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A theoretical model is developed which illustrates the dynamics of the spontaneous
generation of large-scale structures in baroclinically unstable eddying flows. Techniques
of asymptotic multiscale analysis are used to identify instabilities resulting from the
positive feedback of the background eddies on large-scale perturbations. The novelty
of the proposed approach lies in the choice of a dynamically consistent time-dependent
background eddy field, which is taken from simulations of baroclinic instability in
the Phillips two-layer system. The resulting solutions differ considerably from those
of traditional multiscale models, in which the background eddy field is represented
by steady analytical patterns. The present formulation makes it possible to (i) test the
multiscale theory against the corresponding numerical simulations, (ii) unambiguously
interpret the key physical processes at play and (iii) rationalize the emergence of
large-scale patterns for certain background parameters. While the proposed approach
to multiscale modelling is illustrated on a particular example of the Phillips baroclinic
instability model, it is our belief that the presented technique is readily adaptable to
a wide range of applications.

Key words: geophysical and geological flows, instability

1. Introduction
While the broad oceanographic significance of the eddy-induced transport of

buoyancy, momentum and energy has been firmly established (Robinson 1983;
Kamenkovich, Koshlyakov & Monin 1986), specific mechanisms of the interaction
between mesoscale variability and large-scale circulation patterns are still poorly
understood and quantified. The nonlinear evolution of eddies in the ocean is a
complex multiscale and multistage process. Unstable waves emerging from the
baroclinic instability of large-scale background currents saturate at finite amplitudes.
However, the evolution of such systems does not stop at this point, as nonlinear
interactions between primary eddies frequently lead to the generation of new, and
dynamically dissimilar, flow structures. Of particular interest is the tendency of eddies
to transfer energy to larger scales of motion through collective instabilities of primary
vortices, which is frequently observed in simulations of eddying flows (e.g. Berloff,
Kamenkovich & Pedlosky 2009, Kamenkovich, Rypina & Berloff 2015). In such
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cases, the evolving mesoscale eddy field can generate coherent large-scale eddy-driven
patterns (LEDPs). The present paper attempts to identify the key physical mechanisms
of LEDP generation and rationalize their spontaneous emergence in certain regions
of the parameter space.

A well-known example of LEDPs is provided by quasi-zonal jets which spontan-
eously form in eddy-rich areas. These jets have been observed in satellite-based
observations (Maximenko, Bang & Sasaki 2005; Sokolov & Rintoul 2007), float
measurements (Nowlin & Klinck 1986; Orsi, Whitworth & Nowlin 1995) and
laboratory experiments (e.g. Matulka & Afanasyev 2015). They populate all ocean
basins in high-resolution general circulation models (Nakano & Hasumi 2005;
Richards et al. 2006; Kamenkovich, Berloff & Pedlosky 2009) and are present
in idealized configurations (e.g. Berloff et al. 2009; Srinivasan & Young 2012).
Numerical simulations suggest that the existence of such jets strongly relies on the
action of baroclinic eddies (e.g. Kamenkovich et al. 2009, Melnichenko et al. 2010).
The early models of jet formation (e.g. Held 1975) were based on linear arguments
illustrating the interplay between the structure of zonal jets and momentum transport
by geostrophic eddies required to maintain mean flows. Several attempts have been
made to capture nonlinear dynamics of eddy/mean field interaction. For instance,
it has been suggested that locally elevated mixing of potential vorticity (PV) can
facilitate further mixing and ultimately produce layered structures described as ‘PV
staircases’ (e.g. Dritschel & McIntyre 2008). The present investigation reveals some
alternative generation mechanisms of large-scale jets.

While zonal jets represent perhaps the most spectacular eddy-driven phenomena,
LEDPs can also take more irregular and isotropic forms (e.g. Thompson & Young
2006; Kamenkovich et al. 2009; Radko, Peixoto de Carvalho & Flanagan 2014). Their
spontaneous generation is commonly interpreted as a manifestation of the inverse
cascade of energy in two-dimensional turbulence (e.g. Rhines 1994; Larichev & Held
1995; Thompson & Young 2006, 2007). An intriguing aspect of eddy interaction
theory concerns the spectrally non-local character of energy transfer. While the
classical spectral models (Kraichnan 1967; Kraichnan & Montgomery 1980) envision
the sequential coalescence of eddies into larger and larger structures, numerical
simulations (Shepherd 1988; Huang & Robinson 1998) suggest the existence of a
direct pathway of energy from small to large scales. The interaction between vastly
different scales implies that eddies, whose strength is modulated on long wavelengths,
can exert a positive feedback on large-scale perturbations. The up-gradient transport
of momentum – as well as that of temperature, salinity and isopycnal thickness –
has been captured by several numerical studies (Gille & Davis 1999; Nakamura &
Chao 2000; Roberts & Marshall 2000). However, despite numerous investigations
(Kraichnan 1967; McWilliams & Chow 1981; Chaves & Gama 2000; Cummins &
Holloway 2010; among others) specific conditions for anti-diffusive mixing, and the
associated dynamics, have not been fully explained.

In this study, the tendency for spontaneous formation of large-scale patterns is
illustrated and analysed using a specific example of the two-layer quasi-geostrophic
Phillips model of baroclinic instability (Phillips 1951). However, it should be
emphasized that our ultimate intent is to introduce a sufficiently broad framework
for the analysis of cross-scale interactions, readily adaptable to a wide range of
applications. Theoretical progress in this direction can be made by assuming scale
separation between distinct components of eddying flows. A particularly promising
technique for treating such small-scale/large-scale interactions is multiscale analysis.
Multiscale homogenization mechanics, reviewed most recently by Mei & Vernescu
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(2010), is an actively developing field with numerous applications in all physical
sciences. Typically, multiscale homogenization models assume a periodic primary
eddy field and analyse its impact on the evolution of flow components with size
exceeding the scale of the background pattern. The multiscale technique is sufficiently
generic, making it possible to formulate explicit evolutionary equations for large-scale
structures in various physical systems. Importantly, multiscale methods do not assume
that developing eddies are small in amplitude. Therefore, they are not limited to
the initial stages of eddy growth or to weakly unstable systems (e.g. Pedlosky
1970). Examples of geophysical phenomena explained by multiscale mechanics
include the formation of zonal jets in the ocean and atmosphere (Frisch, Legras &
Villone 1996; Manfroi & Young 1999, 2002; Legras & Villone 2009; Radko 2011a)
and the effects of vertical microscale mixing on fine-scale density stratification
(Balmforth & Young 2002, 2005; Radko 2011b, 2014). Multiscale models formally
require asymptotically large-scale separation between the interacting flow components.
However, in practice, this condition does not place a particularly stringent constraint
on the model applicability. For instance, Radko (2011c) examined the effects of
limited scale separation through numerical simulations and found that the multiscale
model is sufficiently accurate even when the size of large-scale patterns exceeds that
of primary eddies by as little as a factor of four.

The simplest primary pattern used in multiscale mechanics is represented by the
Kolmogorov model – a parallel shear flow with sinusoidal velocity profile, maintained
against viscous dissipation by external forcing (Meshalkin & Sinai 1961; Sivashinsky
1985; Frisch et al. 1996; Manfroi & Young 1999, 2002; Balmforth & Young 2002,
2005; Legras & Villone 2009). The major advantage of Kolmogorov-based models
is related to their fully analytical tractability. However, questions could be raised
as to whether roughly isotropic geophysical eddies, exemplified by ocean rings and
weather systems in the atmosphere, can be adequately represented by a parallel flow.
Therefore, attempts have been made to move beyond the Kolmogorov model by
assuming two-dimensional – cellular, hexagonal or dipolar – primary patterns (e.g.
Gama, Vergassola & Frisch 1994; Novikov & Papanicolau 2001; Radko 2011a,c),
including translating structures (Cushman-Roisin, McLaughlin & Papanicolaou 1984;
Connaughton et al. 2010). However, despite the appealing generality and physical
transparency of multiscale methods, their utility has been mostly qualitative and
conceptual. The major obstacle for even wider and more quantitative application of
multiscale methods is their strong sensitivity to the background eddy patterns. For
instance, not only the magnitude but even the sign of the effective viscosity predicted
by multiscale models depends on the assumed small-scale eddy model (e.g. Gama
et al. 1994; Novikov & Papanicolau 2001; Radko 2011a,c). This ambiguity implies
that the successful application of multiscale methods is contingent on the proper
choice of the background pattern.

