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Auto-generation of passive scalable
macromodels for microwave components
using scattered sequential sampling

krishnan chemmangat, tom dhaene and luc knockaert

This paper presents a method for automatic construction of stable and passive scalable macromodels for parameterized fre-
quency responses. The method requires very little prior knowledge to build the scalable macromodels thereby considerably
reducing the burden on the designers. The proposed method uses an efficient scattered sequential sampling strategy with
as few expensive simulations as possible to generate accurate macromodels for the system using state-of-the-art scalable
macromodeling methods. The scalable macromodels can be used as a replacement model for the actual simulator in
overall design processes. Pertinent numerical results validate the proposed sequential sampling strategy.
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I I N T R O D U C T I O N

Efficient design of electromagnetic (EM) systems using accur-
ate scalable macromodels is an active field of research [1–6].
These scalable macromodels are computationally cheap and
they act as a replacement model for the expensive EM
solvers thereby reducing the overall computational burden.
The scalable macromodeling schemes are also able to preserve
system properties such as stability and passivity and hence can
be used in time-domain simulations [1–6]. However, these
state-of-the-art macromodeling schemes suffer from the fact
that the sample distribution over the design variable space
should be known a priori based on rules of thumb [1–6].

Several sequential sampling algorithms have been sug-
gested in the literature for automatically building scalable
macromodels for the EM systems [7–12]. All of these sam-
pling schemes are global but often fail to guarantee stability
and passivity. Preserving system properties is very important
especially if the model thus generated is employed in time-
domain simulations [13]. Also, for relatively high dimensions
the memory requirement for these methods can be relatively
high since big matrices has to be solved, limiting their
applicability [7–9, 12]. Recently a local tree-based sequential
sampling has been proposed in [14] which uses interpolation-
based local scalable macromodeling method to build accurate
parameterized macromodels. The method is able to preserve
system properties and can also build multi-fidelity models.
This means that the designer can already begin the design
process once sufficient accuracy is reached for the

intermediate model while the model is still being refined.
Also, the method is implemented as a tree with independent
branches for different regions of the design space making it
easily expandable and portable to parallel computing
platforms.

In this paper, we improve the method of [14], which we
refer throughout this paper as grid method, on the following
aspects:

(1) The grid method deals with hyperrectangular regions
of the design space which are called subspaces in this
paper. In the previous method, after performing an
edge-based division the algorithm finally divides along
the center of the subspace. This is an exploratory step
which tends to generate a considerable number of
samples per division. This becomes more critical with
higher dimension. In this work, the final refinement
after the edge-based division is performed using a scat-
tered division with well-conditioned simplicial partitions
called path-simplexes [15, 16] reducing the overall com-
plexity of the problem.

(2) The grid method requires validation samples to access the
accuracy of the terminal subspaces which need not be
used further in the final model. In this paper, the valid-
ation samples are altogether eliminated using a level-
based check wherein two subsequent levels of models
are compared for convergence. This results in a consider-
able reduction in the overall number of points required.

The refinement on the simplexes can be done in many ways
such as dividing along in-center. However, this might lead
to the creation of ill-conditioned simplexes called slivers.
Generation of slivers can be avoided by refining either
locally [15, 16] or globally [17, 18]. The local refinement
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scheme [15, 16] starts from the corner points of an N-cube
and then refines it into smaller simplexes in a tree-based
way like the sequential sampling method of [14], whereas
the global refinement schemes [17, 18] work on a primary
Delaunay tessellation and then refine it to improve the condi-
tion of simplexes. Hence the local path-simplex method [15,
16] assures a good condition number from the beginning of
the sampling process and is suitable for the application of dif-
ferent passivity-preserving scalable macromodeling algo-
rithms on scattered grids [2, 5]. On the other hand, if the
global refinement schemes [17, 18] were used, the existing
mesh has to undergo global refinement indicating that the
local interpolated models may change significantly with a con-
sequent computational burden. So, a path-simplex-based
refinement is employed in this paper.

However, since the path-simplex method gives more
importance to conditioning of the simplexes, it is more a
space-filling strategy. So, in this work a hybrid scheme
which combines all the benefits of the grid-based refinement
and the path-simplex refinement is used to get an efficient
sequential sampling strategy requiring less computational
resources.

This paper is organized as follows: Section II briefly
describes a scalable macromodeling method which is
employed in this paper and the grid method of [14]. Section
III defines a path-simplex and its well-conditioned refinement
with its relative merits and demerits with respect to the grid-
based scheme of [14] and states why a hybrid strategy which
combines an edge-based and a scattered refinement is
required. Section IV demonstrates how the error can be esti-
mated without having to use expensive validation points.
The complete flowchart of the proposed sequential sampling
is given with description in Section V followed by three numer-
ical examples in Section VI. Section VII concludes the paper.

