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SUMMARY
In the literature, 3-RRPRR architectures were proposed to
obtain pure translation manipulators. Moreover, the geomet-
ric conditions, which 3-RRPRR architectures must match,
in order to make the end-effector (platform) perform
infinitesimal (elementary) spherical motion were enun-
ciated. The ability to perform elementary spherical motion
is a necessary but not sufficient condition to conclude that
the platform is bound to accomplish finite spherical motion,
i.e. that the mechanism is a spherical parallel manipulator
(parallel wrist). This paper demonstrates that the 3-RRPRR
architectures matching the geometric conditions for elemen-
tary spherical motion make the platform accomplish finite
spherical motion, i.e. they are parallel wrists (3-RRPRR
wrist), provided that some singular configurations, named
translation singularities, are not reached. Moreover, it shows
that 3-RRPRR wrists belong to a family of parallel wrists
which share the same analytic expression of the constraints
which the legs impose on the platform. Finally, the
condition that identifies all the translation singularities of
the mechanisms of this family is found and geometrically
interpreted. The result of this analysis is that the translation
singularity locus can be represented by a surface (singular-
ity surface) in the configuration space of the mechanism.
Singularity surfaces drawn by exploiting the given condition
are useful tools in designing these wrists.

KEYWORDS: Kinematics; Parallel mechanisms; Spherical
manipulators, Mobility analysis; Translation singularity.

1. INTRODUCTION
Spatial mechanisms with three degrees of freedom (dof ) are
used in many industrial applications, because many manip-
ulation tasks need only three dof. For instance, either
translation or orientation of a rigid body requires three dof.
Three-dof spatial mechanisms can be obtained by means of
either serial or parallel architectures. Nevertheless, if a
reduced workspace and high stiffness are required, parallel
architectures will be favored.

Parallel architectures consist of two rigid bodies, one
movable (platform) and the other fixed (base), connected by
means of a number of kinematic chains (legs). The leg
number usually is equal to the dof number and only one
kinematic pair per leg is actuated. Moreover, if the legs are
constituted of equal kinematic chains, the manufacturing
process will need a reduced set of different components,
thus an easier and cheaper process will result.

In the literature, three-dof parallel architectures were
proposed either for pure translation1–5 or for spherical
motion6–9 or for mixed three-dof motion10,11 of the platform
with respect to the base. The presented three-dof parallel
mechanisms can be grouped into two sets: Mechanisms with
repeated constraints2,6,8,10 (overconstrained mechanisms) and
mechanisms with independent constraints.1,3–5,7,9,11 These
two sets of mechanisms behave in a different way when
geometric errors occur: Overconstrained mechanisms
become structures (often hyperstatic structures), whereas
independent constraint mechanisms still are mechanisms,
but their positioning precision worsens. As a consequence,
independent constraint mechanisms are to be preferred to
the overconstrained ones, when it is possible, because they
avoid mechanism lock and/or high internal load occurrence
in presence of geometric errors due to the manufacturing
process.

Independent constraint mechanisms with three dof and
equal legs must use legs leaving five dof to the platform
motion relative to the base.12

Karouia and Hervé12 showed that a lot of parallel
architectures with independent constraints and equal legs
can allow the platform to accomplish infinitesimal (elemen-
tary) spherical motion when a few of geometric conditions
are matched. The ability to perform elementary spherical
motion is a necessary but not sufficient condition to
conclude that the platform is constrained to accomplish
finite spherical motion, i.e. that the mechanism is a spherical
parallel manipulator (parallel wrist). Later, this author13,14

showed that the 3-UPU architecture matching the Karouia
and Hervé geometric conditions (3-UPU wrist) is a parallel
wrist13 and presented the static analysis and the singularity
locus14 of that wrist.