One of the key objectives of this paper is to demonstrate that the aforementioned
limitations may not arise when multiscale solutions are based on dynamically
consistent eddy models, rather than on highly idealized analytical patterns. Such
solutions are directly applicable to – and testable by – observations and numerical
simulations. To the best of our knowledge, representative eddy patterns have not
been employed yet in the extant geophysical multiscale models, and this possibility
is explored in the present paper. The proposed average eddy (AE) model, in which
the background pattern is taken from numerical simulations, retains the dynamic
transparency of the conventional multiscale theories. At the same time, it brings
in much improved relevance and accuracy, as illustrated here on the example of
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baroclinic instability in the Phillips framework. Using the multiscale AE model, we
evaluate effective eddy viscosity, validate the model using direct numerical simulations,
identify the essential dynamics of the up-gradient momentum transport and analyse
conditions for the spontaneous generation of large-scale flows.

The paper is organized as follows. In § 2, we present a series of preliminary
simulations which demonstrate the tendency for the spontaneous emergence of
LEDPs. We emphasize the sensitivity of this phenomenon to governing parameters and
demonstrate the significance of the spectrally non-local interactions for the growth of
unstable LEDPs. In § 3, the generation of LEDPs is treated as a multiscale problem,
which is then used to evaluate the effective eddy viscosity of large-scale zonal
currents (§ 4). We identify the dominant balances revealed by multiscale expansion
and interpret the origin of LEDPs in the Phillips model (§ 5). In § 6, we discuss
conditions that favour spontaneous formation of LEDPs. We summarize our findings
and draw conclusions in § 7.

2. Preliminary simulations
Consider a baroclinically unstable zonal flow represented by the two-layer quasi-

geostrophic model (e.g. Pedlosky 1987)

∂Q1

∂t
+ J(Ψ1,Q1)= ν∇4Ψ1, Q1 =∇2Ψ1 + f 2

g′H1
(Ψ2 −Ψ1)+ βy,

∂Q2

∂t
+ J(Ψ2,Q2)= ν∇4Ψ2 − γ∇2Ψ2, Q2 =∇2Ψ2 + f 2

g′H2
(Ψ1 −Ψ2)+ βy,

 (2.1)

where (Ψ1, Ψ2) are the streamfunctions, (Q1,Q2) are the potential vorticities and
(H1,H2) are the depths of the upper and lower layers respectively; g′ = (1ρ/ρ)g is
the reduced gravity, ρ is the density, f is the Coriolis parameter, β = (∂f /∂y), ν is
the lateral viscosity and γ is the bottom drag coefficient. The flow field (Ψ1, Ψ2) is
separated into the Phillips basic state ( ¯̄ψ1,

¯̄ψ2), representing the laterally homogeneous
zonal current, and the perturbation (ψ1, ψ2). Without loss of generality, we consider a
basic state in which the lower layer is motionless ( ¯̄ψ2= 0) and express the governing
equations (2.1) in terms of (ψ1, ψ2).

To reduce the number of governing parameters, the system is non-dimensionalized
using Rd 1, |U| and Rd 1/|U| as the scales of length, velocity and time respectively; U
is the basic velocity of the upper layer and Rd 1=√g′H1/f is the radius of deformation
of the upper layer. The resulting non-dimensional system takes the form

∂q1

∂t
+ J(ψ1, q1)+ (βnd + s)

∂ψ1

∂x
+ s

∂q1

∂x
= νnd∇4ψ1, q1 =∇2ψ1 + (ψ2 −ψ1),

∂q2

∂t
+ J(ψ2, q2)+ (βnd − sr)

∂ψ2

∂x
= νnd∇4ψ2 − γnd∇2ψ2, q2 =∇2ψ2 + r(ψ1 −ψ2),


(2.2)

where βnd = (βR2
d 1)/|U|, νnd = ν/(Rd 1|U|), γnd = (γRd 1)/|U|, r= (H1/H2) are the key

non-dimensional parameters, s = U/|U| is the sign of the background velocity and
(q1, q2) are the perturbation PV fields. Thus, in non-dimensional units, the Phillips
basic state is ¯̄u1,2 =−(∂ ¯̄ψ1,2/∂y)= (s, 0)= (±1, 0).

In the following numerical experiments, we shall assume doubly periodic boundary
conditions for (ψ1, ψ2) in x and y, and integrate the governing system (2.2) using
the dealiased pseudospectral model employed in Radko et al. (2014). Figure 1(a,c,e)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

66
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.668


320 T. Radko

(a)

x x

y

y

y

400

–0.10

–10

–5

0

5

10

–10
–15

–5
0
5

15
10

–0.05

0

0.05

0.10

–20

150
100
50
0
–50
–100
–150
–200

600

400

200

0

–200

–400

–10

0

10

20

30

0

200

400

4000

200

400

4000

200

(b)

(c) (d)

(e) ( f )

0

200

0

200

0

200

400

FIGURE 1. (Colour online) Typical instantaneous patterns of the upper-layer stream-
function at various evolutionary stages. (a,c,e) The flow evolution in the high-drag
experiment (γnd = 0.5). The corresponding low-drag simulation (γnd = 0.05) is shown in
(b,d,f ). The other governing parameters are identical: (βnd, r, νnd, s) = (0.1, 1/3,0.05, 1)
and (Lx, Ly) = (400, 200). The reduction of the bottom drag coefficient results in the
spontaneous generation of large-scale patterns.

presents a typical simulation in the baroclinically unstable regime. For this experiment,
we have used

(βnd, r, γnd, νnd, s)= (0.1, 13, 0.5, 0.05, 1). (2.3)

In dimensional units, these parameters describe, for instance, an eastward basic current
with U = 0.05 m s−1, β = 10−11 m−1 s−1, H1 = 1 km, H2 = 3 km, γ = 10−6 s−1,
ν = 60 m2 s−1 and Rd 1 = 25 km – scales that are representative of typical mid-ocean
flows. The size of the computational domain in figure 1(a,c,e) is (Lx, Ly)= (400, 200),
which is equivalent to 10 000 km × 5000 km, and it is resolved by a uniform
mesh with Nx × Ny = 768 × 384 elements. The simulation was initialized from rest
by a small-amplitude random computer-generated (ψ1, ψ2) distribution. The active
statistically steady eddying motion driven by baroclinic instability was established
after a few growth rate periods. Figure 1(a) shows a typical instantaneous (t = 147)
streamfunction field (ψ1) in the initial stage of linear growth. As expected from linear
stability theory, the most rapidly growing perturbations take the form of meridional
harmonics. Figure 1(c) (t= 227) presents the second evolutionary stage – development
of secondary instabilities, which act to distort the primary modes, adversely affecting
their growth. Finally, by t= 308, figure 1(e), the system enters the quasi-equilibrium

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

66
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.668


On the generation of large-scale eddy-driven patterns 321

stage, characterized by irregular transient mesoscale patterns. The simulation was
extended further in time (to t = 3000), but no additional qualitative changes were
observed.

A substantially different pattern emerged in the simulation shown in figure 1(b,d,f ).
This experiment is identical to that in figure 1(a,c,e) in all respects except for the
bottom drag coefficient, which was reduced by an order of magnitude to γnd = 0.05.
While the initial stages of both simulations are similar, the long-term evolution of
the low-drag experiment (figure 1f ) is characterized by the emergence of large-scale
zonally elongated patterns. They gradually intensify and ultimately evolve into quasi-
steady and largely barotropic structures dominating the final streamfunction field. The
dramatically different outcomes of the experiments in figures 1(e) and 1( f ) suggest
that the spontaneous generation of LEDPs is controlled by the competition between
the destabilizing action of mesoscale eddies and the damping tendency of bottom drag.

Since this study is focused on cross-scale interactions, it becomes necessary at this
point to introduce a specific and convenient operational definition of a ‘large-scale’
pattern. In the following analysis, we assume that LEDPs consist of Fourier harmonics
with wavelengths exceeding the cutoff scale Lcr. This critical scale is set to Lcr =
20 and this convention will be used consistently throughout our study. For instance,
to further isolate the role of multiscale interactions in LEDP generation, we present
a ‘filtered’ simulation (figure 2) in which all Fourier components with meridional
wavelengths exceeding Lcr = 20 are reset to zero at each time step, except for the
fundamental meridional harmonic

ψ1,2 =Re
[

A1,2 exp
(

i
2π

Ly
y
)]

. (2.4)

Such a wide spectral gap precludes the possibility of LEDP generation through the
sequential coalescence of eddies into larger and larger structures, associated with the
upscale energy cascade in predominantly two-dimensional turbulence. Additionally,
the bottom drag in this experiment is applied to mesoscale components but not
to the large-scale mode (2.4). Neglecting the large-scale bottom drag (γls = 0) but
retaining the substantial drag on mesoscale components (γms = 0.5) allows us to
isolate and quantify the impact of eddies on the large-scale current. The filtered
simulation (figure 2) is characterized by the monotonic growth of (2.4) – the only
large-scale mode present. The mode (2.4) represents the zonal flow and therefore it
is baroclinically stable (recall that the basic Phillips flow is also zonal). Thus, its
amplification is entirely due to the action of eddies. Since the cascade is precluded,
the conclusion that one might draw from this experiment is that spectrally non-local
interactions are sufficiently vigorous and efficient to induce the spontaneous generation
of LEDPs. The evolutionary time scales and the resulting flow patterns in figure 2 are
similar to those realized in its unfiltered counterpart (figure 1b,d,f ), in which bottom
drag is uniformly low at all scales (γnd = 0.05).