I I P R E L I M I N A R I E S

This section briefly explains a robust scalable macromodeling
method used in the paper and also recapitulate the grid-based
sequential sampling method of [14].

A) Passivity preserving scalable
macromodeling
In this work, we use one of the local scalable macromodeling
schemes which use the vector fitting (VF) technique [19] to
build frequency-dependent rational models called root macro-
models at the selected design space samples and then param-
eterize them, see [1–6]. These methods preserve stability and
passivity over the complete design space, and therefore are
suitable for time-domain simulations. The scalable macromo-
deling process starts with a set of multivariate data samples

(s, �g)k, H(s, �g)k

{ }Ktot

k=1, which depends on frequency and add-
itional design variables. From these data samples, a set of
root macromodels in pole-residue form are built for a set of
design space samples �gk by means of VF yielding a set
of root macromodels R(s, �gk). Stability and passivity are
enforced using robust standard techniques [19, 20], resulting
in a set of stable and passive root macromodels. The next
step of these scalable macromodeling algorithms is the param-
eterization of the set of root macromodels R(s, �gk).

In [1, 2, 5], a scalable macromodel is built by interpolating
a set of root macromodels at an input–output level, whereas in
[3, 4], both poles and residues are parameterized by interpol-
ating the internal state-space matrices, resulting in higher
modeling capability with respect to [1, 2, 5]. In [6], a novel
enhanced interpolation of root macromodels at an input–
output level is described, which is based on the use of some
coefficients: one coefficient as a multiplicative factor at the
input/output level of the system and the other coefficient as
a compression or expansion term for the Laplace variable s.
It results in high modeling capability and robustness and it
is used in our sequential sampling.

To understand the macromodeling method of [6], let us
consider a two variable design space region Vl, l ¼ 1, . . . , L
given in Fig. 1. A two variable description is presented here
for clarity and ease of notation, even though the method is
general for any dimension N of the design space. The rational
root macromodels RVl (s, �g Vl

i ), i ¼ 1, . . . , 2N contained in the
N-box region Vl are represented in a pole-residue form:

RVl (s, �g Vl
i ) =

∑PVl
i

p=1

CVl
p,i

s − aVl
p,i

+ DVl
i ; p = 1, . . . , PVl

i , (1)

where Cp, i
Vl represents the residue matrices, ap, i

Vl the pole Pi
Vl.

Di
Vl is the direct-term matrix.

Later, the parametric macromodeling is applied on these
N-box regions Vl. The design space region Vl is defined
by four bounding corners �g Vl

1 = (g1
1 , g1

2 ), �g Vl
2 = (g2

1 , g1
2 ),

�g Vl
3 = (g1

1 , g2
2 ), and �g Vl

4 = (g2
1 , g2

2 ) as in Fig. 1. Each corner
possesses a different root macromodel RVl (s, �gi), i¼ 1, . . . , 4.
We will discuss the interpolation of the root macromodels
next. For simplicity and ease of notation, we omit the superscript
Vl. In [6], one amplitude scaling and one frequency scaling
coefficient (a1, a2) are calculated using the optimization.

(a∗
1,ij, a

∗
2,ij) = argmin

(a1,ij ,a2,ij)

Err(R̃
j
(s, �gi), R(s, �gj))

[ ]
.

i = 1, . . . , 4; j = 1, . . . , 4.

(2)

In (2), R̃
j
(s, �gi) = a1,ijR(sa2,ij, �gi), is the interpolated response

of R(s, �gi) obtained to match R(s, �gj) and Err(.) is a suitable
error measure between the two responses [6]. Note that,
a1,ij

∗ ¼ a2,ij
∗ ¼ 1 when i ¼ j.

The evaluation of the model taken at a generic point �gq in
the design space (Figure 1) is done similarly to [6] as:

(1) For each root macromodel R(s, �gi), i ¼ 1, . . . , 4, the
amplitude scaling coefficient a1,ij and frequency scaling
coefficient a2,ij are interpolated using a multilinear

Fig. 1. A two dimensional design space with four root macromodels.
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interpolation [21] over �g at the point �gq to find a1,iq and
a2,iq. This results in the modified root macromodels,

R̃q(s, �gi) = a1,iq
∑Pi

p=1

Cp,i

sa2,iq − ap,i
+ Di at �gq,

(2) Then the models R̃q(s, �gi) are interpolated using the mul-
tilinear interpolation [21] over �g to get the final model
interpolated at the points �gq, R(s, �gq).

This parametric macromodeling approach is performed for
each region Vl, which can either be a N-dimensional hyper-
rectangle or a N-simplex to cover the complete design space.

