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Many reef coral diseases have been described affecting corals in the wild, several of which have been associated with causal
agents based on experimental inoculation and testing of Koch’s postulates. In the aquarium industry, many coral diseases and
pathologies are known from the grey literature but as yet these have not been systematically described and the relationship to
known diseases in the wild is difficult to determine. There is therefore scope to aid the maintenance and husbandry of corals in
aquaria by informing the field of the scientifically described wild diseases, if these can be reliably related. Conversely, since the
main driver to identifying coral diseases in aquaria is to select an effective treatment, the lessons learnt by aquarists on which
treatments work with particular syndromes provides invaluable evidence for determining the causal agents. Such treatments
are not commonly sought by scientists working in the natural environment due the cost and potential environmental impacts
of the treatments. Here we review both wild and aquarium diseases and attempt to relate the two. Many important aquarium
diseases could not be reconciled to those in the wild. In one case, however, namely that of the ciliate Helicostoma sp. as a
causal agent of brown jelly syndrome in aquarium corals, there may be similarities with pathogenic agents of the wild
coral diseases, such as white syndrome and brown band syndrome. We propose that Helicostoma is actually a misnomer,
but improved understanding of this pathogen and others could benefit both fields. Improved practices in aquarium mainten-
ance and husbandry would also benefit natural environments by reducing the scale of wild harvest and improving the poten-
tial for coral culture, both for the aquarium industry and for rehabilitation programmes.
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C O R A L D I S E A S E S — ’ W I L D T Y P E S ’

The study of coral diseases encompasses many different disci-
plines as it involves several aspects of complex host–pathogen
interactions within the environment. Diseases and syndromes
in corals have increased in number over recent years (Harvell
2007), however since the first observations of diseases affect-
ing reef corals in the late 1970s and early 1980s (Ducklow &
Mitchell, 1979; Peters et al., 1983; Rutzler & Santavy, 1983;
Antonius, 1985), the research priorities have changed substan-
tially; from simple and general descriptions of disease signs in
the field (Rutzler & Santavy, 1983) to microbial studies based
on culture and/or non-culturable methods (Lesser et al., 2007;
Garren et al., 2009; Kvennefors et al., 2010). Since the early
1990s there has been increasing effort to characterize coral
disease, including the application of novel molecular tools to
confirm the identities of pathogens and apply Koch’s postu-
lates, thereby aiding in the understanding of the mechanisms
of the host responses and resistance to particular diseases and
pathogenic causal agents (Fredericks & Relman, 1996).
Currently 18 coral diseases have been identified (Bourne
et al., 2009), yet only a few of these have been attributed to
any particular causal agent (Kushmaro et al., 2001;
Ben-Haim & Rosenberg, 2002; Cooney et al., 2002;
Ben-Haim et al., 2003a; Luna et al., 2007; Sussman et al.,
2008), and in some cases the literature is confused with

different authors ascribing different causal agents to the
same disease (Luna et al., 2007, 2010; Sussman et al., 2008).

White band type __ (Denner et al., 2003), white pox
(Patterson et al., 2002; Lyndon, 2003; Sutherland & Ritchie,
2004), aspergillosis (Kirkwood et al., 2010) and white plague
type __ (Richardson et al., 1998; Denner et al., 2003) are
believed to be caused by known bacterial pathogens
(Richardson et al., 1998; Rosenberg & Ben-Haim, 2002;
Weil et al., 2006), and the seasonal bleaching of Oculina pata-
gonica and Pocillopora damicornis has been proposed to be
caused by Vibrio shiloi and V. coralliilyticus respectively
(Rosenberg & Ben-Haim, 2002; Bourne & Munn, 2005),
although this is disputed (Ainsworth et al., 2008). Some dis-
eases may be caused by a single agent, which can be amenable
to investigation via Koch’s postulates (Sussman et al., 2008).
However, others appear to be caused by a complex association
of microbes. For example, black band disease, found through-
out the Caribbean and the Indo-Pacific, appears to contain at
least 50 different bacterial types within the disease lesion
(Sekar et al., 2006). The current lack of baseline data on
coral–microbial associations of healthy corals (Sweet et al.,
2011a), coupled with the highly diverse microbial commu-
nities often associated with many coral diseases, makes a
definitive comparison between coral diseases, often with
similar disease signs, very difficult. Historically, the focus of
coral disease research has primarily been on bacterial and
fungal infections, whereas only recently have other microor-
ganisms been studied. These include the infection of trema-
todes on Porites sp. (Aeby, 2002, 2003, 2007; Palmer et al.,
2009) and more frequently the numerous reports of
ciliate-associated diseases both in the Indo-Pacific and the
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Caribbean (Croquer et al., 2006a, b; Cooper et al., 2007;
Bourne et al., 2008; Page & Willis, 2008; Qiu et al., 2010).

