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Abstract. It is pointed out that the Okuda–Dawson mode can couple with the newly
proposed current-driven wave. It is also shown that the Shukla–Varma mode can
couple with these waves if the density inhomogeneity is taken into account in a
plasma containing stationary dust particles. A comparison of several low-frequency
electrostatic waves and instabilities driven by shear current and shear plasma flow
in an electron–ion plasma with and without stationary dust is also presented.

Long ago (D’ Angelo 1965), a purely growing in-

stability was proposed that is driven by the shear flow
of plasma along the constant external magnetic field

B0 = B0ẑ. A later investigation showed that the usual
electrostatic drift wave becomes unstable due to shear

flow of plasma (Saleem et al. 2007). In these invest-
igations, plasma does not have a zero-order current
because both the species i.e. electrons and ions flow

parallel to B0 with the same shear flow velocity. Several
authors have investigated the shear flow-driven waves
and instabilities (Ishiguro et al. 1997; Ganguli et al. 2002;
Eliasson et al. 2006). The effects of shear velocity on an
ion cyclotron wave has been observed experimentally
(Koepke et al. 1995; Amatucci et al. 1996). It has been
pointed out that the shear flow of electrons along the
ambient magnetic field, say B0z ẑ, introduces a shear
current and hence the total zero-order magnetic field
becomes space-dependent. In this case, a relatively high-
frequency electrostatic wave may exist in the plasma
which can become unstable under certain conditions in
a heavier ion (like barium) plasma (Saleem and Eliasson
2011).

It has also been shown that the shear current intro-

duces a low-frequency electrostatic drift-type wave which

can become unstable in a homogeneous density plasma
(Saleem 2011). If the wave vector parallel to B0 is zero
(k‖ = 0), then the shear current gives rise to a flute-like
mode (Saleem 2011) similar to the density gradient-

driven Shukla–Varma mode (Shukla et al. 1993) in
the plasma having stationary dust. In the absence of
collisions, the convective cell mode (Okuda and Dawson
1973) is a stable low-frequency electrostatic mode which
plays important role in the plasma transport. It has been

shown to be modified in the presence of stationary dust
(Shukla and Mamun 2002).

In the present work, our aim is to show that in the
presence of stationary dust, the Okuda–Dawson mode
(Okuda and Dawson 1973) couples with the current-

driven drift-like mode (Saleem 2011) for |vte∂‖| << |∂t|
(where vte = (Te/me)

1/2 is the electron thermal speed)
and an instability appears which can play an important
role in the cross-field plasma transport. This instability
can also appear in an electron–ion plasma if the parallel
shear flow velocities of ions and electrons are different
(vi0(x) < ve0(x)) since they would cause a zero-order
shear current.

Let us assume that both electrons and ions have
the shear velocity v0i = voe = v0(x)ẑ along the initial
background constant external magnetic field B0z ẑ in the
presence of stationary dust with the local equilibrium
n90 = ne0 + Zdnd0, where Zd denotes the number of
negative charges on the dust particles. The zero-order
current J0 = −eZdnd0v0ẑ �= 0 is non-zero which twists
the initial field and, therefore, the total zero-order mag-
netic field becomes (Saleem and Eliasson 2011)

B0 = B0z ẑ + B0y(x)ŷ = B0ê‖, (1)

where ê‖ =
(
ẑ + (x/LB)ŷ

)
/
(
1 + x2/L2

B

)
is the unit vec-

tor parallel to B0, LB = κ−1
B and κB = 1/B0(dB0/dx).

Figure 1 shows the geometry of the electrostatic current-
driven wave.

The Okuda–Dawson mode (Okuda and Dawson 1973)
appears in the limit |vte∂‖| < |∂t| and hence the electrons
do not follow the Boltzmann density distribution. The
equation of motion of electrons is, therefore, given by

mene(∂t + ve.∇)ve = −ene

(
E +

1

c
ve × B0

)
. (2)

The perpendicular component of the electron fluid ve-
locity from (2) for |∂t| < Ωe yields

ve⊥ ≈ (c/B0)ê‖ × ∇⊥φ. (3)

The parallel equation of motion becomes

(∂t + ve.∇)vez =
e

me

(∂zφ + S), (4)
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Figure 1. The wave geometry is shown.

where S = (1/Ωe)dve0/dx is the dimensionless shear flow
parameter and Ωe = eB0/mec. The equation of motion
for cold ions becomes

mini(∂t + vi.∇)vi = eni

(
E +

1

c
vi × B0

)
. (5)

The perpendicular component of the ion fluid velocity
from (5) yields

vi⊥ ≈ vE − c

B0Ωi

(∂t + vE.∇)∇⊥φ, (6)

where the first term on the right-hand side vE =
(c/B0)ê‖ × ∇⊥φ is the E × B drift and the usual limit
∂t << Ωi = eB0/mic has been used for low-frequency
waves. Using (3) and (6), the continuity equations for
electrons and ions can be written respectively as

∂tne − cne0

B0
(ê‖ × ∇⊥φ.κB) + ne0∂‖vez + v0∂‖ne = 0 (7)

and

∂tni − cni0

B0
(ê‖ × ∇⊥φ.κB) + v0∂‖ni = 0, (8)

where (v0.∇nj) � v0∂‖nj has been used. Since the current-
driven instability does not require the density gradient;
therefore, we first study the uniform density plasma
with stationary negatively charged dust. The equilibrium
demands ni0 = ne0 + Zdnd0. Let the linear perturbations
be proportional to exp {ι(k⊥.γ⊥ + k‖.γ‖ − ωt)}. Then

subtracting (7) and (8), using Poisson’s equation (∇2φ =
4πe(ne − ni)) and ignoring the ion parallel velocity,
we obtain the following linear dispersion relation for
the coupled current-driven (Saleem 2011) and modified
Okuda–Dawson mode (Shukla and Mamun 2002)(

