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A BAYESIAN CLASSIFICATION
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In this article we use Bayesian classification and finite mixture models to extract
information from the MSI database (maintained by the Federal Reserve Bank of St. Louis)
and construct a new set of non-nested monetary aggregates (under the Divisia aggregation
procedure) based on statistical similarities and multidimensional structures. We also use
recent advances in the fields of applied econometrics, dynamical systems theory, and
statistical physics to investigate the relationship between the new money measures and
economic activity. The empirical results offer practical evidence in favor of this approach
to monetary aggregation.
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1. INTRODUCTION

In this paper we take a statistical approach to the problem of monetary aggregation.
This is different from the economic approach to statistical index number theory
pioneered by Diewert (1976) and used by Barnett (1980). We use an automatic
classification program (AutoClass) for cluster analysis, developed by Stutz and
Cheeseman (1996), to extract useful information from the MSI database main-
tained by the Federal Reserve Bank of St. Louis. AutoClass is an unsupervised
classification system based on Bayesian theory. Instead of partitioning cases, as
most clustering techniques do, the Bayesian approach searches in a model space for
the “best” class descriptions based on statistical similarities and multidimensional
structures. Bayesian classification theory is the recent focus of a study of the Bayes
group at the Ames Research Center—see http://ic.arc.nasa.gov/ic/projects/bayes-
group/autoclass for more details.

The Bayesian unsupervised classification approach avoids many of the lim-
itations of traditional cluster analysis. Bayesian inference utilizes the data to
generate “natural” classes by assigning a probability to class membership (called
fuzzy classification). Moreover, this approach allows one to rank alternative class
memberships. However, the Bayesian approach, like the traditional classification
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approaches, is also sensitive to the choice of attributes used to describe the object.
Despite this proviso, however, Bayesian classification improves substantially on
the subjectivity found in traditional classification approaches; conditional on the
choice of descriptive attributes, class quantity and membership are generated by
the data, instead of being arbitrary decisions made by the researcher.

The paper is divided into nine sections. Section 2 briefly discusses the Bayesian
classification approach to monetary aggregation, based on finite mixture models.
Section 3 discusses the data and presents the results of the Bayesian classification
analysis. In Section 4, we discuss the problem of the definition (aggregation) of
money and present three new monetary aggregates under the Divisia aggregation
procedure. In Section 5, we summarize some key facts regarding the dynamic
comovements between each of the three new money measures and U.S. industrial
production, using the methodology suggested by Kydland and Prescott (1990)
and Baxter and King (1999). In Section 6, we investigate the univariate and
multivariate time series properties of the variables (since these properties are
relevant for some problems of potential importance in the practical conduct of
monetary policy as well as for estimation and hypothesis testing) and test for
Granger causality. In Section 7, we examine the chaotic properties of the new
monetary aggregates, using the Nychka et al. (1992) Lyapunov exponent estimator
and its limit distribution. In Section 8, we apply the method of detrended fluctuation
analysis (DFA)—introduced by Peng et al. (1994) and adapted to the analysis of
long-range correlations in economic data by Serletis and Uritskaya (2007)—to
investigate the fractal structure of the new aggregates. The final section concludes
the paper and sketches the implications of our findings.

2. BAYESIAN CLASSIFICATION THEORY

Let x = {x1, . . . ,xI } be the data set, where i = 1, . . . , I indexes the number
of cases (or instances). Each xi contains a number of attributes (representing
measurements on some instance properties common to all instances) indexed
by k, k = 1, . . . , K , so that each xi is a (1 × K) vector of attribute values,
{xi1, . . . , xiK}, and x is an (I × K) matrix of data. It is assumed that x is sampled
from a heterogeneous population, the classes (C) of which are indexed by j ,
j = 1, . . . , J . The objective is to find the most probable classification—that is, to
cluster the I instances into an optimal number of classes.

In using Bayesian inference we combine prior information with sample infor-
mation, unlike classical statistical inference in which the observational (sample)
data constitute the only relevant information. As already noted, it is assumed
that the data are sampled from a population with J subgroups (or classes), with J

unknown—and that for each class to be identified there is a probability distribution
or density function for the attributes. We let F = F1, . . . ,FJ denote the mathe-
matical form of each of the J probability density functions and φ = φ1, . . . , φJ

the parameter set of the corresponding density function.
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We assume that Fj is weighted by a mixture model T —that is, the probability
distribution that any xi is a member of class j , Cj , regardless of its attribute values.
Letting p = p1, . . . , pJ , with

∑J
j=1 pj = 1, be the parameters of T indicating the

proportion of the population that is from Cj , that is, pj = P(xi ∈ Cj | p, T ); then
the likelihood of (observation) xi can be written as

P(xi | φ, p) = p1P(xi | φ1,F1)+ · · · pJ P (xi | φJ , FJ )

=
J∑

j=1

pjP (xi | xi ∈ Cj , φj , Fj ).

Let κ = (φ, p) be the set of parameters of the entire model and M = (F , T ),
with M ∈ S where S is the space of possible mixture models. Then the likelihood
function of the whole sample x can be written as

P(x | κ, M) =
∏

i

∑
j=1

pjP (xi | xi ∈ Cj , φj , Fj ).