With such a diversity of potential causal agents, and very
little research that has located these potential agents to the
specific sites and mechanisms of pathogenesis, it is extremely
difficult to follow these pathogens through the environment to
determine their reservoirs and modes of transmission. Several
studies have detected proposed coral pathogens in healthy
corals (Ritchie & Smith, 2004; Bourne & Munn, 2005; Klaus
et al., 2005; Ritchie, 2006; Sweet et al., 2011b), suggesting
that multiple factors in addition to pathogen exposure may
be important to disease onset. Further complication arises
since diseases are often identified by their symptoms alone
leading to confusion over field identification of different
disease lesions (Lindop et al., 2008), making comparisons
between studies difficult.

Ciliates and other protozoans have only recently been
associated with diseases of corals. Skeleton-eroding band
(SEB) was not only the first coral disease to be shown to be
caused by a protozoan, but the first to be identified as being
caused by a eukaryote (Antonius & Lipscomb, 2001). SEB
is a progressive disease, widespread throughout the
Indo-Pacific with high local prevalence (Page & Willis,
2008). The disease is characterized by a skeletal-eroding
lesion with a speckled black band composed of the empty
loricae (shell-like housings) of the folliculinid ciliate,
Halofolliculina corallasia (Winkler et al., 2004). More recently,
another ciliate infection in the Indo-Pacific, brown band syn-
drome (BrB), has been described. BrB is widespread in parts of
the Great Barrier Reef and known to effect three major coral
families: Acroporidae, Pocilloporidae and Faviidae (Bourne
et al., 2008). This ciliate, identified as a member of the subclass
Scuticociliatia (Bourne et al., 2008) and only recently
described as a novel species Porpostoma guamensis (Lobban
et al., 2011), has been shown to ingest intact symbiotic algae
of the coral and is responsible for the visible symptoms of
this disease (a variable brown band). Ciliates have also been
shown to invade the tissues of corals after damage by preda-
tors, such as the feeding scars left by the crown-of-thorn’s
star fish Acanthastar planci (Nugues & Bak, 2009) and
devour the tissues of coral spats (Cooper et al., 2007). These
findings further suggest that these organisms have an overall
negative effect on coral population dynamics, by increasing
post-settlement mortality. In contrast, other protozoans,
identified as stramenopile protists, have been shown to be
natural associates of corals, found both on the coral surface
and within the tissues (Kramarsky-Winter et al., 2006).

The first evidence of a coral–protozoan association in the
Caribbean was reported in 2002, when a sequence matching
with the phylum Apicomplexa was found in tissues of
Montastraea annularis (Toller et al., 2002). Despite this pro-
tozoan being related to coccidians, which are known to be
highly virulent parasites, the nature of its interaction with
corals remains largely unknown. In 2006, new evidence
arose to show that ciliate infections were not exclusive to
the Indo-Pacific. Folliculinid ciliates in the genus
Halofolliculina were reported for the first time affecting over
26 Caribbean reef-building coral species (Croquer et al.,
2006b). Although it is still to be determined whether this
Caribbean ciliate infection (CCI) is the same as SEB in the
Indo-Pacific, their morphology, life cycle and patterns of
infection are similar. In terms of pathology, both SEB and
CCI have been shown to produce tissue mortality and in the

particular case of CCI a negative effect on tissue regeneration
(Page & Willis, 2008; Rodriguez et al., 2009). Both diseases
have been shown to transmit directly from infected to suscep-
tible hosts (Page et al., unpublished results) with injuries
(Page & Willis, 2008; Rodriguez et al., 2009) and temperature
(Rodriguez et al., 2009) enhancing transmission rates. Both
SEB and CCI are widespread and occur across bioregions
(Willis et al., 2004; Winkler et al., 2004; Croquer & Weil,
2009), affecting a wide range of coral hosts which is compar-
able to the most virulent of the bacterial diseases (Weil, 2004).
Thus, increasing evidence indicates that ciliate infections are a
significant problem for coral reef health, yet Koch’s postulates
have not been fulfilled for any of the ciliates associated with
coral lesions, further complicating the problem because
mixed ciliate communities have been reported thriving upon
and/or underneath infected tissues.

