k̄)

a(k)d(k)
= λ

(B(k̄)/A(k̄))

a(k)(a(k) − λb(k)(B(k̄)/A(k̄)))
, (4.1)

the jump data for the RH problem (3.1) are, in general, determined by

(1) γ(k) = b(k)/a(k̄), k ∈ R;

(2) a(k) and b(k), arg k = 4
3π, 5

3π;

(3)
B(k)
A(k)

, arg k = 1
3 lπ, l = 0, 1, 2, 3.

The spectral functions a(k) and b(k), Im k � 0 are determined by the initial data q0(x),
x > 0, whereas A(k) and B(k) are determined by the boundary values g0(t), g1(t) and
g2(t). These functions cannot be given as three independent boundary conditions for the
mKdV equation; they are related, in the spectral domain, by the global relation. The
analysis of the algebraic global relation shows that a proper subset of g0(t), g1(t) and
g2(t), characterizes the unknown part of the boundary conditions via the solution of
nonlinear Volterra integral equation (see [7,9]).
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There exists a class of boundary conditions for which, due to an additional symmetry,
one can compute explicitly all spectral data necessary to construct the RH problem from
the initial data. To describe this class, we will follow the approach proposed in [7,9].

Suppose that the coefficient matrix V (t, k) = Q̃(0, t, k) − 4ik3σ3, appearing in the sec-
ond equation of the Lax pair (2.2 a), ψ′

t = V ψ, satisfies the symmetry relation

V (t, ν(k)) = N(k)V (t, k)N−1(k), (4.2)

where N(k) is a t-independent non-singular matrix-valued function of k. Then

ψ2(0, T, ν(k)) = N(k)ψ2(0, T, k)N−1(k), (4.3)

where

ψ2(0, T, k) = µ2(0, T, k)e−4ik3Tσ3 .

Hence, in view of the definition of S(k) (2.10 b),

S(ν(k)) = N(k)S(k)e4ik3Tσ3N−1(k)e−4iν3(k)Tσ3 . (4.4)

This equation implies that it is possible to calculate S(k) in a particular domain of the
complex k-plane from the values of S(k) in another domain.

A necessary condition for the existence of N is det V (t, ν(k)) = detV (t, k). Since

det V (t, k) = 2(8k6 − 2k2{3q4(0, t) − 2λq(0, t)qxx(0, t) + λq2
x(0, t)} − λ(2λq3 − qxx)2)

and since a non-trivial choice of ν(k) is

ν(k) = ωk or ν(k) = ω2k with ω = 2
3πi,

it follows that a necessary condition is the following relation between q(0, t), qx(0, t) and
qxx(0, t):

3q4(0, t) − 2λq(0, t)qxx(0, t) + λq2
x(0, t) = 0. (4.5)

To satisfy (4.5), on one hand, and to ensure that N(k) is t independent, on the other
hand, we set

q(0, t) = 0, qx(0, t) = 0. (4.6)

This implies N(k) ≡ I and, consequently, S(ωk) = S(ω2k) = S(k). In terms of A(k) and
B(k),

A(ωk) = A(ω2k) = A(k), B(ωk) = B(ω2k) = B(k), k ∈ I ∪ III ∪ V. (4.7)

This means, in particular, that if B(k)/A(k) is known for k ∈ V, then B(k)/A(k) is also
known for k ∈ I ∪ III.

In the case T = ∞, the global relation (2.21) implies

B(k)
A(k)

=
b(k)
a(k)

, k ∈ V, (4.8)
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which, together with (4.7), yields Γ (k) entirely in terms of a(k) and b(k),

Γ (k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ
b(ωk̄)

a(k)∆(k, ω)
, arg k = π, 4

3π,

λ
b(ω2k̄)

a(k)∆(k, ω2)
, arg k = 0, 5

3π,

(4.9)

where
∆(k, ω) = a(k)a(ωk̄) − λb(k)b(ωk̄). (4.10)