The joint density function of the sample and the parameters can be written as

P(x,κ |M) = P(κ |M) P (x | κ,M)

= P(κ |M)
∏

i

∑
j=1

pjP (xi | xi ∈ Cj , φj ,Fj ), (1)

with the prior probability density function, incorporating all prior information,
expressed as P(κ |M) = P(p | T )P (φ |F), because p and φ are independent.

The objective is to find the posterior probability density function of the parame-
ters and the maximum posterior (MAP) parameter values. The posterior probability
density function of the parameters is

P(κ | x,M) = P(x,κ |M)

P (x |M)
= P(x,κ |M)∫

P(x,κ |M) dκ
,

and the posterior probability density function of the model given the sample is

P(M | x) = P(M, x)

P (x)
=

∫
P(x,κ |M)P (M)dκ

P(x)

∝
∫

P(x,κ |M) dκ = P(x |M). (2)

The proportionality in (2) holds when we assume the prior probability P(M) to
be uniform; this is a reasonable assumption, because we have no reason to favor
one model over another. For more details regarding the Bayesian classification
method, see Stutz and Cheeseman (1996).
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3. BAYESIAN CLASSIFICATION ANALYSIS

The natural place to begin is with the list of 26 assets that the Federal Reserve
currently uses in the construction of monetary aggregates—see Table 1. We use
monthly data from 1959:1 to 2002:12 obtained from the St. Louis MSI database,
maintained by the Federal Reserve Bank of St. Louis as a part of the Bank’s
Federal Reserve Economic Database (FRED). The data contain many missing
values, because some of the assets did not exist over the entire 44-year period
(see Table 1). AutoClass, however, is able to handle the missing values by treating
them as valid rather than an error in collection, thereby clustering the entire data
set, not just the data that are observed.

The four attributes that we used in AutoClass to classify each of the 26 monetary
asset cases include the monetary asset value (xt ), its percent change at an annual
rate (µt ), the asset’s user cost (πt ), and its velocity (Vt ). The percent change
at an annual rate between month t − 1 and the current month t is calculated as

TABLE 1. The 26 monetary assets from the Federal Reserve

Monetary asset Period

1 Currency 1959:01–2002:12
2 Travelers’ checks 1959:01–2002:12
3 Demand deposits 1959:01–2002:12
4 Other checkable deposits at commercial banks 1974:01–1985:12
5 Other checkable deposits at thrift institutions 1959:01–1985:12
6 Super now accounts at commercial banks 1983:01–1985:12
7 Super now accounts at thrift institutions 1983:01–1985:12
8 Other checkable deposits and super now accounts at banks 1986:01–2002:12
9 Other checkable deposits and super now accounts at thrifts 1986:01–2002:12

10 Money market deposit accounts at commercial banks 1982:01–1991:08
11 Money market deposit accounts at thrift institutions 1982:01–1991:08
12 Savings deposits at commercial banks 1959:01–1991:08
13 Savings deposits at thrift institutions 1959:01–1991:08
14 Savings deposits and money market deposit accounts at banks 1991:09–2002:12
15 Savings deposits and money market deposit accounts at thrifts 1991:09–2002:12
16 Retail money funds 1973:02–2002:12
17 Small denomination time deposits at commercial banks 1959:01–2002:12
18 Small denomination time deposits at thrift institutions 1959:01–2002:12
19 Repurchase agreements 1959:10–2002:12
20 Eurodollars 1959:01–2002:12
21 Large denomination time deposits 1959:01–2002:12
22 Institutional money funds 1974:01–2002:12
23 Saving bonds 1959:01–2002:12
24 Short-term treasury securities 1959:01–2002:12
25 Bankers’ acceptances 1959:01–2002:12
26 Commercial paper 1959:01–2002:12
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1,200 × [(xt/xt−1)−1], the user cost series were obtained from the MSI database,
and in calculating velocity we constructed a synthetic monthly GNP series by
multiplying the industrial production index (IPI) by the consumer price index
(CPI), and then calculated velocity as Vi = (IPI × CPI)/xi . Thus, we used 176
attributes—the 44 annual averages of each of the quantity, growth rate, user cost,
and velocity series.

The results of the Bayesian classification analysis are as follows:

Number of classes 2 3 4 5

Log probability −33,877.264 −33,660.219 −33,771.350 −33,827.509

where numbers in the second row are log posterior probabilities of possible classi-
fication models. Clearly, the classification with the largest probability groups the
data into three clusters, as shown in Table 2, with classes 1 and 2 having 10 assets
each and class 3 having 6 assets. In Table 3 we compare the results of the Bayesian
classification analysis with the Federal Reserve’s groupings. The main difference
between the two classification systems is that the Federal Reserve concentrates
on six nested levels of aggregation—M1A, M1, MZM, M2, M3, and L—whereas
the Bayesian classification is not nested, but rather three distinct groups of liquid