Figure 3(a) presents the time record of the upper-layer amplitude (|A1|) of the
large-scale harmonic (2.4) as a function of time for the experiment in figure 2. The
amplitude is plotted in logarithmic coordinates, and therefore the straight segment of
the curve in figure 2 at moderate values of |A1| is indicative of the exponential growth
of the perturbation. This, in turn, suggests that the emergence of the LEDP in this
simulation can be interpreted as a form of instability driven by interactions between
the large-scale harmonic and the mesoscale eddy field. To be more specific, one might
argue that the acceleration of the large-scale current (figure 2a,c,e) is a manifestation
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FIGURE 2. (Colour online) The filtered simulation in which all Fourier components with
meridional wavelengths exceeding Lcr = 20 are reset to zero at each time step, except for
the fundamental meridional harmonic (2.4). The upper- and lower-layer streamfunctions
are shown in (a,c,e) and (b,d,f ) respectively. The fundamental harmonic grows in time,
eventually dominating the flow field, which reflects the destabilizing nature of mesoscale
variability.

of the negative eddy viscosity phenomenon (Starr 1968). This suggestion is also
supported by the observation that the growth rate of the large-scale perturbation
is proportional to its wavenumber (m= 2π/Ly) squared, as expected for the linear
diffusion equation with negative diffusivity.

Figure 3(b) presents a series of simulations which are identical to that in figure 2
in all respects except for the meridional extent of the domain (Ly) – the latter
is systematically varied from Ly = 100 to Ly = 1600. The growth rate (λ) of the
fundamental mode (2.4) is then diagnosed from numerics and plotted as a function of
the large-scale wavenumber m in logarithmic coordinates. The data points (figure 3b)
align along the straight line with slope corresponding to the power law λ∝m2. The
effective eddy viscosity associated with this amplification is K=−1.2. It is interesting
that if the spectral gap is not enforced in the simulation, while the direct influence
of bottom drag on the large-scale mode (2.4) is still excluded (γls = 0), the effective
viscosity reduces to K = −0.9. The limited sensitivity (∼25 %) of eddy viscosity
to the presence/absence of intermediate scales (Lcr < L< Ly) is suggestive. It offers
yet another indication that, in the parameter regime explored here, the evolution of
large-scale patterns is controlled by spectrally non-local processes.
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FIGURE 3. (a) The amplitude of the fundamental harmonic (2.4) is plotted on a
logarithmic scale as a function of time (solid curve) for the filtered calculation in figure 2.
The relatively straight segment between t= 1000 and t= 4000 corresponds to exponential
amplification, which, in turn, suggests linear instability of the large-scale mode (2.4). The
straight dashed line represents the amplification corresponding to the uniform negative
viscosity of K = −1.2. (b) The growth rate of the large-scale perturbation is plotted
as a function of its wavenumber (m) in logarithmic coordinates. The numerical results
are indicated by the plus signs and the straight line corresponds to the anti-diffusive
scaling λ∝m2.

While the influence of eddies on large-scale perturbations is destabilizing, leading
to the amplification of large-scale patterns, bottom drag and beta-effect act in the
opposite sense. Figure 4 combines a series of simulations performed with various
values of (s, βnd, γnd). The bottom drag in these experiments is spatially uniform at
all scales and spectral filtering is not applied. For each simulation, we quantify the
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FIGURE 4. (Colour online) The discriminator variable (R) defined in (2.5) is plotted
as a function of sβnd and γnd. The positive values of R (shown in red) represent the
LEDP-dominated simulations and the negative R (shown in blue) reflect the predominantly
mesoscale dynamics. The logarithmic (linear) axis is used for γnd (sβnd). The heavy
solid curve represents the theoretical estimate (§ 6) of the boundary between the
LEDP-dominated and mesoscale-dominated regimes.

relative magnitude of mesoscale eddies and LEDPs using the discriminator variable

R= ln
(

ELEDP

EMS

)
, (2.5)

where EMS and ELEDP represent the perturbation energy contained in the mesoscale
and large-scale eddy fields respectively. The mean perturbation energy of the two-layer
system is

E=
〈

r
2(1+ r)

|∇ψ1|2 + 1
2(1+ r)

|∇ψ2|2 + r
2(1+ r)

(ψ2 −ψ1)
2

〉
, (2.6)

where the angled brackets represent averaging in (x, y). The mesoscale (large-scale)
components are represented by a superposition of Fourier harmonics with the
wavelengths L < Lcr = 20 (L > Lcr). The discriminator R, diagnosed at the end of
each simulation (t = 2000), is plotted as a function of sβnd and γnd in figure 4. For
each value of (s, βnd), the fraction of energy contained in large scales monotonically
increases with decreasing γnd, and the system eventually transitions to the LEDP-
dominated regime. For given γnd, LEDPs are more likely to emerge at low values
of βnd.

The results presented in this section are generally consistent with the conventional
views on the dynamics of mesoscale turbulence (Rhines 1977; Larichev & Held
1995; Thompson & Young 2006, 2007). For instance, the link between weak bottom

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

66
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.668


On the generation of large-scale eddy-driven patterns 325

drag and spontaneous generation of large-scale structures has been noted in several
studies (Nadiga 2006; Nadiga & Straub 2010; Radko et al. 2014). The upscale
barotropic cascade is known to be suppressed by large bottom drag as well as by
large beta (e.g. Held & Larichev 1996; Thompson & Young 2006, 2007; Berloff
et al. 2011). These effects may be invoked to broadly rationalize salient features
of the presented experiments: (i) the limited amplitude of large-scale components
and (ii) the dominance of spectrally non-local interactions when the bottom drag is
substantial. The following model attempts to explain the eddy/mean-flow interaction
on a more quantitative and mechanistic level (§§ 3–5). We shall focus on the
moderately high-drag regime, which is readily amenable to multiscale treatment,
and attempt to explain the transition to LEDP-favourable conditions in certain regions
of the (sβnd, γnd) parameter space (§ 6).

3. Generation of LEDPs as a multiscale problem
In this section, the problem of spontaneous generation of LEDPs is treated using

techniques of asymptotic multiscale analysis (Kevorkian & Cole 1996; Mei &
Vernescu 2010). Details are relegated to the Appendix, and here we summarize
the key steps. The interaction between vastly dissimilar flow components is described
using new temporal and spatial variables (T , Y) over which the background eddy
pattern is modulated:

Y = εy, T = ε2t, (3.1a,b)

where ε� 1 is a measure of the relative spatial scales of the background eddies and
large-scale flow. We are concerned by the ability of small-scale eddies, represented
by the streamfunction fields ψ̄1,2(x, y, t), to affect the slow evolution of a broad zonal
current. The primary eddy field is assumed to be fully developed and statistically
homogeneous on large scales. In terms of magnitude, it represents the dominant
temporally variable component, and ψ̄1,2 ∼O(1) in the expansion. Thus, the strength
of primary eddies is comparable to the Phillips basic flow ¯̄u1,2= (±1, 0) that generates
them, and therefore the eddy dynamics are fundamentally nonlinear.