The 3-UPU architecture (Figure 1) is a parallel mecha-
nism where platform and base are connected by three legs of

Fig. 1. 3-UPU mechanism.
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type UPU (U and P stand for universal joint and prismatic
pair respectively). It can be used to obtain both pure
translation manipulators2 and spherical manipulators.13

Since a universal joint consists of two revolute pairs in
series, whose axes are incident and perpendicular to one
another (Figure 2), UPU kinematic chains are special cases
of RRPRR (R stands for revolute pair) kinematic chains and
3-UPU mechanisms are special cases of 3-RRPRR mecha-
nisms (Figure 3).

3-RRPRR mechanisms need fewer geometric constraints
than 3-UPU ones. Therefore, they are easier to manu-
facture.

In the literature, 3-RRPRR architectures were proposed
to obtain pure translation manipulators.4 Moreover, Karouia
and Hervé12 enunciated the geometric conditions which
3-RRPRR architectures must match in order to make the
platform perform an elementary spherical motion.

This paper demonstrates that 3-RRPRR architectures,
matching the geometric conditions enunciated by Karouia
and Hervé,12 make the platform accomplish finite spherical
motion, i.e. they are parallel wrists (3-RRPRR wrist),
provided that some singular configurations, named transla-
tion singularities, are not reached.

In addition, it will show that 3-RRPRR wrists belong to
a family of parallel wrists which share the same analytic
expression of the constraints that the legs impose on the
platform.

Finally, the condition which identify all the translation
singularities of the mechanisms of this family will be
determined and geometrically interpreted. The result of this
analysis is that the translation singularity locus can be
represented by a surface (singularity surface) in the
configuration space of the mechanism. Drawing the singu-

larity surface by exploiting the given condition is useful
during the design of these wrists.

2. GEOMETRIC CONDITIONS FOR SPHERICAL
MOTION IN 3-RRPRR MECHANISMS
Figure 4 shows a 3-RRPRR mechanism meeting the
following geometric conditions:

(i) the axes of the revolute pairs adjacent to the platform
converge towards a unique point, P, of the platform
(manufacturing condition);

(ii) the axes of the revolute pairs adjacent to the base
converge towards a unique point, P�, of the base
(manufacturing condition);

(iii) the mechanism is assembled so that the platform point
P coincides with the base point P� (mounting condi-
tion);

(iv) in each leg the axes of the two intermediate revolute
pairs are parallel to one another and perpendicular to
the sliding direction of the prismatic pair (mounting
and manufacturing condition).

Hereafter, a 3-RRPRR mechanism, matching the above-
listed geometric conditions, will be called 3-RRPRR wrist.
In the following paragraphs, a 3-RRPRR mechanism
encountering the 3-RRPRR wrist geometric conditions will
be shown to be able to make the platform accomplish finite
spherical motion, provided that some singular configura-
tions (translation singularities) are avoided.

Figure 5 shows the i-th leg for i=1, 2, 3 of the 3-RRPRR
wrist and the notations that will be used. With reference to
Figure 5, wji and �ji for j=1, . . . , 4 and i=1, 2, 3 are the unit
vector of the axis and the joint coordinate, respectively, of
the j-th revolute pair in the i-th leg (the revolute pairs are
numbered with the j index that increases from the base to
the platform). Ai is one base point lying on the axis of the
first revolute pair; Bi is one point lying on the axis of the
second revolute pair; Ci is the foot of the perpendicular
through Bi to the axis of the third revolute pair; Di is one
platform point lying on the axis of the fourth revolute pair.
hi is the length of the segment BiCi; ui is the unit vector
(Bi �Ci)/hi and is parallel to the sliding direction of the
prismatic pair. Since the axes of the second and the third
revolute pairs are parallel (geometric condition (iv)),
without loss of generality, w3i will be chosen so that

w3i �w2i, i=1, 2, 3 (1)

Fig. 2. Universal joint (R stands for revolute pair).

Fig. 3. 3-RRPRR mechanism. Fig. 4. 3-RRPRR wrist.