TABLE 2. AutoClass results

Class 1 Class 2 Class 3

Travelers’ checks Currency Other checkable deposits
at commercial banks

Money market deposit
accounts at commercial
banks

Demand deposits Other checkable deposits
at thrift institutions

Money market deposit
accounts at thrift
institutions

Savings deposits at
commercial banks

Super now accounts at
commercial banks

Savings deposits and money
market deposits at banks

Savings deposits at thrift
institutions

Super now accounts at
thrift institutions

Savings deposits and money
market deposits at thrifts

Small denomination time
deposits at banks

Checkable deposits and
super now accounts at
banks

Retail money funds Small denomination time
deposits at thrifts

Checkable deposits and
super now accounts at
thrifts

Repurchase agreements Large denomination time
deposits

Eurodollars Savings bonds
Institutional money funds Short-term treasury securities
Bankers’ acceptances Commercial paper
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TABLE 3. A comparison of the Federal Reserve and AutoClass groupings

MIA Class I
Currency Travelers’ checks
Demand deposits Money market deposit accounts at
Travelers’ checks commercial banks

Money market deposit accounts at
M1 = M1A + the following thrift institutions
Other checkable deposits at commercial banks Savings deposits and money market
Other checkable deposits at thrift institutions deposits at banks
Super now accounts at commercial banks Savings deposits and money market
Super now accounts at thrift institutions deposits at thrifts
Checkable deposits and super now accounts Retail money funds

at banks Repurchase agreements
Checkable deposits and super now accounts Eurodollars

at thrifts Institutional money funds
Bankers’ acceptances

MZM = M1 + the following
Money market deposit accounts at commercial Class 2

banks Currency
Money market deposit accounts at thrift Demand deposits

institutions Savings deposits at commercial banks
Savings deposits at commercial banks Savings deposits at thrift institutions
Savings deposits at thrift institutions Small denomination time deposits at
Savings deposits and money market deposits commercial banks

at banks Small denomination time deposits at
Savings deposits and money market deposits thrift institutions

at thrifts Large denomination time deposits
Retail money funds Saving bonds

Short-term treasury securities
M2 = MZM + the following Commercial paper
Small denomination time deposits at

commercial banks Class 3
Small denomination time deposits at Other checkable deposits at commercial

thrift institutions banks
Other checkable deposits at thrift

M3 = M2 + the following institutions
Repurchase agreements Super now accounts at commercial banks
Eurodollars Super now accounts at thrift institutions
Large denomination time deposits Checkable deposits and super now
Institutional money funds accounts at banks

Checkable deposits and super now
L = M3 + the following accounts at thrifts
Saving bonds
Short-term treasury securities
Bankers’ acceptances
Commercial paper
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assets based on statistical similarities and multidimensional structures. Note that
our Class 3 is identical to the Fed’s M1 net of M1A money measure.

4. THE NEW MONETARY AGGREGATES

The next problem in the construction of monetary aggregates is the selection of a
monetary aggregation procedure. The monetary aggregates currently in use by the
Federal Reserve are simple-sum indices in which all monetary components are
assigned a constant and equal (unitary) weight. This summation index, however,
implies that all monetary components contribute equally to the money total and
it views all components as dollar for dollar perfect substitutes. Barnett (1980),
however, derived the theoretical linkage between monetary theory and aggrega-
tion and index number theory and constructed monetary aggregates based upon
Diewert’s (1976) class of superlative quantity index numbers. The new aggregates
are Divisia quantity indices that are elements of the superlative class—see Barnett
et al. (1992), Barnett and Serletis (2000b), or Serletis (2007) for more details
regarding the source and underlying microeconomic theory of the Divisia index.

Here, we use the theoretically consistent Divisia index to construct our Class 1,
Class 2, and Class 3 monetary aggregates. Figure 1 provides graphical represen-
tations of these three money measures under the Divisia aggregation procedure.
We also calculated percent changes at an annual rate, 1200 × [(Mt/Mt−1) − 1],
and percent changes from one year ago, 100 × [(Mt/Mt−12) − 1], and noted that
money growth (irrespective of which money measure is used) was less volatile
shortly after the change in the Fed’s operating procedures and the deemphasis of
monetary aggregates in October 1982. In fact, during the October 1982–late 1992
period when the Fed used borrowed reserves (discount loan borrowings) as an
operating target and during the federal funds targeting regime since late 1992, the
Fed produced surprisingly smooth money growth, according to the Class 1, Class 2,
and Class 3 money measures.

5. THE STYLIZED MONEY FACTS

In this section we investigate the basic stylized facts of the (Divisia) Class 1,
Class 2, and Class 3 money measures, using stationary cyclical deviations based
on the Hodrick and Prescott (1980) and the Baxter and King (1999) filters; see
Hodrick and Prescott (1980) and Baxter and King (1999) for more details. In
doing so, we define the Class 1, Class 2, and Class 3 cycle regularity as the
dynamic comovement of the cyclical component of each of these money measures
and the cycle. In particular, the business cycle regularities that we consider are
autocorrelations and dynamic cross correlations between the cyclical component
of each money measure, on the one hand, and the cyclical component of U.S.
industrial production, on the other.