We now examine how this large-amplitude small-scale eddy field interacts with the
large-scale zonal perturbation. The latter is taken to be barotropic at the leading order,
which is consistent with our preliminary simulations (figure 2) and can be rationalized
theoretically (see the Appendix):

ψ
(0)
1,2 =ψ (0)(Y, T). (3.2)

Since the zonal jet (3.2) varies on large scales, its velocity is weak, u(0) = −εψ (0)
Y ,

and the shear induced by the jet is even weaker, sh(0) = ε2ψ
(0)
YY . Both displacement

and shear induced by the large-scale jet perturb and modulate the background eddy
field ψ̄1,2. These dynamics are reflected by expressing the total streamfunction field
(ψ1,2) as follows:

ψ1,2 = ψ (0)(Y, T)+ ψ̄1,2(x, y, t)+ εψ (0)
Y (Y, T) · ψ̃ (1)

1,2(x, y, t)

+ ε2ψ
(0)
YY (Y, T) · ψ̃ (2)

1,2(x, y, t)+O(ε3). (3.3)

Equation (3.3) can be readily obtained (see the Appendix) using a formal expansion
of ψ1,2 in powers of ε. As is common to all modulational stability analyses,
the perturbation components (ψ

(1)
1,2, ψ

(2)
1,2) in (3.3) are expressed as products of
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modulating functions (ψ (0)
Y , ψ

(0)
YY ), which vary on large spatial/temporal scales, and

the corresponding auxiliary functions (ψ̃ (1)
1,2, ψ̃

(2)
1,2), varying on small scales:

ψ
(1)
1,2 =ψ (0)

Y (Y, T) · ψ̃ (1)
1,2(x, y, t), ψ

(2)
1,2 =ψ (0)

YY (Y, T) · ψ̃ (2)
1,2(x, y, t). (3.4a,b)

The auxiliary functions (ψ̃ (1)
1,2, ψ̃

(2)
1,2) are related to the background pattern ψ̄1,2 by a set

of partial differential equations (A 6), (A 9) and (A 10) in small-scale variables (x, y, t).
Determining ψ̃

(1)
1,2 and ψ̃

(2)
1,2 for given ψ̄1,2 – the background small-scale eddy field –

is referred to as solving the first and second auxiliary problems respectively.
The large-scale modulation of the eddy field in (3.4) is essential for triggering

feedbacks of eddies on large-scale jets. The interaction of the jet (represented by the
first term on the right-hand side of (3.3)) with the background eddy field (the second
term in (3.3)) generates the modulated perturbations (terms three and four). These
perturbations (ψ (1)

1,2, ψ
(2)
1,2), in turn, interact with the basic field ψ̄1,2, which modifies the

large-scale pattern ψ (0). The system evolution resulting from the interplay between the
large-scale current and modulated eddy perturbations is represented by the diffusion
equation

∂

∂T
u(0) =K

∂2

∂Y2
u(0), (3.5)

where K is the effective eddy viscosity (see the Appendix). For the sake of simplicity,
in the present formulation we have linearized all asymptotic equations with respect to
ψ (0) terms. However, it should be emphasized that multiscale models can incorporate
the nonlinearities in the evolutionary large-scale equations in a rather straightforward
manner (e.g. Gama et al. 1994; Novikov & Papanicolau 2001).

In view of (3.1), it is apparent that (3.5) retains its form even when it is written
using the original (small-scale) temporal and spatial variables (t, y). The multiscale
model makes it possible to express K in terms of the primary eddy field ψ̄1,2 and the
auxiliary functions (ψ̃ (1)

1,2, ψ̃
(2)
1,2):

K =− 1
1+ r

[〈
r
∂ψ̄1

∂x

(
2
∂ψ̃

(2)
1

∂y
+ ψ̃ (1)

1

)
+ ∂ψ̄2

∂x

(
2
∂ψ̃

(2)
2

∂y
+ ψ̃ (1)

2

)〉]
, (3.6)

where angled brackets represent averaging in (x, y) and square brackets represent
averaging in t. The instantaneous counterpart of (3.6), in which averages are taken in
space only, will be denoted by Kinst(t):

Kinst =− 1
1+ r

〈
r
∂ψ̄1

∂x

(
2
∂ψ̃

(2)
1

∂y
+ ψ̃ (1)

1

)
+ ∂ψ̄2

∂x

(
2
∂ψ̃

(2)
2

∂y
+ ψ̃ (1)

2

)〉
. (3.7)

It is interesting and perhaps somewhat counterintuitive that while the displacement-
induced and shear-induced effects appear at different orders in the streamfunction
series (3.3), both processes are represented at the leading order in the expression
for eddy viscosity (3.6). The sign of K determines whether eddies exert positive
or negative feedback on large-scale patterns. If K < 0, we can expect eddy-induced
amplification of large-scale patterns, but K>0 would imply that eddies act to suppress
them.

One of the complications that commonly arises in multiscale modelling is that
the interaction of primary eddies with large-scale flows may not be the only
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mechanism producing the perturbation fields (ψ
(1)
1,2, ψ

(2)
1,2). An alternative source

of these perturbations is small-scale instability. This possibility is particularly
relevant for the baroclinically unstable flows considered in our study. The irregular
and time-dependent mesoscale variability at high Reynolds numbers is inherently
susceptible to various secondary instabilities. These small-scale instabilities, by
themselves, may not systematically affect large-scale patterns. Nevertheless, their
presence complicates the analysis of the solutions obtained, since the unstable modes
amplify in time and can eventually mask the processes of interest – the generation
of perturbations through the interaction of the primary eddy field ψ̄1,2 with the
large-scale flow ψ (0) and the feedback of these perturbations on the large-scale
current. The majority of classical multiscale models deal with this complication either
by restricting analysis to sufficiently low Reynolds numbers required to suppress
the secondary small-scale instabilities (Meshalkin & Sinai 1961; Nepomnyashchy
1976; Sivashinsky 1985; Frisch, She & Sulem 1987; Gama et al. 1994; Wirth,
Gama & Frisch 1995; among many others) or by a priori ignoring the fast time
variation of small-scale components (e.g. Novikov & Papanicolau 2001; Radko 2014).
Both approaches are legitimate, as a starting point, and could be easily applied to
our problem. However, this study provides us with the opportunity to develop an
alternative non-invasive multiscale method, resulting in a more realistic description of
eddy/LEDP interactions, which we describe next.

4. The AE model
Modulational stability analysis constitutes an effective analytical technique,

commonly used to elucidate the dynamics of cross-scale interactions in most physical
sciences (e.g. Mei & Vernescu 2010). Perhaps the biggest obstacle for even wider
application of multiscale models is the high sensitivity of model predictions to the
assumed eddy structure, which severely limits the practical value of an otherwise
very promising technique. The approach advocated in this study may offer a simple
and effective remedy for the problem. Instead of focusing on idealized backgrounds
(e.g. harmonic, hexagonal or dipolar) we propose to consider more realistic and
dynamically consistent patterns that could be readily obtained from simulations. In
the following examples, the primary eddy pattern ψ̄1,2(x, y, t) is obtained by integrating
the governing equations (2.2) subject to doubly periodic boundary conditions in (x, y).
These calculations are accompanied by the integrations of auxiliary problems (A 9)
and (A 10), making it possible to obtain (ψ̃ (1)

1,2, ψ̃
(2)
1,2) and, ultimately, the eddy viscosity

(3.6). Experimentation with various computational domains indicated that the results
are not particularly sensitive to the size as long as it significantly exceeds the typical
eddy scale. Multiscale models tend to be slightly more accurate when the meridional
domain size is increased, and therefore the solutions presented here were obtained
using relatively large areas (Lx, Ly)= (80, 320).

Figure 5 shows typical fully developed streamfunction patterns of the primary
eddy field and the corresponding auxiliary functions, obtained as follows. First, the
governing equations (2.2) were integrated in time starting from a small-amplitude
random perturbation for ψ̄1,2. The model parameters for the experiment in figure 5
are the same as in figure 1(a,c,e), and are listed in (2.3). It should be recalled
that these parameters correspond to stable large-scale perturbations (figure 1a,c,e)
if bottom drag is assumed to be uniform at all scales (γms = γls = γnd) and to the
amplification of large-scale modes (figures 2 and 3) if direct effects of drag on
large scales are ignored (γms = γnd, γls = 0). By t00 = 300, the system evolved to
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FIGURE 5. (Colour online) Typical upper/lower streamfunction patterns ψ̄1,2 (a,b) along
with the corresponding solutions of the first (c,d) and second (e, f ) auxiliary problems.
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the statistically steady quasi-equilibrium state. The experiment was then extended by
1t = 5 and, during this interval, it was accompanied by concurrent integration of
the auxiliary problems (A 9) and (A 10) starting from ψ̃

(1,2)
1,2 (t00) = 0. Figure 5(a,b)

presents the primary eddy fields ψ̄1,2 at t= t00 +1t, and the corresponding solutions
of the first and second auxiliary problems are shown in figures 5(c,d) and 5(e,f )
respectively. During the period t00 < t < t00 + 1t, the eddy viscosity (3.7) gradually
decreased from zero to Kinst =−0.69, indicating that the eddy transfer of momentum
occurred in the up-gradient sense.

Extensions of the auxiliary integrations for much longer periods of time, however,
revealed a serious complication: the unbounded growth of the auxiliary functions
(ψ̃

(1,2)
1,2 ), caused by the instability of the linear operator A in (A 6). As discussed

earlier (§ 3), the appearance of new small-scale instabilities in the irregular and
time-dependent eddying flows is natural and expected. The auxiliary problems (A 9)
and (A 10) are structurally similar to the system (2.2) that governs the evolution of
background eddies, and therefore they are subject to similar (baroclinic) instabilities.
The interaction of the auxiliary functions with the background eddy field – the
interaction represented by the Jacobian terms in A – tends to intensify rather than
suppress these instabilities. Unless this issue is addressed, the indefinite growth of
the auxiliary functions can limit the utility of the multiscale model.