1 +
Ω2

i

ω2
pi

)
Ω2 +

{
4πcezdnd0

B0

Ω2

ω2
pi

(ê‖ × ∇lnB0.k⊥)

}

×Ω − ne0

ni0
(ΩiΩe)

k2
z

k2
⊥

(
1 − k⊥

kz
S

)
= 0. (9)

Here, Ω = (ω−ω0) and ω0 = v0k‖. The modified Okuda–
Dawson mode has frequency (Shukla and Mamun 2002)

ωcc =

(
ne0

ni0
(ΩiΩe)

) 1
2 k‖

k⊥
, (10)

for k‖/k⊥ < me/mi, and the current-driven mode
propagating perpendicular to B0 has frequency

ω∗
s =

4πceZdnd0

B0(1 + ω2
pi/Ω

2
i )

κB

κ⊥
, (11)

which is (10) of Saleem (2011). Using the above notation,
(9) can be expressed as

Ω2 − ω∗
sΩ − ω2

cc

(
1 − k⊥

k‖
S

)
= 0. (12)

If k‖ = 0, then (12) gives ω = ω∗
s and if J0 = 0, then

(12) yields ω = ωcc. The two roots of (12) are

Ω± =
1

2

{
ω∗

s ±

√
4ω2

cc

(
1 − k⊥

k‖
S

)}
, (13)

and one of the roots (with positive sign) becomes un-
stable for

k‖

k⊥
< S. (14)

It is important to note that the present electrostatic
instability takes place for (νTe∂‖) < |∂t| when the cold
electrons do not follow the Boltzmann density distri-
bution and ions parallel motion is neglected because
νTi << νTe. On the other hand, when electrons follow
the Boltzmann density distribution and ions parallel
dynamics is taken into account for |∂t| < |νTe∂‖|, then
instead of (12) one obtains(

ne0

ni0
+ ρ2

s k
2
⊥

)
Ω2 − ω∗

sΩ − c2
s k

2
‖

(
1 − k⊥

k‖
A

)
= 0, (15)

which is the same as (16) of Saleem (2011) for a
homogeneous density plasma. Here, ρs = cs/Ωi and
cs =

√
Ti/mi. Note that A = 1/Ωi

∣∣dv0/dx

∣∣ in (15). If the
plasma has a non-uniform density, then (12) is modified
as

Ω2 − (ω∗
s + ω∗

sv)Ω − ω2
cc

(
1 − k⊥

k‖
S

)
= 0, (16)

where

ω∗
sv =

4πcezdnd0/B0(
1 +

ω2
pi

Ω2
i

) κnd

κ⊥
(17)

is the frequency of the Shukla–Varma mode (Shukla
et al. 1993) and κnd = |(1/nd0)dnd0/dx|. Again for S <

k‖/k⊥, an instability appears. Now, we present another
interesting comparison of (12) and (15). If the plasma
does not have stationary dust and hence J0 = 0, then
(15) yields a purely growing unstable D’Angelo’s mode
(D’ Angelo 1965)

Ω =
csk‖

(1 + ρ2
s k

2
⊥)1/2

(
1 −

k‖

k⊥
A

)1/2

. (18)
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If A < k‖/k⊥, then we do not obtain a stable ion acoustic
wave. Similarly for J0 �= 0, (16) yields a purely growing
mode

Ω2 = ω2
cc

(
1 − k⊥

k‖
S

)
, (19)

if (14) is satisfied along with ω∗
s << ω∗

cc and con-
sequently we do not obtain a stable Okuda–Dawson
mode.

It is pertinent to mention here that several years ago
Shukla et al. (2002) investigated the electron Landau
contribution on the instability of dust ion acoustic
drift waves in the presence of ion parallel velocity
gradient. The electron pressure contribution, however,
was crucial in their investigation. If the electron Landau
contribution is neglected and ions are assumed to be
cold, then (10) of Shukla and Mamun (2002) reduces to
(18) for dB0/dx = 0 and ne0/ni0 = 1 (which implies a
pure electron–ion plasma). Note that (15) is structurally
similar to (11) of Shukla et al. (2002) for ρ2

s k
2
⊥ << 1

with the difference that here ω∗
s comes owing to the

spatial inhomogeneity of the equilibrium magnetic field
gradient. We further emphasize that the Okuda–Dawson
mode appears when electron pressure is small and is
neglected in the parallel equation of motion of electrons.
In that case the electrons do not follow the Boltzmann
density distribution in the fluid limit and the electron
density fluctuations are estimated by substituting vez
from the parallel equation of motion into the continuity
equation. Therefore, the findings of the work by Shukla
et al. (2002) should be compared with (15) of the current
investigation and not with (16) of the present work.

To summarize, we have shown in this paper that
the shear flow-driven wave couples with the modified
Okuda–Dawson mode in a cold plasma as given in (12).
An electrostatic instability appears if condition (14) is
satisfied. In the presence of density inhomogeneity, the
Shukla-Varma mode has been shown to couple with
these waves and the oscillation frequency is ωr = ω∗

s +
ω∗

sv . The waves have been found to become unstable if
condition (14) holds. A comparison of the dispersion
relations of the shear flow-driven waves and instabilities
in hot and cold electron plasmas has also been presented.

The free energy available in the form of flow and current
can give rise to several kinds of waves and instabilities,
which can play significant roles in particle and energy
transport in plasmas.
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