We measure the degree of comovement of each money measure with the cycle
by the magnitude of the correlation coefficient ρ(j), j ∈ {0,±1,±2, . . .}. The
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FIGURE 1. (Divisia) Class 1, Class 2, and Class 3 money measures.
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contemporaneous correlation coefficient—ρ(0)—gives information on the degree
of contemporaneous comovement. In particular, if ρ(0) is positive, zero, or nega-
tive, we say that the series is procyclical, acyclical, or countercyclical, respectively.
The cross-correlation coefficient, ρ(j), j ∈ {±1,±2, . . .}, gives information on
the phase shift of money relative to the cycle. If |ρ(j)| is maximum for a positive,
zero, or negative j , we say that the cycle of money is leading the cycle by j

periods, is synchronous, or is lagging the cycle by j periods, respectively.
Table 4 reports the contemporaneous correlations as well as the cross correla-

tions based on the Hodrick–Prescott (Panel A) and Baxter–King (Panel B) filters,
at lags and leads of 1, 2, 3, 6, 9, and 12 months, between the cyclical component
of each of the (Divisia) Class 1, Class 2, and Class 3 money measures and the
cyclical component of U.S. industrial production. Clearly, irrespective of the filter
used, these money measures appear to be acyclical. This is consistent with the
evidence reported by Serletis and Uritskaya (2007) using (monthly data and) the
monetary aggregates most commonly used by the Federal Reserve.

With these results in mind, in the next section we investigate whether monetary
impulses Granger cause the level of economic activity—in doing so, we inter-
pret causality in terms of predictability and not as suggesting the existence of
underlying structural relationships between the variables.

6. GRANGER CAUSALITY TESTS

The first step in testing for Granger causality is to test for the presence of a
stochastic trend in the autoregressive representation of each (logged) individual
time series. In Table 5 we report p-values [based on the response surface estimates
given by MacKinnon (1994)] for the augmented weighted symmetric (WS) unit
root test [see Pantula et al. (1994)], the augmented Dickey–Fuller (ADF) test [see
Dickey and Fuller (1981)], and the nonparametric Z(t̂α) test of Phillips (1987)
and Phillips and Perron (1988)—all the unit root regression equations include
deterministic components. For the WS and ADF tests, the optimal lag length is
taken to be the order selected by the Akaike information criterion (AIC) plus
2—see Pantula et al. (1994) for details regarding the advantages of this rule for
choosing the number of augmenting lags. The Z(t̂α) test is done with the same
Dickey–Fuller regression variables, using no augmenting lags.

Based on the p-values for the WS, ADF, and Z(t̂α) unit root tests reported
in Panel A of Table 5, the null hypothesis of a unit root in levels cannot be
rejected and we conclude that all series have at least one unit root. We also test
the null hypothesis of a second unit root (in Panel B of Table 5) by testing the
null hypothesis of a unit root in the (logarithmic) first differences of the series. We
conclude that the differenced series are stationary, except for the CPI series, which
appears to have two unit roots [suggesting that the inflation rate is integrated of
order one, or I (1) in the terminology of Engle and Granger (1987)]. The decision
on the order of integration of the series is documented in the last column of
Table 5.
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TABLE 4. Cyclical correlations of Divisia Class 1, Class 2, and Class 3 money measures with industrial production

ρ(xt , yt+j ), j = −12, −9, −6, −3, −2, −1, 0, 1, 2, 3, 6, 9, 12

j = −12 j = −9 j = −6 j = −3 j = −2 j = −1 j = 0 j = 1 j = 2 j = 3 j = 6 j = 9 j = 12

Panel A. Hodrick and Prescott filter
Class 1 −.017 −.072 −.058 −.002 −.000 .005 .004 .006 .005 .012 .012 .002 −.044
Class 2 −.143 −.100 −.032 .042 .077 .119 .160 .203 .232 .250 .271 .253 .174
Class 3 −.174 −.081 .013 .094 .109 .123 .128 .145 .157 .155 .085 .001 −.012

Panel B. Baxter and King bandpass filter
Class 1 .005 −.059 −.010 .030 −.022 .006 .008 −.013 −.003 .030 .011 −.030 −.063
Class 2 −.025 .062 .020 −.002 −.072 .160 −.157 .120 .008 −.057 −.039 −.010 .202
Class 3 .098 −.036 .047 −.036 −.095 .218 −.228 .152 −.012 −.067 −.080 −.089 .061

Note: Sample period, monthly data 1959:1–2002:12. xt = money, yt = industrial production.
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TABLE 5. Unit root test results

A. Log levels B. Logged differences

Variable WS ADF Z(tα̂) WS ADF Z(tα̂) Decision

Class 1 0.990 0.987 0.995 0.000 0.000 0.000 I(1)
Class 2 0.999 0.988 0.999 0.000 0.000 0.000 I(1)
Class 3 0.998 0.995 0.999 0.000 0.000 0.000 I(1)

CPI 0.999 0.813 0.985 0.483 0.407 0.000 I(2)
CPI × IPI 0.999 0.992 0.994 0.000 0.000 0.000 I(1)
IPI 0.938 0.111 0.529 0.000 0.000 0.000 I(1)

Notes: Sample period, monthly data 1959:1–2002:12. Numbers in the WS, ADF, and Z(tα̂) columns are tail areas
of unit root tests.