A suite of coral pathologies, termed white syndrome (WS)
in the Indo-Pacific and ‘white’ diseases (commonly, white
plague and white band disease) are ecologically important
and have caused widespread coral mortality. The white syn-
dromes have been correlated with elevated temperature
anomalies; however, there is conflicting evidence over the
causal agents of these syndromes (Table 1). Despite the preva-
lence of these diseases/syndromes few types have been satis-
factorily characterized (Bythell & Pantos, 2004; Lesser et al.,
2007). Despite this classification problem, many attempts
have been made to link these diseases with a particular bac-
terial pathogen (Peters et al., 1983; Barash et al., 2005;
Thompson et al., 2006; Efrony et al., 2007, 2009; Sussman
et al., 2008). For example, Aurantimonas coralicida has been
reported to cause white plague Type II disease in the elliptical
star coral Dichocoenia stokesii (Denner et al., 2003). Another
a-proteobacterium, thought to be the causative agent in
juvenile oyster disease has been shown to be unique to colo-
nies of the Caribbean coral Montastrea annularis exhibiting
tissue lesions indicative of a white plague-like disease
(Pantos et al., 2003). Many of the most commonly cited bac-
terial pathogens associated with coral diseases belong to the
genus Vibrio. Numerous Vibrio pathogens have also been
associated with WS (Sussman et al., 2008), with Vibrio
harveyi being the most recent (Luna et al., 2010). Despite
the great effort, time and money spent trying to isolate specific
pathogens and prove Koch’s postulates discrepancies in the
final disease outcome are common. Progressive tissue slough-
ing (tissue detaching from the coral skeleton) such as that
described as the main disease sign in these white syndromes
for example, has also been ascribed to similar diseases such
as shut down reaction, rapid tissue necrosis and stress
related necrosis (Borneman & Lowrie, 2001; Luna et al.,
2007, 2010; Efrony et al., 2009). The main distinctions
between these diseases/symptoms (Table 1) appear to be the
rates of progression of the lesion, the species affected and
regional separation (most notably those from the Caribbean
and the Indo-Pacific). Currently, it is not known how these
diseases are related and to date no specific pathogens have
been found for these latter diseases.

C A U S A T I O N A N D C U R E I N T H E
W I L D

A few attempts have been made to cure coral diseases in the
wild, notably the use of antibiotics, removal of the microbial
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Table 1. Showing the diverse array of coral diseases occurring throughout the world (C, Caribbean; IP, Indo-Pacific; M, Mediterranean; RS, Red Sea) and within aquarium (A), their various attributed names, proposed
causal agents, rate of recorded tissue loss and band width (if any):† Kaczmarsky & Richardson (2007) show GA to be transferable and suggest microorganisms as potential causal agent do not always appear as ‘white’
patterning; ∗ E. Peters (1983) noted the importance of these microorganisms but did not link them directly with the specific disease causation;$ Luna et al. (2007, 2010) noted that Vibrio sp. failed to cause white syndromes

(WS) in all cases, suggesting WS have multifactorial aetiology and/or a group of diseases caused by more than one pathogen.

Common names used for coral diseases/syndromes Proposed causal agent (s) Reference(s) Location Rate of tissue loss (cm/d) Band width (cm)

White band disease Type l (WBDl) Bacterial Peters et al., 1983 C, IP, RS �0.9 �5–8
White b and disease Type ll (WBDll) Vibrio charcharii Ritchie & Smith, 1995 C, IP, RS �9 �5–8
White plague (WP) Alpha-proteobacteria—JOD Pantos et al., 2003 C, IP, RS �0.1 �0.2
White plague Type ll (WPll) Sphingomonoas sp. /Aurantimonas

corallicida
Zorpette, 1995/Denner et al., 2003/Richardson

et al., 1998
C �1.4 �0.2

White plague Type lll (WPlll) Sphingomonoas sp. /Aurantimonas
corallicida

Richardson et al., 2002 C �1–10 �0.2

White pox/patchy necrosis Bacterial Porter et al., 2001/Patterson et al., 2002 C Fast NA
Ring disease Unknown Weil, 2001 C Unknown NA
Finger coral denuding syndrome Unknown Williams & Bunkley-Williams, 2000 C Unknown NA
Star coral polyp necrosis Unknown Williams & Bunkley-Williams, 2000 C Unknown NA
Skeletal eroding band Holofolliculina corallasia Antonius, 1999/Page & Willis, 2008/Croquer

et al., 2006a,b
IP Unknown NA

Bacterial bleaching Vibrio shiloi Kushmaro et al., 1996/Banin et al., 2000 M Unknown NA
Bacterial lysis Vibrio coralyticus Ben-Haim & Rosenberg, 2002 IP �1–2 NA
Ulcerative white spot disease Vibrio sp. Raymundo et al., 2003 IP Slow 3–5 mm round lesion
Growth anomalies (hyperplasia/

neoplasia/blisters)
Micro-organisms (at least in

some cases)†
Loya et al., 1984/Peters et al., 1986/Kaczmarsky &

Richardson, 2007
C, IP, RS Slow �1–20

Patchy necrosis Unknown Bruckner & Bruckner, 1997 C �1–2 (1–10 cm/w) �0.2
Coccidium infection/patchy necrosis Apicomplexa–Gemmocystis cylindrus Upton & Peters, 1986 C Unknown 4 X 5
Rapid wasting disease Fungal /parrotfish bites Bruckner & Bruckner, 1998 C Fast NA
Stress related necrosis Stress/microparasites (ciliates and

amoebas)∗
Peters et al., 1983/Peters et al., 1997 C, IP, RS �0.9 �5 - 8

Shut down reaction Unknown Antonius, 1985 C, IP, RS �240 (�10 cm/h) �0.2
White syndrome Vibrio sp.$ Luna et al., 2010; Sussman et al., 2008 IP, A Unknown NA
Rapid tissue necrosis/shut down

reaction
Bacterial and stress/Vibrio

alginolyticus/V. harveyi
Hormansdorfer et al., 2000/Luna et al., 2007 C, IP, RS, A Fast NA