B) Sequential sampling using grid-based
refinement
The grid-based refinement scheme of [14] works on hyperrec-
tangular grids and generates local scalable macromodel for
each and every subspace. The grid-based sequential sampling
algorithm begins from a single subspace with 2N corners
defined by the design parameter ranges [14]. Then it finds
the maximum sensitive edge by checking difference between
two responses of every edge and selects the edge with
maximum difference. Later, a (N 2 1)-Hyperplane perpen-
dicular to the selected edge is used to divide the subspace
into two child subspaces if the accuracy is not satisfactory.
This procedure is repeated until all the subspaces are accurate
and then finally a center refinement is used to complete the
process as clearly explained in [14].

The idea of selecting the maximum sensitive edge is slightly
modified in this work to make use of the available informa-
tion generated by [6]. The idea here is to find the most
difficult-to-model edge in terms of the macromodeling
method of [6] as explained in detail below.

As in Section II. A, let us consider a two variable design
space �g [ (g1, g2) defined by four corners �g1 = (g1

1 , g1
2 ),

�g2 = (g2
1 , g1

2 ), �g3 = (g1
1 , g2

2 ), and �g4 = (g2
1 , g2

2 ) of a rectangular
region (two dimensional subspace) as in Figure 2. In the scal-
able macromodeling method of [6], one scaling and another
frequency shifting coefficients (a1,ij

∗ , a2,ij
∗ ) are calculated as in

(2). The error information obtained from (2) can be used as
a measure of the modeling difficulty of each and every edge
1 ≤ (i, j)edge ≤4 (see Fig. 2), and the most difficult-to-model
edge is the edge with the worst-case error given by the

formula,

(i, j)max
edge = argmax

(i,j) edge

min
(a1,ij ,a2,ij)

Err(R̃(s, �gi), R(s, �gj))
[ ]( )

. (3)

Then, a hyperplane perpendicular to the edge (i, j)edge
max is

used to divide the subspace into two halves. In Fig. 2, the
pair (2, 4) was selected as the most difficult-to-model edge
and a line perpendicular to that edge is used to divide the sub-
space into two. However, the grid-based scheme suffers from
the following:

(1) The final refinement after the edge-based refinement of
each subspace is performed at the center [14], and to
keep the hyperrectangular nature of the grid all the
lower dimensional hyperplanes such as edges, faces etc.,
of the subspace are divided generating a lot of points.

(2) The local scalable macromodel is build by linearly inter-
polating 2N root macromodels for every subspace [14].
Since the root macromodel transfer functions are
appended as in [6], the order of the final scalable macro-
model inside a subspace can have high values (in propor-
tion to 2N). This increases the evaluation time for the
macromodel especially for time-domain simulations.

Both of the above mentioned issues become even more
troublesome with higher dimensions. Therefore, a scattered
refinement using well-conditioned simplexes becomes neces-
sary to overcome these issues and such a scheme is presented
in detail in Section III.

I I I P A T H - S I M P L E X E S

A path-simplex in RN, N [ (1, 2, . . .), is defined as an
N-simplex having N mutually orthogonal edges which, in
the sense of graph theory, form a path [16]. Path-simplex
has the following properties, which makes it useful for the pro-
posed sequential sampling [16]:

(1) a path-simplex in RN is a non-obtuse simplex and
all its (N 2 i) simplexes, i ¼ 1, 2, . . .(N 2 1) are also
path-simplexes,

(2) it contains its circumcenter ensuring good condition,
(3) path-simplex refinement is assured to be Delaunay by

construction,
(4) every alternate division performed on path-simplex gen-

erates geometrically similar simplexes.

The above mentioned points ensures that slivers are never
created during the local refinement of a simplex, ensuring
convergence of the algorithm. Also, the path-simplex based
division has already been applied to the sequential sampling
process and a preliminary work can be found in [22].
A more elaborate description is given in this paper. The pro-
posed sequential sampling algorithm starts from an edge-
based refinement scheme described above and then uses the
result of [16] to refine a N-box region of the design space
into N! path-simplexes. Then these path-simplexes are
further divided as in the Coxeter’s trisection method [15],
which is described below.

In [15], Brandts et al. prove that given a path-simplex in
RN, it can be divided into N path-subsimplexes using
Coxeter’s trisection method generating N 2 1 new sampleFig. 2. Subspace division along the most difficult-to-model edge.
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points. Figure 3 shows such a division for a path-simplex in
R3. The corners of the path-simplex are represented by the
position vectors p0, p1, p2, and p3 with respect to any arbitrary
origin, and the edges p0 2 p1, p1 2 p2, and p2 2 p3 forming a
path. Three new path-simplexes are formed using the points
y2 and y3 calculated as

yj = pj ×
p1

∥∥ ∥∥2

pj

∥∥ ∥∥2 , j = 2, 3, ...N , (4)

where, ‖.‖ is the Euclidean norm [15]. Generation of slivers
during the local refinement can be monitored by calculating
the aspect ratio,

Rasp = N
d
D
. (5)

in (5), d and D are the diameters of the inscribing and circum-
scribing N-spheres of the N-simplex, respectively. Root macro-
models are created at the corner points of these simplexes and
using the scalable macromodeling method of [6], passive
interpolated models are created for the parameterized fre-
quency responses.