Now we will show that in the case T < ∞, one can also use (4.8) and (4.7) to determine
B(k)/A(k). To do this, we proceed as in the proof of Theorem 3.2. Namely, we will show
that the RH problems determined by B(k)/A(k) = b(k)/a(k), on one hand, and by the
ratio B(k; T )/A(k; T ) corresponding to some T < ∞, are equivalent, in the sense that
their solutions give the same solution of the mKdV equation for t < T . Similarly to (3.11),
one has to show that for k ∈ I∪III, (Γ (k̄; T ) − Γ (k̄)) exp{−2iθ} is bounded and is O(1/k)
as k → ∞; here, Γ (k; T ) is defined as in (3.5), with B(k) and A(k) replaced by B(k; T )
and A(k; T ), respectively. One has (cf. (3.12))

λ(Γ (k̄; T ) − Γ (k̄)) =
A(k; T )A(k)
d(k; T )d(k)

(
B(k; T )
A(k; T )

− B(k)
A(k)

)
. (4.11)

The global relation (2.20) implies that, for {k | Im k < 0} (particularly, for k ∈ V),

B(k; T )
A(k; T )

=
b(k)
a(k)

− c+(k; T )e8ik3T

a(k)A(k; T )
. (4.12)

Therefore, (
B(k; T )
A(k; T )

− B(k)
A(k)

)
e−8ik3t = O

(
1
k

)
e8ik3(T−t), k ∈ V. (4.13)

The symmetry relations

B(ωk; T )
A(ωk; T )

=
B(ω2k; T )
A(ω2k; T )

=
B(k; T )
A(k; T )

,

together with the analogous relations for B(k)/A(k), yield (4.13) for k ∈ I ∪ III, which,
in turn, implies

λ(Γ (k̄; T ) − Γ (k̄))e−2iθ(x,t,k) = O

(
1
k

)
, k ∈ I ∪ III, 0 < t < T.

Consider now the residue conditions (3.6), (3.7). If a(ωk̄) �= 0 for k ∈ IV (which, due to
the global relation, implies A(ωk̄) �= 0), then (cf. (4.9))

d(k) =
A(ωk̄)

a(ωk̄)
∆(k, ω). (4.14)
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If a(ωk̄) = 0, formula (4.14) must be replaced by

d(k) =
(d/dk)A(ωk̄)

(d/dk)a(ωk̄)
∆(k, ω). (4.15)

Therefore, the zero sets of d(k) and ∆(k, ω) coincide in IV. Expressing ḋ(k) at a zero of
d(k) via ∆̇(k, ω) by using (4.14) or (4.15) gives the following modification of the residue
conditions (3.7). For λj ∈ IV,

Resλj
[M(x, t, k)](1) =

λb(ωλ̄j)e2iθ(λj)

∆̇(λj , ω)a(λj)
[M(x, t, λj)](2), j = 1, . . . , Λ1. (4.16)

Similarly, for λj ∈ VI,

Resλj
[M(x, t, k)](1) =

λb(ω2λ̄j)e2iθ(λj)

∆̇(λj , ω2)a(λj)
[M(x, t, λj)](2), j = Λ1 + 1, . . . , 2Λ1. (4.17)

Consequently, the residue conditions in III take the form, for λ̄j ∈ III,

Resλ̄j
[M(x, t, k)](2) =

b(ωλ̄j)e−2iθ(λ̄j)

∆̇(λj , ω)a(λj)
[M(x, t, λ̄j)](1), j = 1, . . . , Λ1. (4.18)

Similarly, in I, for λ̄j ∈ I,

Resλ̄j
[M(x, t, k)](2) =

b(ω2λ̄j)e−2iθ(λ̄j)

∆̇(λj , ω2)a(λj)
[M(x, t, λ̄j)](1), j = Λ1 + 1, . . . , 2Λ1. (4.19)

Theorem 4.1. Let q(x, t), x > 0, t > 0 satisfy the mKdV equation (2.1), the initial
condition

q(x, 0) = q0(x) ∈ S(R+), 0 < x < ∞,

with q0(0) = q′
0(0) = 0, and the boundary conditions

q(0, t) = 0, qx(0, t) = 0, t > 0.

Furthermore, if λ = −1, assume that

• a(k) defined in (2.22) has a finite number of simple zeros for Im k < 0;

• ∆(k, ω) defined by (3.3) has a finite number of simple zeros in IV, none of which
coincide with the possible zeros of a(k).