Black band disease Cyanobacteria Conney et al., 2002; Frais-Lopez et al., 2003 C, IP �0.1–2 NA
Brown band syndrome Ciliate (Scuticociliatia) Bourne et al., 2008 IP Fast �1–2
Atramentous necrosis Bacterial Jones et al., 2004 IP Fast Variable
Yellow band disease Bacterial Kimes et al., 2010 C �0.02 Variable
Brown jelly syndrome Ciliate (Scuticociliatia) Borneman, 2002 A Fast �1–5
Red slime algae Cyanobacteria Jones, personal communication A Unknown NA
Slow tissue necrosis Unknown Luna et al., 2010 A Slow NA
Flatworm infestations Flatworms (e.g. Amakusaplana

acroporae)
Haapkyla et al., 2007; Rawlinson

et al., 2011
C, IP, A NA NA
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mat associated with the lesion and shading of the infected area
(Peters et al., 1997; Griffin, 1998). Both yellow band disease
(YBD) and white plague (Miller et al., 2003) have been
reported to be treatable in the field, involving an application
of putty and clay over infected tissue (Riegl et al., 2009). As
an alternative to direct treatment of diseased corals, novel bio-
logical restoration approaches applied in Florida have been
used to enhance recruitment of corals, reduce coral mortality
and improve habitat quality. The most notable of these is the
biological control and/or mitigation of spread of certain dis-
eases by utilizing the reintroduction of Diadema antillarum
as a tool to reduce macroalgal cover and induce increased
settlement of coral larvae (Miller, personal communication).
In response to BBD, Bruckner (1999) tried a variety of differ-
ent techniques including: (1) the complete removal of the BBD
lesion using a syringe, then covering with modelling clay or
underwater putty; (2) shading of the BBD lesion using sun
screens; and (3) addition of D. antillarum to cages containing
the diseased corals. Brucker (1999), reported all treatments
were successful but to varying degrees, with the highest
success rate (.95%) being the use of underwater putty
following removal of the microbial mat. This technique
along with shading of infected colonies (Griffin, 1998) may
be suitable when applied to small scale recovery programmes
but remains impractical to treat large numbers of corals over
large areas. Added to this, because BBD is believed to be trans-
mitted in water, the removal of the band may liberate potential
pathogens and aid in transmission to downstream corals. A
recent review by Teplitski & Ritchie (2009), highlighted poten-
tial tools for coral disease management, the newest proposed
method for curing coral disease in situ is the use of phage
therapy. Bacterial viruses (bacteriophages or phages for
short) have been used for treatment of human diseases with
varied success and more recently within aquaculture for treat-
ing farmed fish diseases. The main advantages of phage
therapy, particularly with corals, are potential host specificity
and the fact that viruses self-replicate so any treatment would
continue over large time scales with only minimal initial treat-
ment doses, alongside the overall environmental safety of this
particular type of treatment. The phage only attacks and
destroys specific pathogens, leaving the beneficial bacteria
within the coral holobiont unharmed. To date, phage
therapy has only been considered for two main types of
coral disease: tissue lysis of Pocillopora damicornis by Vibrio
coralliilyticus (Ben-Haim & Rosenberg, 2002; Ben-Haim
et al., 2003b); and white plague-like disease affecting several
large coral species including Favia favus, Platygyra sp. and
Goniastrea sp. thought to be caused by Thalosomonas
loyaeana (Barash et al., 2005; Thompson et al., 2006). Yet
for phage therapy to work in the first place the causal agent
must be known to be the sole causal agent and as this is in
some debate for all coral diseases (Ainsworth et al., 2008;

Lesser et al., 2007), these forms of treatment remain highly
controversial. Despite this, Efrony et al. (2007) demonstrated
that inoculation of specific phages at the same time as the pro-
posed bacterial pathogens did inhibit infection in colonies
within the aquarium environment. It was concluded that
phage therapy may be a more valuable tool in preventing
the spread of diseases, rather than curing infected corals.
This was supported by the fact that phage therapy used in a
control environment prevented the transmission of a disease
from diseased corals to apparently healthy specimens
(Efrony et al., 2009). However as with antibiotic treatments,
exposure to phages can often select for resistant bacterial
mutants. A latter proposal which stemmed from phage
therapy was suggested by Teplitski & Ritchie (2009),
whereby coral transplants could be inoculated to give them
resistance from at least some strains of bacterial pathogens.
Seeding them with beneficial bacteria or phages may offer a
degree of protection to these young recruits from potential
pathogens and stressors (Teplitski & Ritchie, 2009).