To see the advantage of using a path-simplex division, it is
compared with respect to a division at the incenter of the
simplex and the minimum aspect ratio (5) for each level of
division is plotted in Figure 4. The comparison is made with
respect to the number of times the simplex is divided as well
as the number of dimension N of the simplex. Both the div-
ision techniques start from a path-simplex of unit orthonor-
mal edges. As seen in Figure 4, the path-simplex division
preserves the aspect ratio of the simplexes thereby assuring
a good condition number. This is much better as compared
to the incenter division. As stated in [15], a path-simplex if
divided twice, one of the sub-sub-simplexes is similar to the
original simplex keeping its aspect ratio. This can also be
seen in Figure 4, where the aspect ratio shows oscillatory
behavior showing each alternate division levels are similar.

Next, to show why a scattered sampling is required, some
important parameters for the edge-based and center-based
subspace division of [14] is compared with the path-simplex
division and is tabulated in Table 1. Using a simplex-based
division, the number of expensive samples generated per
refinement can be brought down to (N 2 1). Note that the
number of points created per center-based division is calcu-
lated by summing all the possible hyperplanes such as edges,

faces, etc., which are divided. Also, the order of the final
macromodel can be reduced from that proportional to
a factor of 2N for the grid-based scheme to a factor of
(N + 1) for the scattered scheme. This creates considerable
speed-ups in macromodel evaluations both in frequency
and time-domain. However, one of the issues with the
path-simplex-based division is that the method acts as a
space-filling strategy by generating well-conditional simplexes
with less emphasis on sequential sampling. Therefore a hybrid
method is proposed in this paper which brings the advantages
of both schemes to get a better sequential sampling strategy as
will be explained in Section V.

I V E R R O R E S T I M A T I O N W I T H O U T
V A L I D A T I O N P O I N T S

In [14], the accuracy of the model is calculated by comparing
the scalable macromodel with the actual EM simulations
at each and every terminal subspaces. When a subspace is
found to be accurate, it is not further divided and the expen-
sive validation points from the EM solver may not used [14].
This can be tackled to a certain extend by performing an esti-
mation of the accuracy or the error at each and every subspace
as described here.

In this paper, a comparison between two subsequent levels
of scalable macromodels is proposed to assess the convergence
of the sequential sampling as shown in Figure 5(a) for a 2D
case on a rectangular grid. Two different scalable macromo-
dels are compared, one from the parent subspace (region
1-2-3-4, solid line arrows) and the other from the child

Fig. 3. Coexter’s trisection of the path-simplex in R3 (as in [15]).

Fig. 4. Comparison of Coxeter’s trisection method versus incenter-based
division.

Table 1. Comparison of different refinement strategies.

Refinement
method

# points per
refinement

# regions per
refinement

Model order
proportional to

Edge based 2N21 2 2N

Center based 1 +
∑N−1

m=1

2N−mN!
m!(N−m)!

2N 2N

Path simplex N 2 1 N N + 1
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subspace (region 5-6-3-4, dashed line arrows) at the center of
the child subspace region. On the other hand, if the simplexes
are divided, a similar strategy is used, wherein the two macro-
models are compared at the incenter of the child simplex as
shown in Figure 5(b) When a convergence is observed
between the two levels, the algorithm is terminated.

V P R O P O S E D S E Q U E N T I A L
S A M P L I N G A L G O R I T H M

Figure 6 shows the flowchart of the proposed sequential sam-
pling algorithm. The algorithm is divided into three major cat-
egories as explained below.

Stage 1: Initialization is done by defining the boundaries of
the design space and then generating the 2N corner root macro-
models. Then an initial scalable macromodel is built for this

subspace using [6] and this is the starting point of the tree-
based sequential sampling. The number of EM simulations at
this stage is only the 2N corner points of the design space.