Spherical manipulators354

https://doi.org/10.1017/S0263574702004174 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574702004174


With these notations, the velocity, Ṗ, of the platform point P
can be written in the following three different ways

Ṗ= Ċi + [�̇1iw1i + (�̇2i + �̇3i)w2i]� (P�Ci), i=1, 2, 3 (2)

where Ċi is the velocity of point Ci and �̇ji ( j=1, . . . , 4;
i=1, 2, 3) is the rate of the joint coordinate �ji.

The analysis of Figure 5 reveals that Ċi velocity can be
written as follows

Ċi = ḣiui + Ḃi + (�̇1iw1i + �̇2iw2i)� (Ci �Bi), i=1, 2, 3 (3)

with

Ḃi = �̇1iw1i� (Bi �Ai), i=1, 2, 3 (4)

where Ḃi is the velocity of point Bi and ḣi is the rate of the
joint coordinate hi.

The introduction of relationships (3) and (4) into
relationships (2) and the rearrangement of the resulting
expressions yield

Ṗ=ḣiui + �̇1iw1i� (P�Ai)+ �̇2iw2i� (Ci �Bi)+ (�̇2i + �̇3i)w2i

� (P�Ci), i=1, 2, 3 (5)

Since geometric condition (iii) holds, point P lies on the axis
of any leg’s first revolute pair (see Figure 5) and all the
cross-products w1i� (P�Ai), i=1, 2, 3, are null vectors. As
a consequence, expressions (5) become

Ṗ=ḣiui + �̇2iw2i� (Ci �Bi)+ (�̇2i + �̇3i)w2i� (P�Ci),

i=1, 2, 3 (6)

Reminding that unit vector ui (Figure 5) is perpendicular to
unit vector w2i (geometric condition (iv)), the dot-products
of the i-th relationship (6) and w2i for i=1, 2, 3 give the
following three scalar equations

Ṗ · w2i =0, i=1, 2, 3 (7)

Time differentiation of Eqs. (7) yields

Ṗ · ẇ2i + P̈ · w2i =0, i=1, 2, 3 (8)

where P̈ is the acceleration of platform point P and ẇ2i is the
time derivative of w2i.

Equations (7) and (8) constitute a linear and homo-
geneous system of six equations in six unknowns: the
components of Ṗ and P̈. The matrix form of such a system
is

M�Ṗ
P̈�=0 (9)

where

m=�H
Ḣ

0
H� (10.1)

H=[w21, w22, w23] (10.2)

and 0 is the 3� 3 null matrix.
Since unit vectors w2i, i=1, 2, 3, depend only on the

configuration assumed by the manipulator, matrix M also
depends only on that configuration. If the manipulator does
not assume a configuration (translation singularity) that
makes matrix M singular, the unique solution of system (9)
will be

Ṗ=0 (11.1)

P̈=0 (11.2)

Results (11) justify the following statement:

STATEMENT 1: If a 3-RRPRR mechanism performs elemen-
tary motion starting from a configuration which is not a
translation singularity and matches the 3-RRPRR wrist
geometric conditions, then it will reach a new configuration
where platform point P (see Figure 4) still is in the initial
position (relationship (11.1)) and at rest (relationship
(11.2)), i.e. the new configuration still matches the
3-RRPRR wrist geometric conditions.

Statement 1 brings about the following corollary: the
platform of a 3-RRPRR wrist is constrained to accomplish
sequences of elementary spherical movements with center P,
i.e. finite spherical motion with center P, as long as the
mechanism is out of translation singularities. In other
words, the 3-RRPRR wrist is a spherical parallel manip-
ulator provided that translation singularities are not met
during motion.