In summary, despite the great research effort on wild coral
diseases, the definitive causative agents, the (microscopic)
co-location of suspected pathogens with sites of pathogenesis,
factors contributing to their occurrence and transmission, and
consequences on coral populations remain largely unknown
or at least incomplete for most if not all coral diseases. As
with all animals, diseases of corals are the result of an inter-
action between host, pathogenic agents and environment,
each of which poses its own set of challenges and specific
research needs. In addition, specific to coral diseases is the
limitation that the pathological signs are limited, so that
even experts in their field cannot reliably differentiate
between diseases within the field (Lindop et al., 2008), and
comparisons between studies are therefore extremely difficult.

C O R A L D I S E A S E S — ’ A Q U A R I U M
T Y P E S ’

Although there is little work reported in the scientific litera-
ture on coral diseases in aquaria, a vast amount of ‘grey litera-
ture’ is available on the internet (Table 2). This undervalued
information can be used to compile current knowledge of
the most common diseases occurring within aquaria. A
survey by Coral Zoo (Danovaro & Luna, 2008), reported
that the two coral disease types occurring most frequently in
aquaria were white syndromes (which comprise nearly 70%
of the aquarium diseases on record) and brown jelly syndrome
(BJS) (Figure 1). White syndromes (WS) are defined as severe
tissue loss from the coral with a sharp demarcation between
the apparently healthy tissue and the disease lesion and
these signs appear to be equivalent to those reported for WS
in the wild. BJS has currently not been reported in the wild

Table 2. Common diseases and syndromes found within aquarium corals and some of the suggested treatments.

Symptoms Proposed casual agents Most cited potential cures Sources

Tissue loss, exposure of skeleton Bacterial pathogens e.g. Vibrio harveyi Fragmentation, isolation, sealing Luna et al., 2007; Advancedaqurist.com
Brown jelly like substance Ciliate e.g. Helicostoma sp. Chloramphenicol Reefdreams.de
Red band/algal slime Cyanobacterium Red Slime RemoverTM Aquatichouse.com
Black band Cyanobacterium Fragmentation, sealing Wetwebmedia.com
Red bugs/yellow eggs Tegastes acroporanus Milbemycin oxime Dorton, 2010; Orafarm.com
Small flatworms/yellow eggs Acropora eating flatworm (AEF) Salifert’s flatworm exit Reefkeeping.com
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and is characterized by tissue death associated with wide-
spread visible swelling and necrosis of tissues and mucus pro-
duction (Borneman & Lowrie, 2001; Danovaro & Luna, 2008).
WS in the aquarium, like those described in the field, charac-
teristically display extremely variable rates of lesion pro-
gression, as well as patterns of tissue loss; which has led to
numerous alternative descriptions and definitions, including
rapid tissue necrosis (RTN) and shut down reaction (SDR).
Coral death occurring within hours is usually referred to as
SDR and is thought to be due to stress brought on by any
number of factors (handling, temperature, salinity, pH,
extreme changes in light or other water quality issues). The
slightly slower process of tissue loss, occurring within days
or weeks is often referred to as RTN and appears more
similar to the wild WS. As a result, RTN is the term more
commonly used, specifically for the occurrence of any tissue
sloughing in captive corals within aquaria. Borneman (2002)
suggested two main potential causes for RTN: (1) a specific
pathological agent; and (2) a response to an external stress,
such as physical damage, nutrient deficiencies, or temperature
fluctuations, both resulting in autolysis and a general break-
down of the immune system. A more likely hypothesis is
the combination of both, where the pathogenic agent, often
found within healthy corals as well (e.g. within the surface
mucus layer) may opportunistically become pathogenic
during periods of stress when the coral’s immune defences
are impaired and therefore causes the disease symptoms
such as that of RTN (Kushmaro et al., 1996, 1998; Toren
et al., 1998; Ben-Haim et al., 2003b). Despite the large
number of cases documented in the grey literature only one
study of aquarium diseases has been published in the scientific
literature to date (Luna et al., 2007). Luna et al. (2007)
reported that RTN is readily transmissible from diseased
corals to healthy specimens, which supports the hypothesis
that pathogenic microorganisms are involved. Luna et al.
(2007), demonstrate an increase in total Vibrio abundance
(Figure 1; Table 1) within diseased specimens compared to
those of healthy ones. In particular, one known bacterial
pathogen, V. harveyi, was ascribed as being the main causative
agent for RTN in their study (Luna et al., 2007).