The crux of the proposed approach is a simple observation that even when operator
A is unstable, the asymptotic solution (3.3) still remains valid and accurate for
relatively long periods of time. If λA represents the largest growth rate of A, then the
expansion leading to (A 9) and (A 10) fails (in the worst-case scenario) only after a
period of tf ∼ (1/λA) ln(ε−1)� 1. The time of adjustment of the eddy field to the
large-scale forcing, on the other hand, is an order-one quantity: tadj=O(1) – the time
scale set by a typical eddy turnaround period. The asymptotic disparity of the scales
of adjustment and of the model failure (tadj � tf ) justifies the use of the multiscale
framework for calculating – and physically explaining the selection of – the effective
eddy viscosity.

The technical problem that arises at this point is that the amplification of auxiliary
functions in time makes it difficult to accurately evaluate the time-mean values of
K in (3.6) from a single experiment. This complication, however, is readily resolved
by ensemble averaging of the results over a large number (N) of realizations. For a
given set of parameters, the auxiliary problems were repeatedly integrated over time
intervals [t0, t0 +1T] greatly exceeding the eddy adjustment time scale (1T � tadj),
where t0 = t00 + n1T, n = 1, . . . , N. The initial conditions for each integration of
auxiliary problems were taken to be ψ̃ (1,2)

1,2 (t0)=0. Then, the N time records of Kinst(τ ),
where τ = t− t0, obtained at each integration were averaged over all realizations, which
effectively isolated the dynamically significant signal.

Figure 6 presents the ensemble-averaged time record of eddy viscosity Kinst(τ ) for
N=445 000 and 1T=25. As expected, the evolution of Kinst(τ ) is a two-stage process.
First, it gradually decreases from zero to its preferred equilibrium value (1 < τ < 5)
and subsequently remains largely uniform (τ > 5). The mean value evaluated for the
second stage is interpreted as the eddy viscosity suggested by the multiscale model.
While the ensemble-averaged Kinst(τ ) converges with increasing τ to a well-defined
equilibrium level, the individual realizations are characterized by irregular amplifying
oscillations about this mean value.

In order to assess the accuracy of the multiscale model, the effective eddy viscosity
was also diagnosed numerically. For this, we integrated the governing equations (2.2)
using the version of the spectral code (cf. § 2) in which the bottom drag operator was
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FIGURE 6. The ensemble-averaged eddy viscosity as a function of time. After the initial
period of adjustment (τ < 5), the instantaneous eddy viscosity Kinst obtained with the
multiscale model (indicated by the solid curve) becomes largely uniform and closely
matches the corresponding numerical estimate, represented by the dashed horizontal line.

applied to all spectral modes except for the fundamental harmonic (2.4). As a result,
this mode amplified exponentially due to the action of eddies. The growth rate (λ)
realized in this simulation was then used to infer the eddy viscosity Knum = −λ/m2,
where m = 2π/Ly is the fundamental wavenumber. The numerical estimate of eddy
viscosity is indicated in figure 6 by the horizontal dashed line. The close agreement
between the numerical and theoretical estimates leaves no doubt that the formalism
of multiscale modelling can be successfully applied to realistic and dynamically
consistent eddy patterns.

To explore the parameter space, we performed a series of simulations analogous to
that in figure 6 for a range of sβnd and compared (figure 7) the multiscale results with
the corresponding numerical estimates of eddy viscosity. Figure 7 indicates that the
multiscale model not only correctly produces the negative sign and typical magnitude
of eddy viscosity but also accurately captures the variation of K with sβnd. The pattern
of K(sβnd) is of interest in its own right. While the intensity of eddies, as measured
for instance by the root mean square perturbation velocity, tends to be significantly
higher for the westward propagating basic current (s=−1), the eddy viscosity pattern
is reversed. The largest values of eddy viscosity (|K| ∼ 0.9) are found for s= 1, which
suggests that baroclinic instability of eastward flows is much more effective in terms
of the spontaneous generation of LEDPs.

5. The anatomy of counter-gradient momentum transport
The ability of the multiscale model to reproduce eddy viscosity (figures 6 and 7)

opens an attractive opportunity to (i) examine various processes involved in the
selection of K, (ii) identify the dominant balances realized at each order in the
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FIGURE 7. The effective eddy viscosity (K) diagnosed from numerical simulations (solid
curve) is plotted as a function of sβnd along with the corresponding theoretical estimate
based on the ensemble-averaged multiscale model (plus signs).

asymptotic expansion and (iii) physically interpret the chain of events leading to
counter-gradient momentum transport.

The first question arising after inspection of (3.7) is the relative contributions of
displacement-induced and shear-induced perturbations in the top/bottom layers to the
net eddy viscosity Kinst =K(1)

1 +K(2)
1 +K(1)

2 +K(2)
2 , where

K(1)
1 =−

r
1+ r

〈
∂ψ̄1

∂x
ψ̃
(1)
1

〉
, K(2)

1 =−
2r

1+ r

〈
∂ψ̄1

∂x
∂ψ̃

(2)
1

∂y

〉
,

K(1)
2 =−

1
1+ r

〈
∂ψ̄2

∂x
ψ̃
(1)
2

〉
, K(2)

2 =−
2

1+ r

〈
∂ψ̄2

∂x
∂ψ̃

(2)
2

∂y

〉
.

 (5.1)

These components were evaluated from the ensemble-averaged simulation in figure 6.
The values of the eddy viscosity components (5.1) recorded during the period of
eddy adjustment to the large-scale forcing (τ = 2) and during the quasi-equilibrium
stage (τ = 10) are listed in table 1. In both regimes, the dominant component of
(3.6), which controls the magnitude and sign of eddy viscosity, is the upper-layer
displacement term K(1)

1 < 0. The lower-layer displacement term K(1)
2 is also negative,

but it is much weaker and therefore plays a secondary role in LEDP generation. The
upper- and lower-layer shearing terms (K(2)

1,2) are both positive and act to reduce the
counter-gradient flux driven by the upper-layer displacement mode (K(1)

1 ). It should
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Component τ = 2 τ = 10

K(1)
1 −1.8483 −8.6285

K(1)
2 −0.2644 −1.2467

K(2)
1 1.1784 7.8098

K(2)
2 0.2562 1.2062

Total −0.6780 −0.8592

TABLE 1. Components of the ensemble-averaged eddy viscosity from the multiscale model
at the adjustment (τ = 2) and the equilibrium (τ = 10) stages. The dominant contributor
to eddy viscosity is the displacement-driven upper-layer component K(1)

1 .

be noted, however, that the magnitude of the amplifying terms (K(1)
1,2) is close to that

of the stabilizing components (K(2)
1,2). Thus, even small variations in each of the four

terms in (5.1) could change the sign of the net viscosity.
To explain the origin of negative viscosity, we focus on the first auxiliary problem

(A 9), which governs the destabilizing displacement mode. First, we note that the exact
analytical solution of (A 9) is given by

ψ̃
(1)
i =

∂ψ̄i

∂x
(t− t0), i= 1, 2. (5.2)

The validity of (5.2) can be readily ascertained by differentiating the governing
equations for the primary eddies in x, multiplying the result by (t− t0) and subtracting
from the corresponding first auxiliary equations. The physical interpretation of (5.2)
is also straightforward: at the leading order, the large-scale perturbation results in
the kinematic shift of the eddy pattern. Despite linear instability of the first auxiliary
problem, the analytical solution (5.2) was found to be close to the corresponding
numerical realizations. The relative differences between the analytical and numerical
solutions accumulating over the finite integration interval 1T =25 were of the order
of 0.2 %.

The structure of the first auxiliary solution (5.2) yields insight into the mechanisms
controlling the meridional potential vorticity flux associated with the displacement
mode. The perturbation PV flux associated with the displacement mode in each layer
contains two distinct components – advection of the basic PV by the perturbation
velocity 〈q̄iv

(1)
i 〉 and advection of the perturbation PV by the basic eddy velocity

〈q(1)i v̄i〉, where i = 1, 2. However, it is argued in the Appendix that 〈q̄iv
(1)
i 〉 does

not contribute to the net PV flux and the relevant component is F(1)
qi = 〈q(1)i v̄i〉.