The i-th Eq. (7) analytically expresses the mobility
constraint which the i-th leg of a 3-RRPRR wrist imposes
on the platform. It lends itself to the following kinematic
interpretation: one leg of type RRPRR, which satisfies
geometric condition (iv), and whose two ending-revolute-
pair axes are neither skew nor parallel (Figure 5), forbids the
translation of the platform point, instantaneously coinciding

Fig. 5. i-th leg of the 3-RRPRR wrist.
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with the intersection of its ending-revolute-pair axes, along
the direction of its intermediate-revolute-pair axes (direction
of w2i in Figure 5).

It is worth noting that, when the ending-revolute-pair
axes are parallel the mobility constraint due to the i-th
RRPRR leg cannot be expressed by the i-th Eq. (7) any
longer. Instead, the equations reported in the literature4,15 for
the i-th leg of translational 3-RRPRR mechanisms must be
used. Those equations show that, in this case, the movement
forbidden to the platform by the i-th RRPRR leg is a
rotation around an axis perpendicular to all the revolute pair
axes of the leg.15

3. A NEW FAMILY OF SPHERICAL PARALLEL
MANIPULATORS
Results (11), which bring about the conclusion that
3-RRPRR wrists are spherical parallel manipulators, derive
directly from relationships (7). Therefore, if leg topology
changes, because kinematic pair sequences change and/or
one kinematic pair is substituted by another one, and the
new legs give a mobility constraint on the platform that still
is expressible through relationships (7), then the parallel
manipulator with the new type of legs will still be a
spherical parallel manipulator. Hence, the demonstration
that a parallel manipulator is spherical can be limited to the
demonstration that the mobility constraints on the platform
due to the legs are expressible through relationships (7).
Hereafter, this criterion will be used to find new archi-
tectures of spherical parallel manipulators.

3.1. Spherical parallel manipulator 3-(5R)
Manipulators of type 3-(5R) are three-dof parallel manip-
ulators having three legs of type RRRRR. Figure 6 shows a
3-(5R) manipulator that satisfies geometric conditions (i),
(ii) and (iii) and the following additional geometric
condition:

(iv.1) in each leg the axes of the three intermediate revolute
pairs are parallel (manufacturing condition).

Henceforth, a 3-(5R) mechanism matching geometric
conditions (i), (ii), (iii) and (iv.1) will be called 3-(5R) wrist
and geometric conditions (i), (ii), (iii) and (iv.1) will be
called 3-(5R) wrist geometric conditions.

Figure 7 shows the i-th leg of a 3-(5R) wrist and the
notations that will be used. The i-th leg of a 3-(5R) wrist

(Figure 7) is obtained from the i-th leg of a 3-RRPRR wrist
(Figure 5) by replacing the prismatic pair with a revolute
pair whose axis is parallel to the axes of the two adjacent
revolute pairs. With reference to Figure 7, wji ( j=1, . . . , 4),
�ji ( j=1, . . . , 4), Ai, Bi, Ci and Di coincide with the
homonymous quantities defined in Figure 5 for the i-th leg
of the 3-RRPRR wrist; w�2i and ��2i are the unit vector of the
axis and the joint coordinate, respectively, of the revolute
pair that replaces the prismatic pair; B�i is the foot of the
perpendicular through Bi to the axis of the revolute pair that
replaces the prismatic pair. Without loss of generality, w�2i

will be chosen so that

w�2i �w2i, i=1, 2, 3 (12)

With these notations, the velocity, Ṗ, of the platform point P
can be written in the following three different ways

Ṗ= Ċi + [�̇1iw1i + (�̇2i + �̇�2i + �̇3i)w2i]� (P�Ci),

i=1, 2, 3 (13)

where �̇�2i is the rate of the joint coordinate ��2i.
The analysis of Figure 7 reveals that the following

relationships can be written

Ċi = Ḃ�i + [�̇1iw1i + (�̇2i + �̇�2i)w2i]� (Ci �B�i), i=1, 2, 3 (14)

Ḃ�i = Ḃi + (�̇1iw1i + �̇2iw2i)� (B�i �Bi), i=1, 2, 3 (15)