Within the aquarium trade, the second most common
disease type, BJS, has been associated with a suspected ciliate

pathogen, Helicostoma nonatum (Figure 1) (Borneman &
Lowrie, 2001). Willis et al. (2004) first speculated that the
ciliate associated with BrB disease was similar to this species
or at least a close relative, however they later identified the pro-
tozoan associated with BrB as being more closely related to a
different species of the class Oligohymenophora, subclass
Scuticociliatia (Bourne et al., 2008). There are only a few
descriptions of ciliates from the genus Helicostoma (Rama
Mohan Rao et al., 1980, 1981), and very few refer to the
species H. nonatum (Kahl, 1931; Purdom & Howard, 1971);
although, it is sometimes referred to as ‘H. notatum’ (Carey
& Carey, 1992). However, there are no gene sequences
related to this species on GenBank, so it is impossible to recon-
cile this ciliate with the one described in BrB by Bourne et al.
(2008). Other Helicostomas such as H. brudderbucki and H.
oblongum are sometimes referred to in the grey literature as
the BJS ciliate, but neither fit into the morphological character-
ization of the BJS ciliate. Further confusion occurs as the tax-
onomy of this species relates to that of Porpostoma natatum
(Kahan et al., 1982; Kuhlmann et al., 1996; Song, 2000),
recorded in the Australian Antarctica data centre as synon-
ymous with H. nonatum. Paraturbanella stradbroki
(Hochberg, 2002) has also been cited as being the proper
epithet for Helicostoma nonatum (Hummon, 2008), having
been renamed in 1927, and which has assigned gene sequences
in GenBank. This species also appears in databases such as the
UNESCO–IOC Register of Marine Organisms, Integrated
Taxonomic Information System (ITIS) and World Register
of Marine Species (WORMS). To further complicate this
issue, recent molecular (sequences submitted to GenBank)
and taxonomic research has highlighted the need for restruc-
turing of this particular subclass of ciliates (Scuticociliatia),
due to the improvement of molecular characterization and
the ability to acquire complete 18S rRNA gene sequences of
single cell isolates. Based on a newly submitted sequence to
GenBank and the subsequent paper by Zhang et al. (2011)
we suggest the proper name for the BJS ciliate is a Philaster
sp. closely related to the newly described species P. digitiformis
(Zhang et al., 2011). However, further research is necessary to
fully understand this.

Despite the confusion in nomenclature, while ciliates are
undisputedly present in the brown jelly material associated

Fig. 1. Showing a selection of diseases affecting corals in the wild (dark blue panels) and within aquaria (light blue panels). Disease morphology is depicted in the
top picture and the proposed causal agent is depicted below.
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with BJS; it remains unclear as to what exact role they play in the
disease pathology (i.e. are they the primary or secondary causal
agents?), this remains also the case for the wild type disease,
BrB. It is feasible they are only present because they are
feeding on dead tissue arising from another pathogen or non-
pathogenic disease (Borneman & Lowrie, 2001). In support of
this, the Zoological Society of London (ZSL) has often but not
always isolated Vibrio spp. particularly V. vulnificus from corals
such as Goniopora and Euphyllia exhibiting disease signs
similar to BJS (authors, personal observations), however
further work needs to be conducted. Nevertheless, although,
the disease signs of BrB and BJS are distinct and ciliates with
similar morphologies appear to be involved in both diseases,
at least at some level, it remains difficult to conclude if these
are two separate syndromes or different visual pathological
signs of the same disease caused by the same agent or agents.

Although WS and BJS are the more common diseases in
aquaria, many other types of syndromes are often reported,
for example, infestations from organisms such as the red
bug Tegastes acroporanus is often referred to as a disease/syn-
drome in most of the grey literature. Tegastes acroporanus is a
predatory micro-crustacean which is specific to acroporids,
they are small, �0.5 mm in length and yellow in colour
with a distinctive red dot which gives this species its
common name. Poor polyp extension, loss of coloration and
overall decline in health have been reported as signs of a red
bug infection. Infestations of T. acroporanus have not been
recorded in the wild to date, although they would be easily
overlooked due to their size. Another common infestation of
aquarium corals is numerous flatworm species. The reported
‘brown rust disease’ is attributed to flatworms such as
Convolutriloba sp. and Waminoa sp. (Shannon & Achatz,
2007). Waminoa sp. tend to be commensal organisms that
live only on corals, while Convolutriloba sp. will usually live
and grow on any available surface. Despite not being known
to cause damage to the corals directly, heavy infestations are
reported that can cause disruption to photosynthesis and
therefore degrade overall health, particularly in corals such
as Euphyllia sp. (authors, personal observations). The heavy
infestations associated with brown rust have again not been
reported in the wild to date. The Acropora-eating flatworms
(AEF), recently named as Amakusaplana acroporae
(Rawlinson et al., 2011), however, are a common pathogen
of aquarium Acropora and have also been described in the
wild (Barneah et al., 2007; Haapkylä et al., 2007, 2009).
They are usually extremely well-camouflaged and often the
only visible signs would be the feeding scars left behind,
exposing the coral skeleton, so the extent of this disease may
have been under-reported in the wild and disease lesions
reported as other syndromes (potentially classed in the WS
group). Another common disease within aquaria is known
as ‘red slime algae’. This disease is most commonly associated
with high levels of organic nutrients within the aquarium,
which in turn may be influenced by changes in light levels.
Despite the common name of this disease, the causal agent
is not actually an alga at all, but a consortium of cyanobacteria.
Varying from red, black to blue-green, the specific causal
agent or agents remain unknown, however there are strong
similarities between this disease morphology and that of the
cyanobacterial mat of BBD within wild coral populations,
and cyanobacterial overgrowth is also commonly reported
in the wild, particularly in the Caribbean (Weil, 2004; Weil
& Croquer, 2009).