Stage 2: Then, the grid-based refinement is performed to
refine the initial scalable macromodel using the edge refine-
ment method as in Section II. B). At every iteration a subspace
is selected and the modeling error is estimated using the
parent–child response comparison as explained in Section IV.
If the subspace is found to be inaccurate, the subspace is
divided using a hyperplane perpendicular to the most
difficult-to-model edge as per Section II. B) similar to
Figure 2. This step is continued till all the subspaces are suffi-
ciently accurate. This initial accuracy target can only be set
depending on the problem at hand. For example, considering
microwave filter, if a passband requirement of 230 dB is
required, the scalable macromodel should be able to describe
the filter characteristics up to an accuracy of 230 dB. So, the
initial modeling accuracy can be set to the bare minimum
accuracy required by the designer (230 dB in the example
stated here) such that this low fidelity model can already be
used the design process. The number of EM simulations at
this stage depends on the grid-based refinement.

Stage 3: In the next step, the initial grid generated is rear-
ranged into path-simplexes regions. No additional EM simula-
tions are required at this stage. Here, the model generated using
the grid-based refinement is used as the starting point and then
each and every terminal subspaces are refined into path-
simplexes [16]. It should be noted that, during this process
only hyperrectangular regions are converted into path-simplex
regions and no further calculation of scaling and frequency
shifting parameters for the scalable macromodeling [6] is
needed since the root-macromodels stays the same.

Stage 4: Finally, the Scattered refinement is done using the
method of path-simplexes by which the final target accuracy is
to be achieved. After this conversion, the simplex regions are
selected and error is estimated at their incenters similar to
Section IV. A higher accuracy can be selected here compared
to Stage 2, but since the error is estimated between two differ-
ent models (as in Section IV), the accuracy target at Stage 2
and Stage 4 can very well be equal and the convergence is
checked by estimating the error between the two models. If
the accuracy is not satisfied for some simplicial regions, they
are further divided using the path-simplex refinement proced-
ure of Section III until all the simplexes are accurate. As in the
case of grid-based refinement, the number of EM simulation is
decided by the scattered refinement process.

Stage 5: Once all the simplicial regions are accurate, the
sequential sampling algorithm is terminated. No further EM
simulations are required at this stage.

It is important to note that, when the range of the design
space is increased, the algorithm takes care of the change by
exploring the design space. This is done by generating add-
itional samples (or root macromodels) in the newly added
regions. Thus, by generating additional samples and refining
the bigger regions into smaller domains, the algorithm will
ensure that the scalable macromodeling scheme is able to
build accurate models over the complete design space.

V I N U M E R I C A L R E S U L T S

In this section, three numerical examples are presented which
demonstrate the capability of the proposed sequential

Fig. 5. Error estimation with two subsequent model levels: (a) Rectangular
region and (b) Simplicial region.

Fig. 6. Flow chart of the proposed sequential sampling.
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sampling method for efficiently building the scalable macro-
models for EM systems. For comparison purposes in terms
of the computational time, all the numerical simulations
have been performed on a Linux platform on Intel(R)
Xeon(R) CPU E5504 @ 2.00 GHz machine with 6 GB RAM.

A) Example I: Microstrip bandpass filter
A microstrip bandpass filter on a substrate with relative per-
mittivity er ¼ 9.0 and a thickness of 0.660 mm is modeled
in this example. The S-parameter response of the filter is gen-
erated with the help of ADS Momentum1. The ADS
Momentum simulation engine is used in full-wave mode.
All ports are defined as single mode ports, with 50 V charac-
teristic impedance. The automatic meshing (with edge mesh)
uses 20 cells per wavelength, at a mesh frequency of 6 GHz.
The layout of this filter is shown in Figure 7. Two lengths L1

and L2 and the spacing S are chosen as design variables (see
Figure 7) in addition to frequency whose ranges are L1 [
[6.0, 7.0] mm, L2 [ [4.0, 5.0] mm, S [ [0.05,0.10] mm, and
frequency [ [4.0, 6.0] GHz. The mean absolute error (MAE)
measure or the L1-norm per port is used to assess the accuracy
of the model in every N-box region of the design space:

EMAE(�g) = max
u=1,...,P
v=1,...,P

1
Ns

∑Ns

n=1

Ru,v(sn, �g) − Hu,v(sn, �g)
∣∣ ∣∣( )

. (6)

The method compares the EM simulation response Hu,v(s, �g)
with the scalable macromodel response Ru,v(s, �g), where P is
the number of system ports. The MAE error measure or the
L1-norm gives a global view on the error between the two fre-
quency responses and hence it is preferred. The target accur-
acy was kept at 245 dB and the initial refinement accuracy for
the proposed method also kept at 245 dB.

Figure 8 shows the parametric behavior of the magnitude
of S11 as a function of L1 and frequency, other values being
kept at the mean value of the design space. Similarly,
Figure 9 shows the magnitude of S21 as a function of S and
frequency. The proposed algorithm and the grid method
[14] have been implemented in Matlab R2012a2 and used
to drive the ADS Momentum simulations to generate
S-responses with 31 frequency points at selected samples.