Then the solution q(x, t) can be constructed via (3.9), where M satisfies the RH prob-
lem (3.1). This RH problem involves Γ (k), which is given by (4.9); the residue conditions
are given by (3.6) and (4.16)–(4.19).

Remark 4.2. The initial boundary-value problem for the mKdV equation with the
boundary conditions (4.6) has been considered in [10] under the assumption that there
exist no discrete eigenvalues.
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Remark 4.3. The boundary conditions

q(0, t) = C0, qx(0, t) = C1, qxx(0, t) = C2,

where C0, C1 and C2 are constants related by

3C4
0 − 2C0C2 + C2

1 = 0,

are also linearizable (see (4.5)) in the sense that, assuming that the solution of the
corresponding initial boundary problem for the mKdV equation exists, this solution can
be constructed via an RH problem whose jump matrix can be given explicitly in terms
of a(k) and b(k). However, in the case of the boundary conditions

q(0, t) = 0, qx(0, t) = 0, t > 0,

one can prove the following stronger version of Theorem 4.1.

Theorem 4.4. Consider the mKdV equation (2.1) with the initial condition

q(x, 0) = q0(x) ∈ S(R+), 0 < x < ∞,

with q0(0) = q′
0(0) = 0, and the boundary conditions

q(0, t) = 0, qx(0, t) = 0, t > 0.

Furthermore, assume the following.

(1) If λ = −1,

• a(k) defined in (2.22) has a finite number of simple zeros for Im k < 0;

• ∆(k, ω) defined by (3.3) has a finite number of simple zeros in IV, none of
which coincide with the possible zeros of a(k).

(2) If λ = 1,
|a(k)|2 − |b(k)|2 > 0, arg k = 4

3π, 5
3π.

Then this initial boundary-value problem has a unique solution such that q(x, t) → 0 as
x → ∞, which can be constructed via (3.9), where M satisfies the RH problem (3.1).
This RH problem involves Γ (k), which is given by (4.9); the residue conditions are given
by (3.6) and (4.16)–(4.19).

Proof. In view of Theorems 3.1 and 4.1, it is sufficient to show that given a(k) and b(k),
one can construct A(k) and B(k) satisfying the global relation (2.21). Equivalently, one
has to construct the function f(k) holomorphic and having no zeros for k ∈ V, such that

A(k) =
a(k)
f(k)

, B(k) =
b(k)
f(k)

, k ∈ V.
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Due to the global relation,

d(k) =
a(k)
A(k)

, arg k = 4
3π, 5

3π,

where d(k) is defined by (3.3). Thus the function f(k) := a(k)/A(k), k ∈ V, can be
analytically continued to the half-plane Im k < 0 as f(k) := d(k) for k ∈ IV ∪ VI.

For arg k = 4
3π, equation (4.14) gives

∆(k, ω) = d(k)
a(ωk̄)

A(ωk̄)
= f(k)

a(k)
A(k)

= |f(k)|2, (4.20)

or, in terms of a and b,

|f(k)|2 = |a(k)|2 − λ|b(k)|2, arg k = 4
3π.

Analogously, for arg k = 5
3π, one has

∆(k, ω2) = |f(k)|2. (4.21)

On the other hand, for arg k = π, equation (4.14) gives

|∆(k, ω)| = |f(k)| × |f(ωk)| = |f(k)| × |∆(ωk, ω2)|1/2, (4.22)

where the last equality follows from (4.21). Therefore, we can express |f(k)| for arg k = π,
in terms of a(k) and b(k), Im k � 0,

|f(k)| =
|∆(k, ω)|

|∆(ωk, ω2)|1/2 =
|a(k)a(ωk) − λb(k)b(ωk)|
(|a(ωk)|2 − λ|b(ωk)|2)1/2 , k � 0. (4.23)

In a similar way, for arg k = 0, one has

|∆(k, ω2)| = |f(k)| × |f(ω2k)| = |f(k)| × |∆(ω2k, ω)|1/2, (4.24)

so that

|f(k)| =
|∆(k, ω2)|

|∆(ω2k, ω)|1/2 =
|a(k)a(ω2k) − λb(k)b(ω2k)|
(|a(ω2k)|2 − λ|b(ω2k)|2)1/2 , k � 0. (4.25)