Next we explore for shared stochastic trends between each of the Class 1,
Class 2, and Class 3 money measures and each of the other I (1) variables, using
methods recommended by Engle and Granger (1987). That is, we test the null
hypothesis of no cointegration (against the alternative of cointegration) between
each money measure and the inflation rate (INFL), nominal income, and real
income, using the Engle and Granger (1987) two-step procedure. In particular, we
regress one variable against the other (including a constant and a trend variable
in the regression) to obtain the OLS regression residuals ζ̂t . A test of the null
hypothesis of no cointegration is then based on testing for a unit root in ζ̂t , using
the ADF test (with the number of augmenting lags being chosen based on the
AIC+2 rule mentioned earlier), and for asymptotic p-values, using the coefficients
in MacKinnon (1994). The cointegration tests are first done with one variable as
the dependent variable in the cointegrating regression and then repeated with the
other variable as the dependent variable. The results in Table 6 indicate that the
null hypothesis of no cointegration between each of the (Divisia) Class 1, Class 2,
and Class 3 money measures and each of the INFL, CPI×IPI, and IPI series cannot
be rejected (at conventional significance levels).

Since we are not able to find evidence of cointegration, to avoid the spu-
rious regression problem we test for Granger causality in the context of the

TABLE 6. Marginal significance levels of cointegration tests between
money and INFL, CPI × IPI, and IPI

Money and INFL Money and CPI × IPI Money and IPI

Money INFL Money CPI × IPI Money IPI

Class 1 0.376 0.352 0.599 0.683 0.994 0.245
Class 2 0.775 0.518 0.218 0.265 0.996 0.269
Class 3 0.347 0.241 0.711 0.716 0.997 0.254

Notes: Sample period, monthly data 1959:1–2002:12. Low p-values indicate cointegration.
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TABLE 7. Marginal significance levels of Granger causality tests between money
and INFL, CPI × IPI, and IPI

Money to INFL Money to CPI × IPI Money to IPI

AIC lags p-value AIC lags p-value AIC lags p-value

Class 1 (12,3) 0.001 (3,1) 0.000 (7,1) 0.000
Class 2 (12,1) 0.005 (3,1) 0.000 (5,1) 0.000
Class 3 (12,8) 0.008 (3,1) 0.000 (7,1) 0.000

Notes: Sample period, monthly data 1959:1–2002:12. Numbers in parentheses indicate the optimal (based on the
AIC) lag specification. Low p-values imply strong marginal predicitve power.

system

�zt = α1 +
r∑

j=1

α11(j)�zt−j +
s∑

j=1

α12(j)�mt−j + εzt , (3)

where α1, α11(j), and α12(j) are all parameters and εzt is a white noise disturbance.
We use mt to denote logged money and zt to denote the inflation rate (INFL) and
the logarithm of each of CPI × IPI and IPI.

In the context of (3) the causal relationship between zt and mt can be determined
by first fitting equation (3) by ordinary least squares and obtaining the unrestricted
sum of squared residuals, SSRu. Then, by running another regression equation
under the null hypothesis that all the coefficients of the lagged values of �mt are
zero, the restricted sum of squared residuals, SSRr, is obtained. The statistic

(SSRr − SSRu)/s

SSRu/(T − 1 − r − s)

has an asymptotic F -distribution with numerator degrees of freedom s and de-
nominator degrees of freedom (T − 1 − r − s). T is the number of observations,
r represents the number of lags of �zt in equation (3), s represents the number of
lags for �mt , and 1 is subtracted out to account for the constant term in equation
(3). If the null hypothesis cannot be rejected, then the conclusion is that the data
do not show causality. If the null hypothesis is rejected, then the conclusion is that
the data do show causality.

We used the AIC with a maximum value of 12 for each of r and s in (3) and
by running 144 regressions for each bivariate relationship we chose the one that
produced the smallest value for the AIC. We present these optimal lag length
specifications in Table 7 together with p-values for Granger causality F -tests
based on the optimal specifications. Clearly, the Class 1, Class 2, and Class 3
money measures cause the inflation rate, as well as CPI × IPI and IPI (at the 1%
level). This is also consistent with most of the empirical evidence reported in the
literature regarding commonly used monetary aggregates.
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7. CHAOTIC DYNAMICS

Barnett and Chen (1988) claimed successful detection of chaos in the U.S. Di-
visia monetary aggregates. This published claim of successful detection of chaos
has generated considerable controversy and also motivated a number of other
investigations—see, for example, Barnett et al. (1995, 1997), Serletis (1995), and
Serletis and Andreadis (2000), among others—often with contradictory results.
Barnett and Serletis (2000a) provide an extensive discussion of the controversies
that have arisen about the available tests and results.