The dotted curves in Figs. 8 and 9 represent the response of
the scalable macromodel obtained from the proposed
method. As seen a good agreement can be observed.

Figure 10 shows the distribution of the design sample
points with the proposed hybrid sequential sampling algo-
rithm. The tessellation with the path-simplexes are also
shown here. It can be observed from Figure 10 that along
the design variable L2, the maximum number of samples are
taken, which means that this variable is highly influential on
the output S-parameters of the filter. The design variable S
is the least influential and hence it is sparsely sampled. Also,
it can be noticed that the higher values of the design variable
L2 [ (4.5, 5.0) mm is more densely sampled than the other
parts of the design space. This indicates a high sensitivity of
the output S-parameter response of the filter to the changes
in L2 [ (4.5, 5.0) mm in comparison with the lower values,
L2 [ (4.0, 4.5) mm. In order to show the capability of the
proposed algorithm, it is compared with the grid method on
125 verification points spread across the design space as
shown in Figure 11 using a Latin hypercube space filling.

Figure 12 shows the mean absolute error distribution for
both sequential sampling methods over the final verification
points. As seen in the figure, a comparable accuracy is

Fig. 7. Example I: Layout of the microstrip bandpass filter.

Fig. 8. Example I: Magnitude of S11 as a function of L1.

Fig. 9. Example I: Magnitude of S21 as a function of S.

1Momentum EEsof EDA, Agilent Technologies, Santa Rosa, CA.
2The Mathworks, Inc., Natick, MA, USA.
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achieved for the proposed sequential sampling scheme
without having to use any validation points during the sam-
pling process like the grid method. Next, to check the advan-
tage gained by performing a hybrid algorithm, the scalable
macromodeling is performed directly on the scattered sam-
pling. That is, the Stage 2 of the algorithm in Figure 6 is not
performed and the algorithm is checked for its convergence.
It was observed that the algorithm, even after generating
492 samples could converge only to an accuracy level of
225.11 dB. As explained in Section III, the path-simplex div-
ision, even though very well-conditioned, is highly exploratory
in nature and hence slow in converging to a good modeling
accuracy. Thus combining the advantages of both grid-based
refinement and the simplicial refinement becomes necessary
to have an efficient and automated sampling strategy.

In order to check the passivity, the H1 norm ‖R(s, L1, L2,
S)‖1 of the scalable macromodel was calculated for the final
125 points and is plotted in Figure 13. From the figure, it is
clear that maximum norm is bounded by unity as expected.
Table 2 compares the two sampling schemes over some
important parameters. As seen in the table, the maximum
order of the scalable macromodel is relatively high for the
grid method in comparison to the proposed scheme. This is
because of the fact that all the 2N corner root macromodels
of a subspace is augmented in the grid method, whereas
there are only N + 1 corner root macromodels defining a

simplex for the proposed scheme. This becomes more severe
with higher dimensions as will be seen in a later example.
The table also shows the worst case mean absolute error for
the two schemes and as expected, the proposed scheme has
a slightly lower accuracy level, but only requires 40% of the
samples compared to grid method (please note that the
target accuracy level was 245 dB). This is because of
the fact that the error is estimated at each level during the
sampling whereas for the grid method it is validated using
expensive EM simulations. This is the trade off between the
two sampling schemes.

Finally, to see the speed-up gained using a scalable macro-
model in the design process, the time required for one single
frequency response evaluation of the scalable macromodels
are compared with the corresponding EM simulator time
and the speed-up is tabulated in Table 2. The speed-up for
each case is calculated by comparing the evaluation time for
one frequency sweep using the macromodel (column 7 of
Table 2) with the CPU time for the EM simulator. However,
it should be noted that the generation of the scalable macro-
model requires some initial EM simulations, but once the
model is built, it can be used in multiple design optimization

Fig. 10. Example I: Sample distribution with the proposed algorithm.

Fig. 11. Example I: Verification sample distribution.

Fig. 12. Example I: Mean absolute error distribution for the final verification
samples.

Fig. 13. Example I: H1 norm for the final verification samples.

auto-generation of passive scalable macromodels for microwave components 597

https://doi.org/10.1017/S1759078714000038 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078714000038


scenarios such as changing specifications, to make the overall
design cycle very efficient.

So, in conclusion the following points can be observed
from Table 2:

(1) The number of samples required for the proposed scheme
is reduced in comparison with the methods of [14, 22].

(2) The validation samples are completely removed by esti-
mating error by comparing two different levels of the
model as in Section IV.

(3) Estimating the error means that the accuracy of the pro-
posed method might not be as good as the grid method
of [14]. This is the trade-off between the validation
points and error estimation.