Equations (4.23) and (4.25) give the values of |f(k)| for Im k = 0. Since the zeros of f(k)
coincide with the zeros of d(k) in IV and VI (which, in turn, are the zeros of ∆(k, ω) and
∆(k, ω2)), f(k) is uniquely determined for Im k < 0 as follows:

f(k) =
∏
j

k − λj

k − λ̄j
exp

{
− 1

πi

∫ ∞

−∞

ln |f(µ)|
µ − k

dµ

}

=
Λ1∏
j=1

(k − λj)(k + λ̄j)
(k − λ̄j)(k + λj)

exp
{

− k

πi

∫ ∞

0

2 ln |∆(k, ω2)| − ln ∆(ω2k, ω)
µ2 − k2 dµ

}
.

�
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5. Long-time asymptotics: solitons

The formalism of the RH problem with T = ∞ is well suited for the study of the large-
time behaviour of the solution. Since the jump matrix J(x, t, k) depends explicitly on x

and t,
J(x, t, k) = e(ikx−4ik3t)σ3J(0, 0, k)e−(ikx−4ik3t)σ3 ,

it is possible to apply the nonlinear steepest descent method of [1,3] to study the large-t
behaviour of the oscillatory RH problem (3.1). This method has been applied for the
analogous problem on the line in [1].

In the case of the half-line, by using a rational approximation of Γ (k), we first deform
the RH problem (3.1) to an approximate RH problem formulated on the line Im k = 0
only. Then one can directly apply the nonlinear steepest descent method of [1].

Assuming Γ (k) to be rational, we define M̃(x, t, k) as follows:

M̃ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

M, k ∈ I ∪ III ∪ IV ∪ VI,

M

(
1 λΓ (k̄)e−2iθ

0 1

)
, k ∈ II,

M

(
1 0

−Γ (k)e2iθ 1

)
, k ∈ V.

(5.1)

Then, in view of (3.1) and (3.4), M̃ is analytic in Im k > 0 and Im k < 0 and satisfies
the jump condition

M̃−(x, t, k) = M̃+(x, t, k)J(x, t, k), Im k = 0, (5.2)

where J(x, t, k) is the same as in (3.4) for Im k = 0. Now the asymptotics of M̃ (and,
therefore, of q(x, t)) can be obtained following [1] as in the case of the whole-line problem.

In the regular case (N = 0), one has

M(x, t, k) = (I + O(t−1/2))

(
δ(k) 0
0 δ−1(k)

)
, t → ∞, (5.3)

uniformly for |Im k| � ε > 0, 0 < β− � x/t � β+ < ∞, where δ(k) is analytic in
C \ {(−∞, k0] ∪ [k0,∞)} and satisfies

δ−(k) = δ+(k)(1 + |γ(k) − λΓ (k̄)|2),
δ±(k) = δ(k ± i0), k ∈ (−∞, k0) ∪ (k0,∞).

}
(5.4)

The solution of (5.4) is

δ(k) = exp
{

− 1
2πi

(∫ −k0

−∞
+

∫ ∞

k0

)
ln(1 + |γ(k′) − λΓ (k′)|2)

k′ − k
dk′

}
. (5.5)
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In the singular case (λ = −1, N �= 0), the dressing method (see, for example, [8]) gives

q(x, t) = qN (x, t) + O(t−1/2), t → ∞,

0 < β− � x/t � β+ < ∞,

}
(5.6)

where qN (x, t) is the pure N -soliton solution of the mKdV equation, with parameters
{kj}N

1 and cjδ
−2(kj), and the cj are the coefficients in the residue relations

Reskj [M(x, t, k)](1) = cj [M(x, t, kj)](2).

Therefore, we arrive at the following result.

Theorem 5.1. Suppose that the conditions of Theorem 3.1 are satisfied. Denote

k̃2l−1 = λl, l = 1, . . . , Λ1,

k̃2l = λΛ1+l, l = 1, . . . , Λ1,

k̃2Λ1+j = kj , j = 1, . . . , n1.

Let k̃j = ξj + iηj . Suppose that

3ξ2
2l−1 − η2

2l−1 �= ξ2
2m−1 − η2

2m−1 if l �= m for l, m = 1, . . . Λ1.