Sensitive dependence on initial conditions is the most relevant property of chaos
and its characterization in terms of Lyapunov exponents is the most satisfactory
from a computable perspective. Lyapunov exponents measure average exponential
divergence or convergence between trajectories that differ only in having an “in-
finitesimally small” difference in their initial conditions and remain well-defined
for noisy systems. A bounded system with a positive Lyapunov exponent is one
operational definition of chaotic behavior. Over the years, a number of methods
have been introduced for calculating Lyapunov exponents. Until recently, how-
ever, it was not possible to investigate the statistical significance of the sign of
the Lyapunov exponent point estimates. Thus, it was difficult to tell whether the
positive Lyapunov exponents were evidence of chaotic behavior.

More recently, Serletis and Shintani (2006) have followed the contributions
by Whang and Linton (1999) and Shintani and Linton (2003, 2004) to construct
the standard error for the Nychka et al. (1992) dominant Lyapunov exponent and
tested for chaos in Canadian and U.S. simple-sum, Divisia, and currency equivalent
money and velocity measures—see Rotemberg et al. (1995) regarding the currency
equivalent money measures. They have reported statistically significant evidence
against low-dimensional chaos. As Barnett (2006) puts it, the Serletis and Shintani
(2006) paper “is important, since it resolves some of the problems associated with
a long standing controversy. In fact the paper is close to being the ‘last word’ on
the subject.”

In this section, we test for chaos in the Class 1, Class 2, and Class 3 monetary
aggregates. In doing so, we follow Serletis and Shintani (2006) and construct
the standard error for the Nychka et al. (1992) dominant Lyapunov exponent for
the logged first differenced money measures, thereby providing a statistical test
for chaos. As in Serletis and Shintani (2006), we report both global and local
Lyapunov exponents—it has been argued that local Lyapunov exponents provide
a more detailed description of the system’s dynamics, in the sense that they can
identify differences in short-term predictability among regions in the state space.
See Serletis and Shintani (2006) regarding the technical details of the Whang and
Linton (1999) and Shintani and Linton (2003, 2004) approach to testing for chaos.

Lyapunov exponent point estimates, along with their t-statistics (in parentheses),
are displayed in Tables 8–10 for the logarithmic first differences of the data, as in
Serletis and Shintani (2006). The results are presented for dimensions 1 through
6, with the optimal value of the number of hidden units (k) in the neural net
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TABLE 8. Lyapunov exponent estimates for Class 1

Number of hidden units

k = 1 k = 2 k = 3
NLAR
lag (m) BIC Full Block BIC Full Block BIC Full Block

1 −7.822 −3.461 −3.328 −7.989 −2.296 82.151 −7.988 −1.531 −1.529
(−19.214) (−6.153) (−17.346) (−5.892) (−14.628) (−5.509)
[<0.000] [<0.000] [<0.000] [<0.000] [<0.000] [<0.000]

2 −7.986 −0.534 −0.434 −7.939 −0.499 −0.480 −7.983 −0.018 −0.018
(−6.464) (−2.032) (−7.190) (−4.031) (−0.292) (−0.164)
[<0.000] [0.026] [<0.000] [0.005] [0.385] [0.436]

3 −7.809 −0.887 −0.741 −8.068 0.084 0.144 −8.079 −0.084 0.045
(−20.146) (−3.704) (0.990) (0.651) (−1.182) (0.244)
[<0.000] [<0.000] [0.839] [0.742] [0.119] [0.596]

4 −8.121 −0.589 −0493 −8.311 0.215 0.344 −8.438 0.163 0.285
(−14.155) (−2.453) (5.205) (2.532) (5.673) (3.116)
[<0.000] [0.007] [1.000] [0.994] [1.000] [0.999]

5 −7.901 −0.501 −0.369 −8.115 0.255 0.383 −8.167 0.482 0.637
(−8.577) (−1.903) (7.113) (2.892) (9.784) (3.834)
[<0.000] [0.029] [1.000] [0.998] [1.000] [1.000]

6 −8.153 −0.399 −0.216 −8.400 0.263 0.356 −8.349 0.510 0.643
(−8.952) (−1.772) (7.462) (3.237) (12.004) (3.652)
[<0.000] [0.038] [1.000] [0.999] [1.000] [1.000]

Note: Sample size T = 525. For the full sample estimation (Full), the largest Lyapunov exponent estimates are presented with t statistics in parentheses and p-value for H0 : λ ≥ 0
in brackets. For the block estimation (Block), median values are presented; the number of blocks was set equal to 10. QS kernel with optimal bandwidth (Andrews, 1991) is used
for the heteroskedasticity and autocorrelation consistent covariance estimation.
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TABLE 9. Lyapunov exponent estimates for Class 2

Number of hidden units

k = 1 k = 2 k = 3
NLAR
lag (m) BIC Full Block BIC Full Block BIC Full Block

1 −7.822 −1.021 −0.957 −7.989 −0.475 −0.478 −7.988 −0.389 −0.433
(−20.839) (−7.132) (−8.263) (−5.124) (−5.074) (−2.640)
[<0.000] [<0.000] [<0.000] [<0.000] [<0.000] [0.006]