Ḃi = �̇1iw1i� (Bi �Ai), i=1, 2, 3 (16)

where Ḃ�i is the velocity of point B�i.
The introduction of relationships (14), (15) and (16) into

(13) yields

Ṗ= �̇�2iw2i� (P�B�i )+ �̇2iw2i� (Ci �Bi)+ (�̇2i + �̇3i)w2i

� (P�Ci), i=1, 2, 3 (17)

The dot-products of the i-th relationship (17) and w2i for
i=1, 2, 3 give the three scalar Equations (7). Therefore, the
3-(5R) wrist is a spherical parallel manipulator provided
that translation singularities are not met during motion.Fig. 6. 3-(5R) wrist.

Fig. 7. i-th leg of the 3-(5R) wrist.
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3.2. Spherical parallel manipulators 3-RPRRR and
3-RRRPR
Manipulators 3-RPRRR are three-dof parallel manipulators
having three legs of type RPRRR. If the role of platform and
base is interchanged by a kinematic inversion, manipulators
3-RPRRR will become manipulators 3-RRRPR whose legs
are kinematic chains of type RRRPR. As a consequence, all
the results regarding the kinematic behavior of a 3-RPRRR
manipulator also hold for the 3-RRRPR manipulator
coming from the 3-RPRRR mechanism by interchanging
the role of the platform and the base. In the remainder of
this subsection, demonstrations will be referred to a
3-RPRRR manipulator and the results will be extended to
3-RRRPR manipulators via kinematic inversion.

Figure 8 shows a 3-RPRRR manipulator that satisfies
geometric conditions (i), (ii) and (iii) and the following
additional geometric conditions:

(iv.2) in each leg the axes of the two intermediate revolute
pairs are parallel (manufacturing condition);

(v) in each leg the sliding direction of the prismatic pair
is perpendicular to the axis of the intermediate
revolute pair adjacent to the prismatic pair (manu-
facturing condition).

Hereafter, a 3-RPRRR mechanism meeting geometric
conditions (i), (ii), (iii), (iv.2) and (v) will be called
3-RPRRR wrist and geometric conditions (i), (ii), (iii), (iv.2)
and (v) will be called 3-RPRRR wrist geometric condi-
tions.

Figure 9 shows the i-th leg of a 3-RPRRR wrist and the
notations that will be used. The i-th leg of a 3-RPRRR wrist
(Figure 9) is obtained from the i-th leg of a 3-RRPRR wrist
(Figure 5) by means of the elimination of the prismatic pair
between the intermediate revolute pairs and the introduc-
tion, between the first and the second revolute pair, of a
prismatic pair whose sliding direction is perpendicular to
the axis of the second revolute pair (geometric condition
(v)). With reference to Figure 9, wji ( j=1, . . . , 4), �ji

( j=1, . . . , 4), Ai, Bi, Ci and Di coincide with the homony-
mous quantities defined in Figure 5 for the i-th leg of the
3-RRPRR wrist; vi and si are the unit vector of the sliding
direction and the joint coordinate, respectively, of the
prismatic pair.

With these notations, the velocity, of the platform point P
can be written in the following three different ways

Ṗ= Ċi + [�̇1iw1i + (�̇2i + �̇3i)w2i]� (P�Ci), i=1, 2, 3 (18)

The analysis of Figure 9 reveals that the following
relationships can be written

Ċi = Ḃi + (�̇1iw1i + �̇2iw2i)� (Ci �Bi), i=1, 2, 3 (19)

Ḃi = ṡivi + �̇1iw1i� (Bi �Ai), i=1, 2, 3 (20)

where ṡi is the rate of the joint coordinate si.
The introduction of relationships (19) and (20) into

relationship (18) yields

Ṗ=ṡivi + �̇2iw2i� (Ci �Bi)+ (�̇2i + �̇3i)w2i� (P�Ci),

i=1, 2, 3 (21)

The dot-products of the i-th relationship (21) and w2i for
i=1, 2, 3 give the three scalar Equations (7). Therefore,
3-RPRRR wrists are spherical parallel manipulators pro-
vided translation singularities are not met during motion. If
the mechanisms obtained from 3-RPRRR wrists via kine-
matic inversion of base and platform are named 3-RRRPR
wrists, then 3-RPRRR wrists will also be spherical parallel
manipulators provided that translation singularities are not
met during motion.