(4) The modeling complexity is reduced in comparison with
grid method of [14] as explained before in Table 1. This
also gains in the speed-up in terms of the scalable macro-
model evaluation as clear from the last column of the
table.

B) Example II: Microstrip with two coupled
vias
A microstrip with two coupled vias on a substrate with relative
permittivity er ¼ 9.0 and a thickness of 500 mm is modeled in
this example. The S-parameter response of the structure is
generated with ADS Momentum. The ADS Momentum simu-
lation engine is used in full-wave mode. All ports are defined
as single mode ports, with 50 V characteristic impedance. The
automatic meshing (with edge mesh) uses 30 cells per wave-
length, at a mesh frequency of 5 GHz. Figure 14 shows the
top and cross-sectional view of the structure. The length of
the two vias L, the distance between the two vias D and the
radius of the vias r are chosen as design variables (see
Figure 14) in addition to frequency whose ranges are L [
[150, 250] mm, D [ [1.5, 2.5] mm, r e [0.1, 0.4] mm, and

frequency e [0.1,10.0] GHz. The target accuracy (6) was
kept at 245 dB and the initial refinement accuracy for the
proposed method also kept at 245 dB. Figure 15 shows the
parametric behavior of the magnitude of S11 as a function of
L and frequency, other values being kept at the mean value
of the design space. Similarly, Figure 16 shows the magnitude
of S21 as a function of r and frequency. As in Example I, the
proposed algorithm and the grid method [14] have been
implemented in Matlab R2012a and used to drive the ADS
Momentum simulations to generate S-responses at selected
samples. The dotted curves in Figs. 15 and 16 represent the
response of the scalable macromodel obtained from the pro-
posed method. As seen a good agreement can be observed.
As in the previous example, the proposed algorithm is
compared with the grid method on 125 verification points
spread across the design space using a Latin hypercube
space filling. Figure 17 shows the mean absolute error distri-
bution for the sequential sampling methods over the final veri-
fication points. A comparable accuracy is achieved for the
proposed sequential sampling scheme as it was observed for
Example I. The H1 norm ‖R(s, L, D, r)‖1 of the scalable
macromodel was calculated for the final 125 points and is
plotted in Fig. 18 and it is observed to be passive.

Table 3 compares the two sampling schemes over some
important parameters similar to Table 2 for the first
example. As for the Example I, a similar conclusion can be
derived for the different quantities such as maximum model
order, mean error etc. Note that the target accuracy level
was 240 dB. The trade off between the two sampling
schemes in terms of the error versus number of modeling
samples required is also clear in the Table 3. As in the first
example, to show the speed-up gained using a scalable macro-
model in the design process, the time required for one single

Table 2. Example I: Comparison of different sampling strategies.

Sampling method #Samples Maximum order Error (dB) Maximum ‖H‖1 Evaluation time (s) Speed-up

Gen. Val.

Proposed 275 – 86 243.8 0.999 0.136 199 ×
grid method [14] 438 248 164 248.3 0.999 0.256 105 ×
CPU time for EM simulator to calculate a single frequency response ¼ 27 s.

Fig. 14. Example II: Layout of microstrip with two coupled vias: (a) top view,
(b) cross-sectional view. Fig. 15. Example II: Magnitude of S11 as a function of L.
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frequency response evaluation of the scalable macromodels
are compared with the corresponding EM simulator time
and the speed-up is tabulated in Table 3.

So from Table 3 a similar conclusion can be derived as in
the case of Example I.

C) Example III: Ring resonator filter
A ring resonator bandpass filter on a substrate with relative
permittivity er ¼ 4.32 and a thickness of 152 mm is modeled
in this example. The layout of this filter is shown in
Figure 19. The S-parameter response of the structure is gener-
ated with ADS Momentum. The ADS Momentum simulation
engine is used in full-wave mode. All ports are defined as
single mode ports, with 50 V characteristic impedance. The
automatic meshing (with edge mesh) uses 20 cells per
wavelength, at a mesh frequency of 4 GHz. Two spacings S1

and S2 and three lengths L1, L2, and L3 are chosen as design
variables (see Fig. 19) in addition to frequency whose ranges
are S1 [ [0.20, 0.30] mm, S2 [ [0.04, 0.06] mm, L1 [ [20.0,
24.0] mm, L2 [ [19.0, 21.0] mm, L3 [ [26.0, 27.0] mm and

frequency [ [1.0, 3.0] GHz. The MEA measure (6) was used
to estimate the modeling accuracy. The target accuracy was
kept at 240 dB and the initial refinement accuracy for the
proposed method also kept at 240 dB.