2 −7.986 −1.772 −1.806 −7.939 −0.477 −0.602 −7.983 −0.588 −0.768
(−10.916) (−3.675) (−3.268) (−1.554) (−3.883) (−1.948)
[<0.000] [<0.000] [0.001] [0.061] [<0.000] [0.026]

3 −7.809 0.091 0.126 −8.090 0.092 0.127 −8.143 0.063 0.095
(4.892) (2.015) (5.024) (2.043) (2.075) (1.419)
[1.000] [0.978] [1.000] [0.979] [0.981] [0.922]

4 −8.278 −0.115 −0.047 −8.288 0.166 0.343 −8.307 −0.070 −0.039
(−5.479) (−0.675) (4.245) (3.047) (−2.528) (−0.606)
[<0.000] [0.258] [1.000] [0.999] [0.006] [0.286]

5 −7.908 −0.321 −0.129 −8.240 0.032 0.127 −8.166 0.030 0.129
(−5.615) (−1.409) (1.358) (2.130) (1.266) (2.139)
[<0.000] [0.080] [0.913] [0.983] [0.897] [0.984]

6 −8.457 −0.237 −0.079 −8.337 0.059 0.177 −8.344 0.060 0.180
(−5.707) (−0.789) (3.624) (3.073) (3.650) (3.147)
[<0.000] [0.216] [1.000] [0.999] [1.000] [0.999]

Note: Sample size T = 525. For the full sample estimation (Full), the largest Lyapunov exponent estimates are presented with t statistics in parentheses and p-value for H0 : λ ≥ 0 in
brackets. For the block estimation (Block), median values are presented; the number of blocks was set equal to 10. QS kernel with optimal bandwidth [Andrews (1991)] is used for the
heteroskedasticity and autocorrelation consistent covariance estimation.

https://doi.org/10.1017/S1365100508080024 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S1365100508080024


A
BAY

ESIA
N

A
PPR

O
A

C
H

TO
M

O
N

ETA
RY

A
G

G
R

EG
ATIO

N
215

TABLE 10. Lyapunov exponent estimates for Class 3

Number of hidden units

k = 1 k = 2 k = 3
NLAR
lag (m) BIC Full Block BIC Full Block BIC Full Block

1 −7.822 −1.675 −1.528 −7.987 −0.063 0.189 −7.987 0.108 0.212
(−10.694) (−4.979) (−0.385) (0.558) (1.210) (1.985)
[<0.000] [<0.000] [0.350] [0.712] [0.887] [0.924]

2 −7.985 −1.252 −1.171 −7.939 −0.542 −0.458 −7.983 −0.400 −0.241
(−40.193) (−10.116) (−13.204) (−3.667) (−7.434) (−2.191)
[<0.000] [<0.000] [<0.000] [<0.000] [<0.000] [<0.014]

3 −7.806 −0.411 −0.370 −8.076 0.421 0.649 −8.141 0.489 0.739
(−13.940) (−3.276) (3.713) (1.930) (4.148) (2.387)
[<0.000] [0.001] [1.000] [0.972] [1.000] [0.991]

4 −8.299 −0.064 0.006 −8.335 0.248 0.297 −8.407 0.286 0.281
(−2.358) (0.049) (5.335) (3.410) (5.210) (2.564)
[0.009] [0.520] [1.000] [0.999] [1.000] [0.995]

5 −7.903 −0.453 −0.271 −8.129 0.304 0.380 −8.163 0.417 0.605
(−4.954) (−0.940) (6.482) (2.930) (4.609) (2.627)
[<0.000] [0.174] [1.000] [0.998] [1.000] [0.996]

6 −8.294 −0.201 0.080 −8.559 0.343 0.388 −8.275 0.540 0.775
(−2.411) (0.253) (8.947) (3.498) (4.982) (2.590)
[0.008] [0.600] [1.000] [1.000] [1.000] [0.994]

Note: Sample size T = 525. For the full sample estimation (Full), the largest Lyapunov exponent estimates are presented with t statistics in parentheses and p-value for H0 : λ ≥ 0
in brackets. For the block estimation (Block), median values are presented; the number of blocks was set equal to 10. QS kernel with optimal bandwidth [Andrews (1991)] is used
for the heteroskedasticity and autocorrelation consistent covariance estimation.
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being chosen by minimizing the BIC criterion. p-values for the null hypothesis
H0 : λ ≥ 0 are also reported in brackets. The Full column under each value of k

shows the estimated largest Lyapunov exponent using the full sample. The Block
column shows median values for the block estimation, with the number of blocks
(B) being set equal to 8.

In general, the reported Lyapunov exponent point estimates are negative and we
reject the null hypothesis of chaotic behavior. Of course, the estimates depend on
the choice of the dimension parameter m. As m increases, the Lyapunov exponent
point estimates increase in value. The presence, however, of dynamic noise makes
it difficult and perhaps impossible to distinguish between (noisy) high-dimensional
chaos and pure randomness. For this reason, as in Serletis and Shintani (2006), we
do not pursue the investigation of high-dimensional chaos in the present paper.