C A U S A T I O N A N D C U R E I N A Q U A R I A

Since the main driver to identifying coral diseases in aquaria is
the selection of an effective treatment, the lessons learnt by
aquarists over what treatments are effective against particular
syndromes can provide invaluable evidence for determining
the causal agents of these diseases (Table 2). Such treatments
are generally not sought by scientists working in the natural
environment, due to the cost and potential environmental
impacts of the treatments, however the potential to develop,
adapt and treat corals in the wild is an important objective.
With slight modifications of these proposed cures, coral
disease in the wild could potentially even be managed, main-
tained and/or localized. If a disease can be effectively treated,
this can be used as further proof of the causal agent or agents.
When corals are transported to aquaria from the wild (about 2
million coral pieces are currently transported legally per year
for such uses; Green & Hendry, 1999; Wabnitz et al., 2003), a
significant change in the environmental conditions occurs.
Thus considerable physiological stress is placed on the
corals, from collection, transportation (e.g. transit times
from Indonesia are long, with many stages and high potential
for delays) and resettlement within aquaria, and it is therefore
understandable that large percentages of those collected never
reach their destinations and when they do, disease and death
is common. In species such as Catalyphyllia jardinei and
Goniopora stokesi mortality rates often approach .80%. In
general the most popular species, those of the large single
polyp varieties, are vulnerable to physical damage during
transport and the onset of rapidly progressing diseases/infec-
tions are often seen in these corals. Effective treatments of
known diseases and syndromes are therefore important to
promote better survival and ultimately minimize the necessity
to collect more from natural reefs.

Numerous suggestions have been presented by hobbyists
for the cure of common aquarium diseases (Table 2), for
example, the use of a broad-spectrum antibiotic, chloramphe-
nicol (Tifomycine:flexyx.com, only available in USA) appears
the most common to treat corals suffering from BJS.
Chloramphenicol is a bacteriostatic antimicrobial, active
against both Gram-positive and Gram-negative bacteria and
is extremely lipid-soluble for fast effective treatment
(Reefdreams, 2010). Doxycycline, oxytetracycline, iodine and
freshwater dips (15 ppt) have also been reportedly used to
treat BJS with varying levels of success (authors, personal
observations). Yet treatment with antibiotics has a variety of
significant limitations: (1) they are difficult to administer to
the infected individual; (2) antibiotics are often light sensitive
and have a short half life therefore requiring a number of
repeat treatments; (3) a requirement of no filtration during
treatment which in turn causes other water quality issues
and the potential for other diseases to occur; (4) they will
undoubtedly be harmful to beneficial bacteria within the
coral holobiont and the surrounding water; and more often
than not (5) by the time the decision is made to treat the
disease the progression is so fast that it is too late to be
useful. Treatments for diseases such as RTN which encom-
passes the ‘white syndromes’ discussed earlier are in much
greater debate, primarily due to the causal agent being
largely unknown. Fragmentation, isolation, sealing the lesion
with epoxy resin and the use of a variety of antibiotics such
as doxycycline have all been prescribed as possible treatments
(Borneman & Lowrie, 2001; Advancedaquarist, 2002;
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Borneman, 2002; Leewis et al., 2009), although no systematic
assessment of their effectiveness has been conducted.