Parametric behavior of some of the S-parameter matrix
entries of the filter are shown in Figures 20, 21 and 22 with
respect to some design variables. In Figure 20, the magnitude
of S11 and the S21 of the filter are shown for five different
values of L1 keeping the other variables constant at their
mid values of range. Similar plot can be observed in Figs. 21
and 22 for the parameters L2 and S1, respectively. The
dotted curves in Figs. 20, 21, and 22 represent the response
of the scalable macromodel obtained from the proposed
method. As seen a good agreement can be observed. For
this example, first a scalable macromodeling is performed
using the proposed and the grid method generating two differ-
ent macromodels and then as a next step, a global optimiza-
tion is performed on these two macromodels generated.
Finally, the modeling part as well as the optimization part
for the two sequential sampling algorithms are compared in
terms of important parameters.

1) macromodeling of the ring resonator

filter

As in Examples I and II, the proposed algorithm and the grid
method [14] have been implemented in Matlab R2012a and
used to drive the ADS Momentum simulations to generate
S-responses at selected samples. As in the previous examples,
the proposed algorithm is compared with the grid method on
250 verification points spread across the design space using a
Latin hypercube space filling. The MEA measure (6) was used
to estimate the modeling accuracy.

So, as in the case of Examples I and II, the following can be
observed from the table:

(1) considerable reduction in the number of samples and con-
sequently in overall complexity for the proposed scheme
over the grid method,

(2) computational complexity of the scalable macromodel
generated using the grid method is higher than the pro-
posed scheme as explained in Section III in Table 1, and
finally

Fig. 16. Example II: Magnitude of S21 as a function of r.

Fig. 17. Example II: Mean absolute error distribution for the final verification
samples.

Fig. 18. Example II: H1 norm for the final verification samples.
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(3) Comparable accuracy for the proposed method and the
grid method is observed.

2) optimization of the ring resonator filter

The two scalable macromodels generated using the grid
method and the proposed method were used in a design

optimization scenario. The design specifications of the filter
are given in terms of the scattering parameters S21:

|S21| . −2.0 dB for 1.75 GHz ≤ freq ≤ 2.25 GHz (7a)

|S21| , −25 dB for freq , 1.5 GHz , freq . 2.5 GHz

(7b)

From the design specifications (7), a cost function is for-
mulated in terms of S21 and frequency. A global optimization
method based on the DIviding RECTangle (DIRECT) strategy
[23] is used to minimize the cost function. The method [23]
balances between a global and local search and finds an opti-
mization solution �g∗ = (L∗

1, L∗
2, L∗

3, S∗1, S∗2). Since the cost
functions are generated with the help of the scalable macro-
models generated with the grid method [14] and the proposed
sampling scheme, the evaluation time is much less in compari-
son with the actual ADS simulations.

It can be observed from Table 5 that the average macromo-
del evaluation time per sample for the grid method is relatively
higher in comparison with the proposed scheme. This is
indeed because of the increasing complexity of the macromo-
del generated using the grid-based interpolation in compari-
son with the scattered interpolation as described before
(Table. 4). However, both the macromodels finds a single
optimum and is also verified with ADS Momentum simula-
tion and is shown in Figure 23. In the figure the requirements
(7) are shown by the dotted lines. The two responses gener-
ated by the ADS Momentum at the solutions given in
Table 5 are also shown in Fig. 23 which satisfy the
requirements.

Table 3. Example II: Comparison of different sampling strategies.

Sampling method #Samples Maximum order Error (dB) Maximum ||H||1 Evaluation time (s) Speed-up

Gen. Val.

Proposed 30 – 64 240.72 0.999 0.1180 1008 ×
Grid method [14] 92 38 128 245.41 0.999 0.2017 590 ×
CPU time for EM simulator to calculate a single frequency response ¼ 119 s.

Fig. 19. Example III: Layout of ring resonator bandpass filter.

Fig. 20. Example III: Magnitude of S11 and S21 as a function of L1.

Fig. 21. Example III: Magnitude of S11 and S21 as a function of L2.

Fig. 22. Example III: Magnitude of S11 and S21 as a function of S1.
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V I I C O N C L U S I O N

A hybrid sequential sampling scheme on scattered grids for
automatic construction of scalable macromodels for microwave
systems is presented in this paper. The method uses a passivity-
preserving scalable macromodeling method along with a sam-
pling based on well-conditioned simplicial refinement strategy
to build the scalable macromodels. The method is also com-
pared with previous hyperrectangular sampling method in
terms of several important parameters. Three pertinent numer-
ical examples show the modeling capability of the proposed
sequential sampling method with less computational resource
requirements. One of the example also demonstrates a design
optimization scenario using the generated macromodels.
These numerical examples show the advantages of using the
proposed method in generating accurate scalable macromodels
automatically from the EM simulation data, over the design
space of interest, with minimum computational resources.
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