8. FRACTAL STRUCTURE

Recently, Serletis and Uritskaya (2007) have extended the work in Serletis and
Shintani (2006) by using a statistical physics approach—namely detrended fluctua-
tion analysis (DFA), introduced by Peng et al. (1994)—to investigate the temporal
fractal structure of sum, Divisia, and CE money and velocity measures in the
United States. DFA is known as a powerful statistical tool for detecting fractal
correlations in various types of data, including financial, geophysical, and physi-
ological signals.

In this section, we present evidence on the fractal structure of the (Divisia)
Class 1, Class 2, and Class 3 money measures, using DFA analysis as in Serletis
and Uritskaya (2007), and compare the results to those reported by Serletis and
Uritskaya for the commonly used monetary aggregates. Let us denote the loga-
rithmic first differences of the data by z(t), t = 1, . . . , N . The first step of the
DFA technique consists of creating a running sum of the z(t) fluctuations,

y(k) =
k∑

t=1

[z(t) − 〈z〉],

in which 〈z〉 is the average value of the series z(t) and k = 1, . . . , N . y(k) is then
divided into M nonoverlapping boxes of equal length n—the boxes are indexed
by m = 1, . . . ,M and their starting times are denoted as kn,m, where kn,m=1 = 1
and kn,m+1 = kn,m + l + 1. For each mth box of size n, the least-squares line
yn,m(k) representing a local linear trend in that box is fitted to the data. Next, the
integrated series y(k) is detrended by subtracting yn,m(k), and its root-mean-square
fluctuation is calculated as

F(n) = 1

M

M∑
m=1

√√√√√ 1

N

kn,m+n∑
k=kn,m

[y(k) − yn,m(k)]2.
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This computation is repeated over all box sizes in order to characterize the rela-
tionship between the average detrended fluctuation F(n) and the time scale n.

Typically, F(n) will increase with the box size. A linear relationship between
F(n) and n on a log–log plot indicates the presence of power law (fractal) scaling
F ∼ nα . The value of α is related to the slope β of the 1/f β power spectrum of
the growth rate time series z(t) by β = 2α − 1 and to the fractal dimension of the
original series x(t) by D = 2 − α. In particular, if α = 0.5 (and β = 0), z(t) is
completely uncorrelated (white noise), and the original monetary aggregate x(t)

can be represented as a 1/f 2 noise with D = 1.5—a random walk series.
The detrended fluctuation analysis functions, F(n), for the (Divisia) Class 1,

Class 2, and Class 3 money measures are shown in Figure 1—the analysis has been
applied to logged first differenced series as explained above. In all cases, F(n) has
an approximate linear form in double logarithmic coordinates, indicating its power-
law temporal scaling. Estimates of the fractal exponent α are 0.7269, 0.8225, and
0.8050 for the Class 1, Class 2, and Class 3 money measures, respectively.

As already noted, α characterizes long-range correlations in the studied time
series. Clearly the estimated exponents are far from that of a random walk (0.5).
Comparing our results with those reported by Serletis and Uritskaya (2007),
we note that they present evidence showing that simple-sum and Divisia money
measures have almost integer fractal dimensions, whereas the currency equivalent
monetary aggregates have fractal dimensions close to that of a random walk. This
suggests that the (Divisia) Class 1, Class 2, and Class 3 money measures have
different correlation structures than the monetary aggregates commonly used by
the Fed and that this structure could potentially be exploited for monetary policy
purposes.

9. CONCLUSION

This article exploits a new automated Bayesian classification system to construct
monetary aggregates. We started with a list of 26 monetary assets that go into the
Federal Reserve’s monetary aggregates. Based on four attributes (value, percent
change, user cost, and velocity), AutoClass sorts the monetary assets into three
nonoverlapping groups, and then a Divisia aggregate is constructed from the
components of each group. At the end we have three new (non-nested) monetary
aggregates (under the Divisia aggregation procedure) whose subcomponents have
similar properties. This is a novel and interesting way to construct monetary
aggregates, especially given the ability of AutoClass to handle missing values and
new instruments.

We found evidence that the new money measures are not cointegrated with the
price level and nominal income (suggesting that velocity and real money balances
are nonstationary quantities and that monetary targeting will be problematic).
The estimation, however, of autoregressive causality models showed that the new
aggregates are useful in anticipating future movements in macroeconomic activity.
We have also investigated the dynamic structure of the new money measures to

https://doi.org/10.1017/S1365100508080024 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100508080024


218 APOSTOLOS SERLETIS

address disputes about the presence of chaos in monetary aggregates. We have
found statistically significant evidence against low-dimensional chaos, consistent
with the evidence reported by Serletis and Shintani (2006) for the aggregates most
commonly used by the Fed. Finally, we have used a statistical physics technique
to investigate the correlation structure of the new aggregates and compared our
results to those presented by Serletis and Uritskaya (2007) for the MSI sum,
Divisia, and currency equivalent money measures. Overall, the empirical results
offer practical evidence in favor of this new approach to monetary aggregation.
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