Without loss of generality, we assume that 3ξ2
2l−1 − η2

2l−1 > ξ2
2m−1 − η2

2m−1 if l < m.
Then there are Λ1 directions in the (x, t)-plane, j = 2l − 1, l = 1, . . . , Λ1, namely,

x

4t
= 3ξ2

j − η2
j + O

(
1
t

)
, t → ∞,

along which the asymptotics of the solution q(x, t) of the mKdV equation on the half-line
is given by the one-breather formula,

q(x, t) = 4ηjξj

ξj cosh(ν(2)
j + ∆j) sin(ν(1)

j + φj) − ηj sinh(ν(2)
j + ∆j) cos(ν(1)

j + φj)

ξ2
j cosh2(ν(2)

j + ∆j) + η2
j cos2(ν(1)

j + φj)
+ O(t−1/2),

(5.7)

where

ν
(1)
j (x, t) = −2ξjx + 8ξj(ξ2

j − 3η2
j )t,

ν
(2)
j (x, t) = 2ηjx − 8ηj(3ξ2

j − η2
j )t,

and the phase shifts ∆j and φj are described by the following equations,

∆j = log 2 − ln
∣∣∣∣ ξj

ηj

∣∣∣∣ + log |k̃j | − log |cj |

− 2
π

(ηjχj + ξjκj) − 2
N∑

l=2j+1

log
∣∣∣∣ k̃j − k̃l

k̃j + k̃l

∣∣∣∣,
φj = − arg k̃j + arg cj +

2
π

(−ξjχj + ηjκj) + 2
N∑

l=2j+1

arg
∣∣∣∣ k̃j − k̃l

k̃j + k̃l

∣∣∣∣,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.8)
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with

χj = Re
∫ ∞

√
x/12t

log(1 + |γ(µ) + Γ (µ)|2)
µ2 − k̃2

j

dµ

=
∫ ∞

√
x/12t

log(1 + |γ(µ) + Γ (µ)|2)(µ2 − ξ2
j + η2

j )
(µ2 − ξ2

j + η2
j )2 − 4ξ2

j η2
j

dµ, (5.9 a)

κj = Im
∫ ∞

√
x/12t

log(1 + |γ(µ) + Γ (µ)|2)
µ2 − k̃2

j

dµ

= −2ξjηj

∫ ∞

√
x/12t

log(1 + |γ(µ) + Γ (µ)|2)
(µ2 − ξ2

j + η2
j )2 − 4ξ2

j η2
j

dµ, (5.9 b)

cj = − B(k̃j)
ḋ(k̃j)a(k̃j)

. (5.9 c)

Remark 5.2. The soliton-type asymptotics (5.7)–(5.9) are of the same form as in the
case of the whole line. But the detailed expression is influenced by the boundary condi-
tions as follows.

(a) The spectral functions A(k) and B(k) participate in the determination of all the
parameters of the solitons; particularly, the soliton directions are determined by
the zeros of d(k), instead of the zeros of a(k) (which is what happens in the case
of the whole line).

(b) The zeros of a(k) in V, although being the poles of the basic RH problem, do not
generate solitons, since the corresponding solitons on the whole line move to the
left and, therefore, leave the domain {(x, t) | x > 0, t > 0}. However, the zeros of
a(k) (together with part of the continuous spectrum described in terms of γ(k) and
Γ (k) for |k| >

√
x/12t) participate in the soliton asymptotics via the phase shifts

∆j and φj .

Remark 5.3. One can obtain more precise asymptotics by using a more detailed analysis
of the RH, namely, by constructing the exact solutions of the RH problem near k = ±k0

(see [1,2] for the case of the whole line).

Remark 5.4. In the case of the linearizable boundary conditions, all the parameters
in the asymptotic formulae can be expressed in terms of the initial data only (via the
spectral functions a(k) and b(k)). In this case,

cj =
−b(ωλ̄j)

a(λj)∆̇(λj , ω)
, j = 1, . . . , Λ1,

Γ (k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− b(ωk̄)
a(k)∆(k, ω)

, arg k = π, 4
3π,

− b(ω2k̄)
a(k)∆(k, ω2)

, arg k = 0, 5
3π.
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