Furthermore, at the leading order, this flux reduces to

F(1)
qi = ε3

〈
∂ψ̄i

∂x
ψ̃
(1)
i

〉
∂3ψ (0)

∂Y3
. (5.3)

In view of (5.2), PV fluxes in both layers are positively correlated with (∂q(0)/∂Y),
where q(0) = (∂2ψ (0)/∂Y2) is the vorticity of the large-scale flow. Therefore, we
conclude that the sign of the depth-weighted vertical average of the PV fluxes in
both layers, Fq = (rF(1)

q1 + F(1)
q2 )/(1+ r), is also controlled by the direction of the
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y y

FIGURE 8. Schematic diagram illustrating the acceleration of a large-scale zonal flow
by eddies. Extrema of the large-scale vorticity are indicated by yi. The regions where
the large-scale vorticity is positive are indicated by shading. The multiscale model –
see (3.1a,b) – suggests that the eddy PV flux (Fq) increases with the PV gradient (∂q0/∂y).
Therefore, we expect that the divergence/convergence of fluxes will further increase the
vorticity in the regions where it is already positive (q(0) > 0) and reduce it where it is
negative (q(0) < 0).

large-scale vorticity gradient:

Fq > 0 for
∂q(0)

∂y
> 0,

Fq < 0 for
∂q(0)

∂y
< 0.

 (5.4)

Thus, the barotropic vorticity flux is up-gradient, which results in the amplification
of LEDPs. The physical mechanism of amplification is illustrated in figure 8,
which depicts the large-scale zonal current ( ¯̄u + u(0)) with y-dependent velocity
and the corresponding vorticity pattern q(0) =−(∂u(0)/∂y). According to (3.1a,b), the
meridional eddy-induced PV flux is positive for y1 < y< y2, y3 < y< y4 and negative
for y2 < y< y3, where the yi denote the extrema of the large-scale vorticity. Thus, the
divergence of the potential vorticity flux ((∂Fq/∂y) > 0) results in the reduction of
potential vorticity in the regions where the large-scale potential vorticity is already
negative (q(0) < 0). In regions where the large-scale potential vorticity is positive, it
will be further increased. This positive feedback mechanism explains the eddy-induced
amplification of large-scale perturbations and the associated negative eddy viscosity.
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6. Conditions for the spontaneous generation of LEDPs
The success of the multiscale model in reproducing numerical results raises the

question of whether it can also be used to explain the spontaneous emergence of
LEDPs in certain regions of the parameter space and the lack of them in others
(e.g. figure 4). The formation of LEDPs in simulations is apparently controlled
by the competition between the destabilizing action of mesoscale eddies and the
stabilizing tendency of the bottom drag acting directly on large scales. The following
analysis attempts to identify and rationalize the onset of the LEDP-favourable regime
as the bottom drag is gradually decreased from relatively high values, sufficient to
stabilize large-scale perturbations, towards marginally unstable conditions.

The multiscale analysis (§§ 4 and 5) suggests that the effects of mesoscale eddies
on the barotropic zonal current u(0)(y) can be represented by negative eddy viscosity
(3.6). The impact of the bottom drag can be assessed by vertically averaging the
governing equations (2.2), which in the absence of eddies amounts to (∂u(0)/∂t) =
−(γnd/(1+ r))u(0). Assuming that the net effect can be estimated by linearly adding
the two tendencies, the evolutionary equation for the large-scale flow reduces to

∂u(0)

∂t
=K

∂2u(0)

∂y2
− γnd

1+ r
u(0). (6.1)

The existing evidence suggests that the linearly most unstable LEDPs take the form
of zonal jets. This property is clearly revealed by numerical simulations (e.g. Berloff
et al. 2009) and can be attributed to the generic tendency of the beta-effect to suppress
large-scale meridional displacements. Therefore, it is reasonable to assume that the
point of destabilization of large-scale zonal modes represents the transition between
LEDP-dominated and mesoscale-dominated regimes.

The stability of large-scale zonal flows is analysed using the linear model (6.1). The
substitution of normal modes u(0)=A exp(imy+ λt) in (6.1) reveals that for K< 0, the
large-scale flow is stable at relatively long wavelengths (m<m0) and unstable at short
ones (m>m0), where

m0 =
√
− γnd

K(1+ r)
. (6.2)

If mesoscale eddies are contained within the range m>mcr, then the condition for
spontaneous formation of LEDPs becomes

m0 <mcr. (6.3)

If (6.3) is satisfied, then there is a finite range of sufficiently long wavelengths m0<

m<mcr that are unstable and therefore are likely to amplify.
The criterion (6.3) was used to formulate an algorithm for identifying the regions in

the parameter space (sβnd, γnd) that are susceptible to spontaneous LEDP generation
as follows. We have assumed (§ 2) that the separation between meso- and large
scales occurs at a wavelength Lcr = 20, and therefore the transitional wavenumber
is mcr = (2π/Lcr) = 0.314. For any given value of sβnd, we performed a series of
calculations in which bottom drag (assumed here to be uniform at all scales) was
systematically decreased. The experiments started from a sufficiently large initial
value (γnd = 0.5), which ensures that the eddy field is mesoscale-dominated. For each
γnd, we evaluated the eddy viscosity K using the multiscale model and computed
m0 from (6.2). As γnd was decreased, m0 decreased as well. Eventually, m0 reached
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the mesoscale/large-scale threshold (mcr), at which point the calculation was stopped.
Further decrease in γnd would imply the existence of a finite range of long unstable
wavelengths (m0<m<mcr). Therefore, the critical value of the bottom drag coefficient
(γcr) for which m0 = mcr was assumed to represent the point of transition between
the mesoscale- and LEDP-dominated regimes. This procedure was repeated for a
series of sβnd, and the relation γcr(sβnd) obtained in this manner is shown by the
heavy curve in figure 4. The theoretical curve is in general agreement with the
numerics, indicating that the LEDP-dominated region lies at relatively low values
of βnd and γnd. The ability of the proposed model to reproduce conditions for the
spontaneous emergence of LEDPs in simulations is suggestive. It lends credence to
all theoretical elements on which the algorithm is based, most notably the idea of
competition between stabilizing bottom drag and destabilizing negative eddy viscosity
(6.1), multiscale analysis, and the criterion for LEDP formation in (6.3).

7. Discussion

The ability of nonlinear mesoscale eddies in the ocean to excite and maintain
motions on much larger spatial and temporal scales is well known (e.g. LaCasce &
Pedlosky 2004; Berloff et al. 2009). However, specific mechanisms for the generation
of LEDPs have not been fully explained. Two dominant conceptual frameworks
view such phenomena as a consequence of either (i) the upscale energy cascade
in two-dimensional turbulence (Kraichnan 1967; Kraichnan & Montgomery 1980;
Rhines 1994) or (ii) modulational instability of mesoscale eddy patterns (Lorenz
1972; Cushman-Roisin et al. 1984; Gama et al. 1994; Manfroi & Young 1999,
2002; Connaughton et al. 2010). An attractive feature of the modulational stability
analysis is its dynamic transparency. Explicit knowledge of the response of small-scale
variability to large-scale forcing (shear and displacement in our case) makes it
possible to trace and physically interpret the chain of events leading to modification
of large-scale patterns by eddies.

While the extant multiscale homogenization theories undoubtedly yield important
physical insights into the problem, quantitative and testable descriptions of the flow
evolution are more difficult to come by. So far, the application of modulational
stability models, which are usually couched in terms of multiscale analyses, has
been hampered by the sensitive dependence of large-scale solutions to the assumed
structure of individual eddies. The major differences in model predictions (Gama et al.
1994; Novikov & Papanicolau 2001; Radko 2011a,c) underscore the importance
of the chosen background eddy pattern. Our present study attempts to address
this complication by using the time-dependent background obtained directly from
simulations of mesoscale eddies – the approach referred to as the AE model. The
resulting mesoscale field is representative and dynamically consistent, which holds
the promise of producing sufficiently accurate large-scale evolutionary equations.

The initial application of the AE multiscale analysis to the two-layer model of
baroclinic instability (Phillips 1951) has been encouraging. The evolutionary equation
suggested by the multiscale model takes the form of the diffusion equation (3.5)
with negative coefficient K. The multiscale theory made it possible to evaluate the
effective eddy viscosity and its variation with background parameters, which was
subsequently confirmed by direct numerical simulations. In this regard, we should
mention the recent work of Jansen & Held (2014) and Jansen et al. (2015), who
use a negative-viscosity formulation to represent subgrid eddy effects in models of
geostrophic ocean turbulence. The success of the negative-viscosity parameterization
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reported in these studies is consistent with the theoretical results presented here. On
the other hand, Srinivasan & Young (2012) examined the spontaneous formation of
zonal jets in the barotropic model with isotropic noise forcing and suggested that
the growth of jets is associated with a destabilizing hyper-viscous term, rather than
with the negative-viscosity mechanism considered here. The ultimate cause of the
disagreement remains to be identified.

One of the key strengths of multiscale analysis lies in its explicit treatment of
interactions between flow components operating on dissimilar scales. This transparency
has been exploited here to identify the dominant balances in the multiscale expansion
and to accordingly interpret the dynamics of counter-gradient momentum flux by
mesoscales. We have argued that precise conditions for the emergence of large
scales in our model are set by the competition between the destabilizing influence
of background eddies and the stabilizing tendency of bottom drag acting directly on
large-scale flows. This balance is a key feature of the simple dynamical model (§ 6)
which is designed to explain the emergence of LEDPs in simulations.