A treatment of red bug disease caused by T. acroporanus,
first developed by Dorton (2010), is the use of Milbemycin
oxime, an active ingredient in heart worm medication for
dogs called Interceptorw within the USA or in a product
called Milbemaxw in the UK (where M. oxime is mixed
with praziquantal). This is an indiscriminate drug which
kills all crustaceans as well as T. acroporanus, so would not
be a feasible treatment of wild diseases. An attractive option
to this treatment is the introduction of a biological control,
the dragonface pipefish, Corythoichthys haematopterus for
example. These fish are known to anchor themselves to acro-
porids and feed on crustaceans including T. acroporanus. It is
also common that secondary infections often follow, initiating
from the feeding scars caused by T. acroporanus, along with
the scars left by nudibranchs, Drupella and/or other coralli-
vorous snails.

For the treatment of flatworm infections including AEF,
Salifert’s flatworm exit, levamisole hydrochloride, freshwater
dips (15 ppt for 3 m maximum) and iodine-based dips like
Lugol’s iodine, Fluke-TabsTM (Aquarium Products), and
TrichlorfonTM (Dylox 80, Bayer A.G.) have all been reported
for treatment of infected corals (Carl 2008; Nosratpour, 2008).
However, it is important to note that smaller polyp species
such as the acroporids can rarely tolerate the use of freshwater
dips and often mortality occurs soon after treatment.

Red slime algae is reported to be treatable by commercial
products such as Ultralife Red Slime RemoverTM, Boyd
Chemi-CleanTM, and Blue Life Red Slime ControlTM (Brang,
2010). However, many of these diseases are reported as a
sign of poor water quality, so most aquarists propose reassess-
ment and improvement of aquarium water quality (reducing
levels of nitrate and phosphate and monitoring light levels
and improving flow) as the most effective treatment. There
is also a syndrome known in the aquarium trade as ‘new
tank syndrome’, which often manifests itself as blooms of
algae/cyanobacteria (e.g. red slime algae). This is thought to
be caused by the new silicone within the tank setup increasing
nutrient levels which promotes the growth of the algae.

S I M I L A R I T I E S B E T W E E N W I L D
T Y P E S A N D T H O S E W I T H I N T H E
A Q U A R I U M

The differences between the natural reef environment and that
within the aquarium are obviously great. Despite this, certain
similarities can be seen between the diseases found in both
cases. Most notable would be the ‘white syndromes’. As
these diseases include many forms of tissue necrosis exposing
the skeleton, it is impossible to confirm whether the same dis-
eases occur without any reasonable doubt, however the visible
signs are clearly very similar (Figure 1). Only the progression
rate of the lesion is thought to distinguish these particular syn-
dromes from each other (Table 1). In addition, there are sig-
nificant similarities between the proposed causal agent of one
form of white syndrome (ciliated white syndrome; authors,
personal observations), and that thought to be the causal
agent of BJS (Figure 1), the ciliate in question also being
from the same genus as the proposed causal agent in BrB
(Figure 1). The differences between these diseases may poten-
tially be explained by the conditions in aquaria compared to

the reef. In the natural environment wave action is likely to
remove the ‘brown jelly like’ necrotic tissue associated with
BJS in aquaria, revealing a ‘white syndrome’ type disease
lesion. Similarly, black band disease (Figure 1) in the wild is
caused by a similar association of cyanobacteria to that of
red slime algae (Figure 1); however, the visible disease lesion
is also dramatically different. Whilst infestations by other
microorganisms like T. acroporanus and certain flatworm
species appear to be unique to aquaria with no apparent
cases in the wild, this may be due to at least in part that
these diseases are currently being overlooked within the wild.

C O N C L U S I O N S A N D M A J O R
K N O W L E D G E G A P S

In general, many important aquarium diseases cannot be
reconciled to those in the wild. In certain cases however,
strong similarities can be seen. For example, the ciliate
Helicostoma sp. as a causal agent of BJS in aquarium corals
shows strong similarities with the ciliates associated with
BrB in the wild. It is proposed that Helicostoma may be a mis-
nomer and this ciliate may be the same as that identified in
BrB. Improved understanding of this pathogen and other
pathogens of these common aquarium diseases could benefit
both fields. Improved practices in aquarium maintenance
and husbandry would also benefit natural environments by
reducing the scale of wild harvest and improving the potential
for coral culture, both for the aquarium industry and for reha-
bilitation programmes. It is noted that in general, manage-
ment of diseases within the marine environment and corals
in particular is challenging due to the difficulties in controlling
habitat and population dynamics and the potentially rapid
rates of spread (Bourne et al., 2009). However, without under-
standing the interactions between causative agents, corals and
their environments, management of these diseases in the field
will be near impossible. One potential step forward would be
trials and adaptations of the cures used within the aquarium
trade to those diseases which may be similar in the wild.

F U R T H E R W O R K

(1) A complete study on aquarium diseases and their causal
agents needs to be carried out using microbiological tech-
niques, with attempts made to prove Koch’s postulates for
the proposed causal agents; and

(2) treatment trials to systematically test all treatments pro-
posed for specific diseases (particularly RTN and BJS),
within the grey literature and attempts to improve those
which work.
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