4. TRANSLATION SINGULARITIES
Equation systems (7), (8) and (9), derived for 3-RRPRR
wrists, also hold for 3-(5R) wrists, 3-RPRRR wrists and
3-RRRPR wrists. All these new spherical parallel manip-
ulators work properly only if relationships (11) give the
only solution of system (9). This condition occurs if and
only if coefficient matrix M of system (9) is not singular.
Translation singularities are mechanism configurations
making matrix M singular. Matrix M is singular when its
determinant, det(M), vanishes, that is the following singu-
larity condition is satisfied

det(M)=0 (22)

When singularity condition (22) is matched, both Ṗ and P̈
are not determined and can be different from zero, i.e. the

Fig. 8. 3-RPRRR wrist.

Fig. 9. i-th leg of the 3-RPRRR wrist.
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manipulator cannot make the platform accomplish spherical
motion any longer. This remark justifies the name “transla-
tion singularity” given to a mechanism configuration
meeting condition (22).

Definition (10.1) of matrix M allows the following
relationship to be written

det(M)=[det(H)]2 (23)

Therefore, singularity condition (22) has the same solutions
as the following simplified singularity condition

det(H)=0 (24)

Moreover, definition (10.2) of matrix H allows the follow-
ing relationship to be written

det(H)=w21 · w22� w23 (25)

Relationships (24) and (25) bring about the conclusion that
translation singularities are the mechanism configurations
which satisfy the following condition

w21 · w22� w23 =0 (26)

From a geometric point of view, condition (26) is matched
when the three unit vectors w2i, i=1, 2, 3, are parallel to a
unique plane. If a plane, �i, associated to the i-th leg (see
Figures 5, 7 and 9), is defined as the plane perpendicular to
the unit vector w2i and passing through platform point P,
condition (26) can be expressed as follows: translation
singularities are characterized by the fact that the three
planes �i, i=1, 2, 3, have a straight line passing through P as
common intersection. The same geometric condition can be
specularly expressed by saying that the three planes �i,
i=1, 2, 3, have only point P as common intersection out of
translation singularities.

From an analytic point of view, condition (26) is a scalar
equation containing the geometric parameters which define
manipulator’s geometry and the three generalized coor-
dinates which define manipulator’s configuration.
Therefore, when manipulator’s geometry is fixed, condition
(26) becomes a scalar equation in three unknowns: the three
generalized coordinates. Such an equation is the analytic
expression of a surface (translation-singularity surface) of
manipulator’s configuration space (Cartesian space whose
coordinates are the generalized coordinates of the manip-
ulator). The translation-singularity surface is the geometric
locus locating all the translation singularities in the
configuration space and can be drawn by solving Eq. (26).

5. CONCLUSION
A new family of spherical parallel manipulators has been
presented. The new family contains four different archi-
tectures. One out of these architectures contains the 3-UPU
wrist, already presented in the literature, as a particular
geometry.

All the manipulators of this family have independent
constraints and three equal legs. Furthermore, they have less
manufacturing constraints than the 3-UPU wrist.

The condition which identifies the translation singular-
ities of all the manipulators of these family has been found
and its geometric interpretation has been given. This
condition can be used as a practical tool to find a surface

(translation-singularity surface) which is the geometric
locus locating all the translation singularities in the
configuration space of the manipulator (Cartesian space
whose coordinates are the generalized coordinates of the
manipulator).
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