Despite the ability of the multiscale model to rationalize numerical results, it
is perhaps premature at this point to argue that the modulational instability view
of LEDP generation should be given priority over its alternative interpretation as an
upscale cascade of energy. In fact, our results suggest that the modulational instability
and cascade-based theories should not be viewed as mutually exclusive. According
to the multiscale model, the wavelengths characterized by the largest growth rates
– and therefore most likely to amplify first – are relatively moderate. Hence, the
successive coalescences of LEDPs into larger and larger structures could indeed play
an important role in the unconstrained evolution of baroclinically unstable systems. In
principle, sequential interactions, which are not accounted for in the present minimal
version of the AE theory, can be represented by the iterative application of multiscale
models from one range of scales to the next (cf. Bensoussan, Lions & Papanicolaou
1978).

Another caveat of the presented analysis is related to the identification of LEDPs.
While the theoretical multiscale model a priori assumes asymptotic scale separation
between primary mesoscale variability and amplifying large scales, diagnostics of
fully nonlinear simulations and/or field data are less straightforward. In this study,
LEDP-susceptible parameters in numerical experiments (figure 4) were determined
using a convenient but perhaps overly simplistic criterion based on the relative
amount of energy contained in Fourier components with wavelengths exceeding a
critical value. The critical wavelength was assumed to be independent of the governing
parameters and was chosen somewhat arbitrarily to be Lcr = 20. Although even such
a crude criterion has led to qualitatively consistent results, the development of a
more objective and configuration-dependent operational definition of LEDPs would
undoubtedly enhance the accuracy and generality of our analysis.

The multiscale AE model could also be extended in a number of other directions.
It is highly desirable to move beyond the special case of zonally uniform LEDPs and
explain their two-dimensional dynamics and nonlinear amplitude equilibration. The
primary purpose of the present model is to explain the onset of the LEDP-dominated
regime. Since zonal modes represent the most rapidly amplifying (or the least
damped) large-scale perturbations, this objective was accomplished by focusing
exclusively on zonal jets. However, further reduction in the bottom drag will result
in transition to the strongly unstable regime characterized by the appearance of
amplifying non-zonal large-scale modes and their nonlinear interaction. In this regard,
it should be mentioned that the parameter regime relevant for the Earth’s oceans is
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perhaps only weakly unstable with regard to the spontaneous formation of LEDPs
(e.g. Berloff et al. 2011), which makes the present form of the multiscale model
directly applicable. However, more active systems, characterized by the effective
absence of bottom drag, such as realized in the atmospheres of giant planets, would
require a significant revision and reassessment of the present multiscale model.

Relatively straightforward changes to the model formulation would make it possible
to take into account topographic influences, external forcing and arbitrary orientations
of the mean background flow. Inclusion of pre-existing large-scale variability into
the model would allow analysis of spatially inhomogeneous eddy viscosity and its
effects on the LEDP dynamics. Extension of the asymptotic expansion (3.3) to higher
orders may lead to an amplitude equation of Cahn–Hilliard type (Cahn & Hilliard
1958) in which the destabilizing tendency of negative viscosity is counteracted, at
moderate scales, by the dissipative fourth-order operator. The inclusion of high-order
dissipative processes, in turn, would open the pathway for theoretical investigations
of the preferred length scales of LEDPs.

Another promising route would be to further improve the analytical tractability
of the proposed multiscale analysis. The AE model uses numerically derived
background eddy patterns, and its success can guide the selection of adequate
analytical approximations of mesoscale variability. The theory of coherent mesoscale
vortices is relatively well developed (Nof 1981, 1983; Sutyrin & Dewar 1992; Reznik
& Dewar 1994; Radko & Stern 1999, 2000; Benilov 2000; among many others).
Models of this type represent the dynamics of individual eddies, and multiscale
analysis opens an attractive opportunity to describe the cumulative effect of vortex
arrays on large-scale circulation patterns.

Finally, there is no reason to limit such multiscale investigations to baroclinic
instability. We anticipate that similar analyses should be applicable to a wide range
of small-scale phenomena known to generate structures on scales greatly exceeding
that of primary modes. For instance, an obvious candidate for application of the
multiscale AE model is double-diffusive convection (Stern 1960). The latter is a
form of instability operating on a centimetre scale in the ocean, which nevertheless
generates secondary structures (thermohaline staircases and intrusions) that extend
tens and hundreds of metres vertically. Multiscale models are well suited for linking
individual and collective aspects of eddy dynamics, both of which are essential
for understanding the interactions of spatially and temporally dissimilar structures –
interactions that are very common in fluid mechanics.
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Appendix. Details of multiscale analysis
We are concerned by the ability of relatively small-scale eddies, represented by

the streamfunction fields ψ̄1,2(x, y, t), to affect the slow evolution of a large-scale
zonal flow. The interaction between vastly dissimilar flow components is described
using new spatial variables (T, Y) over which the background pattern is modulated.
The new variables are scaled relative to the old variables according to (3.2). In
this regard, it should be noted that the choice of the temporal/spatial sector for
scaling of large-scale variables is neither unique nor obvious. Depending on the
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particular problem – governing equations and background small-scale pattern – the
asymptotic dependences of the time scale can be very different. For instance, the
relevant scaling can be linear (in ε) in both space and time, as in the anisotropic
kinetic alpha (AKA) effect (Frisch et al. 1987; Sulem et al. 1989). Certain inviscid
systems are characterized by the appearance of ‘eddy-explosion’ modes (Radko
2011a), operating in the temporal/spatial sector (∂/∂t, ∂/∂x) ∼ (ε, ε2). However,
the numerical simulations in § 2 indicate that the growth rate of unstable large-scale
modes is proportional to their wavenumber squared (e.g. figure 3b). This suggests that
representative asymptotic solutions will be found in the sector (∂/∂t, ∂/∂x)∼ (ε2, ε).
Therefore, the most conventional scaling (3.2) applies, which holds the promise of an
unambiguous calculation of eddy viscosity.

The search for specific large-scale solutions is based on the following conventional
steps:

(i) (x, y, Y, t, T) are treated as independent variables;
(ii) the spatial and temporal derivatives in the linear system are replaced as

∂

∂t
→ ∂

∂t
+ ε2 ∂

∂T
,
∂

∂y
→ ∂

∂y
+ ε ∂

∂Y
; (A 1)

(iii) the governing equations (2.2) are linearized with respect to the background state
ψ̄1,2(x, y, t);

(iv) the perturbation solution is sought as a series in ε,

ψ ′i =ψ (0)
i + εψ (1)

i + ε2ψ
(2)
i + · · ·, i= 1, 2. (A 2)

To isolate the effects of eddies in the generation of LEDPs, we temporarily ignore
the effects of bottom drag on the large-scale flow. This will make it possible to
quantify the destabilizing tendencies of mesoscale eddies, which will be a posteriori
compared with the stabilizing tendency of bottom drag (§ 6). To represent the
eddy-induced evolution of a large-scale zonal flow, the expansion opens with the
leading-order term which varies only on large temporal and spatial scales. However,
when ψ (0)

1,2 are taken to be arbitrary functions of (Y, T), the averaging of the second
order balances of governing equations in (x, y) leads to the following solvability
condition:

∂

∂T
(ψ

(0)
1 −ψ (0)

2 )= 0. (A 3)

Equation (A 3) implies that all amplifying large-scale modes are necessarily
barotropic: ψ (0)

1 = ψ (0)
2 . This condition is consistent with the numerical results (e.g.

figure 2) and provides a formal rationalization of the predominantly barotropic
character of LEDPs. To streamline the exposition, we assume from the outset that

ψ
(0)
1,2 =ψ (0)(Y, T). (A 4)

Next, we substitute series (A 2) in the linearized quasi-geostrophic system, collect
terms of the same order in ε and sequentially solve the resulting hierarchy of systems
until a closed equation for ψ (0) is obtained. The first order equation takes the form

A

(
ψ
(1)
1

ψ
(1)
2

)
= ∂ψ

(0)

∂Y


∂ q̄1

∂x
∂ q̄2

∂x

 , (A 5)
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where q̄1 =∇2ψ̄1 + (ψ̄2 − ψ̄1) and q̄2 =∇2ψ̄2 + r(ψ̄1 − ψ̄2). The linear homogeneous
differential operator A is defined as follows:

A
(
φ1
φ2

)
≡


∂f1

∂t
+ J(φ1, q̄1)+ J(ψ̄1, f1)+ (βnd + s)

∂φ1

∂x
+ s

∂f1

∂x
− νnd∇4φ1

∂f2

∂t
+ J(φ2, q̄2)+ J(ψ̄2, f2)+ (βnd − sr)

∂φ2

∂x
+ γnd∇2φ2 − νnd∇4φ2

 ,
(A 6)

and
f1 =∇2φ1 + (φ2 − φ1) , f2 =∇2φ2 + r (φ1 − φ2) . (A 7a,b)

Noticing that the operator A involves only the small-scale spatial variables, we solve
(A 5) by introducing new variables (ψ̃ (1)

1 , ψ̃
(1)
2 ) such that

ψ
(1)
i =

∂ψ0

∂Y
ψ̃
(1)
i , i= 1, 2. (A 8)

Substitution of (A 8) into the first-order equation (A 5) produces an inhomogeneous
linear equation

A

(
ψ̃
(1)
1

ψ̃
(1)
2

)
=


∂ q̄1

∂x
∂ q̄2

∂x

 , (A 9)

which contains no reference to large-scale variables and therefore can be solved for
ψ̃
(1)
1,2(x, y, t), which are referred to as the auxiliary functions of the first order. Solutions

of the first auxiliary problem represent the leading-order response of mesoscale eddies
to the x-displacement induced by the large-scale current.

Extending the expansion to the second order, we similarly arrive at the second
auxiliary problem:

A

(
ψ̃
(2)
1

ψ̃
(2)
2

)

=


ψ̃
(1)
1
∂

∂x
q̄1 − ∂

∂x
ψ̄1q̃(1)1 − 2J

(
ψ̄1,

∂

∂y
ψ̃
(1)
1

)
− 2

∂2

∂x∂y
ψ̃
(1)
1 + 4νnd

∂

∂y
∇2ψ̃

(1)
1 − 2

∂2

∂t∂y
ψ̃
(1)
1

ψ̃
(1)
2
∂

∂x
q̄2 − ∂

∂x
ψ̄2q̃(1)2 − 2J

(
ψ̄2,

∂

∂y
ψ̃
(1)
2

)
+ 4νnd

∂

∂y
∇2ψ̃

(1)
2 − 2

∂2

∂t∂y
ψ̃
(1)
2 − 2γnd

∂

∂y
ψ̃
(1)
2

 ,
(A 10)

where

ψ
(2)
i =

∂2ψ (0)

∂Y2
ψ̃
(2)
i , i= 1, 2. (A 11)

This system also does not involve large-scale variables and therefore can be solved
for ψ̃ (2)

1,2(x, y, t). Solutions of the second auxiliary problem reflect the modification of
eddies by the shear imposed by the large-scale current.

Although the third-order balance can be treated in a similar fashion, it can be
shown (Gama et al. 1994; Novikov & Papanicolau 2001) that it plays no role in
the derivation of the closed large-scale model. The final condition results from the
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fourth-order equation, which is averaged in small-scale variables (x, y, t) and vertically
over the depths of the two layers:

∂3ψ (0)

∂T∂Y2
= − 1

1+ r
∂4ψ (0)

∂Y4

[〈
r
∂ψ̄1

∂x

(
2
∂ψ̃

(2)
1

∂y
+ ψ̃ (1)

1

)
+ ∂ψ̄2

∂x

(
2
∂ψ̃

(2)
2

∂y
+ ψ̃ (1)

2

)〉]

+ νnd
∂4ψ0

∂Y4
. (A 12)

The angular brackets in (A 12) represent averaging in x and y, and the square
brackets represent averaging in time, over a period exceeding the typical eddy
scale. Equation (A 12) represents a closed equation for the leading-order large-scale
component, and it is written in terms of rescaled large-scale units (Y, T). At this
point, the multiscale analysis is complete and we can revert to the original spatial
and temporal variables y and t using (3.2) without the risk of confusing the scales.
The effects of explicit lateral friction, represented by the last term in (A 12), are weak
and could be ignored for most intents and purposes. When the result is integrated in
y, we discover that the evolution of the large-scale flow is governed by the diffusion
equation

∂

∂t
u(0) =K

∂2

∂y2
u(0), (A 13)

where u(0) =−(∂ψ (0)/∂y) is the zonal velocity of the large-scale flow and

K =− 1
1+ r

[〈
r
∂ψ̄1

∂x

(
2
∂ψ̃

(2)
1

∂y
+ ψ̃ (1)

1

)
+ ∂ψ̄2

∂x

(
2
∂ψ̃

(2)
2

∂y
+ ψ̃ (1)

2

)〉]
. (A 14)

Based on (A 13), we readily interpret K as the effective eddy viscosity.
The physical interpretation of the individual eddy viscosity components in (A 14)

warrants some further discussion. Equation (A 12) represents averaging of the
governing equations in (x, y) and depth-weighted averaging of the result over two
layers. The nonlinear terms on the right-hand side of (A 12) originate from the
advective (Jacobian) terms in (2.2). These components could be expressed as

M =
〈

r
1+ r

(Jxy(ψ1, q1)+ εJxY(ψ1, q1))+ 1
1+ r

(Jxy(ψ2, q2)+ εJxY(ψ2, q2))

〉
, (A 15)

where

q1 = ∂
2ψ1

∂x2
+ ∂

2ψ1

∂y2
+ 2ε

∂2ψ1

∂y∂Y
+ ε2 ∂

2ψ1

∂Y2
+ (ψ2 −ψ1),

q2 = ∂
2ψ2

∂x2
+ ∂

2ψ2

∂y2
+ 2ε

∂2ψ2

∂y∂Y
+ ε2 ∂

2ψ2

∂Y2
+ r(ψ1 −ψ2).

 (A 16)

Since the (x, y) average of Jxy(ψi, qi) is zero, (A 15) reduces to

M = ε ∂
∂Y

〈
r

1+ r
∂ψ1

∂x
q1 + 1

1+ r
∂ψ2

∂x
q2

〉
, (A 17)

which is readily interpreted as the large-scale meridional convergence of the depth-
averaged meridional PV fluxes Fqi, where

Fqi = 〈viqi〉 =
〈
∂ψ i

∂x
qi

〉
, i= 1, 2. (A 18)
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When (3.3) and (A 16) are used to express (A 17) in terms of various streamfunction
components, it becomes apparent that at the leading order (∼ε4) it contains four
clearly identifiable flux terms:

M ≈ ε ∂
∂Y

〈
r

1+ r
∂ψ̄1

∂x
q(1)1 +

1
1+ r

∂ψ̄2

∂x
q(1)2 +

r
1+ r

∂ψ̄1

∂x
q(2)1 +

1
1+ r

∂ψ̄2

∂x
q(2)2

〉
, (A 19)

where q( j)
i is the potential vorticity associated with streamfunction components ψ ( j)

i .
For instance, diagnostics of the numerical solutions (§ 5) indicate that the amplification
of the large-scale jets is driven by the displacement mode, and the associated flux
component is given by

F(1)
qi = ε

〈
∂ψ̄i

∂x
q(1)i

〉
. (A 20)

It should be emphasized that (A 20) represents the advection of perturbation PV
(q(1)i ) by the meridional velocity of primary eddies (v̄i = (∂ψ̄i/∂x)). One might
intuitively expect that the net PV flux contains comparable contributions from the
advection of primary PV by perturbation velocity and the advection of perturbation
PV by the primary velocity. However, the former term does not appear, at the leading
order, in the flux divergence term M. While this result follows directly from the
asymptotic expansion, it is of interest to explore its physical origin. One of the
explanations can be given in terms of Galilean invariance. In particular, we can
insist that integral properties of our solution cannot change if the total flow field is
displaced in the zonal direction with uniform velocity. Therefore, the meridional PV
flux is invariant under the transformation

ψ (0)→ψ (0) + AY, (A 21)

where A can be any constant. The flux component representing advection of primary
PV by the perturbation velocity in the displacement-induced mode is

F(1)
qiA = ε

〈
q̄i
∂ψ̃

(1)
i

∂x

〉
∂ψ0

∂Y
. (A 22)

However, the invariance of our solutions with respect to (A 21) implies that all flux
components involving the first derivative of ψ (0) have to vanish in the integral sense.
This is only possible if the coefficient 〈q̄i(∂ψ̃

(1)
i /∂x)〉 is identically zero, which implies

that F(1)
qiA= 0. For the flux component associated with the advection of the perturbation

PV, no such restriction arises because it contains higher derivatives of ψ (0) that are
invariant with respect to (A 21). The multiscale model (A 14) indicates that the only
flux component of the displacement-induced mode F(1)

qi that ultimately contributes to
the eddy viscosity term is given by

F(1)
qiB = ε3 ∂ψ̄

∂x
∂3ψ (0)

∂Y3
ψ̃
(1)
i . (A 23)
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