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We reformulate shallow water theory to understand viscous shear induced natural
hydraulic jumps in channels slightly deviated from the horizontal. One of the
interesting contributions of the study is a modified expression for Froude number to
predict jumps in inclined channels. The proposed Froude number is different from the
conventional expression which incorporates channel inclination as a straight forward
component of gravity. This highlights the complexity that a jump can generate even
in single phase laminar flow. We also obtain an analytical expression for predicting
jump strength and show that the scaling relationship originally proposed for jump
location in horizontal channels is applicable for both upslope and downslope flows.
As expected, upslope flow aids jump formation and beyond a critical adverse tilt, a
submerged jump results in subcritical flow right from the entry. On the other hand,
both Reynolds number and channel tilt suppress the tendency to jump in downslope
flows and below a critical downslope inclination, the flow remains supercritical
throughout the channel length. The film thickness for fully developed flow can be
predicted from the exact solution of the Navier—Stokes equations. As the theory
encounters a singularity in the jump region, numerical simulations and experimental
results have been used to obtain additional insights into the physics of jump formation.
They have revealed the existence of submerged jump, wavy jump, smooth jump and
no jump conditions as a function of liquid Reynolds number, scaled channel length
and channel inclination. Such a variety of jump geometries in planar laminar flow has
not been reported earlier. Both theory and simulations also reveal that the linear free
surface profile upstream of the jump is a function of Reynolds number only, while
the downstream profiles can be tuned by changing both Reynolds number as well as
the channel length and tilt over the range of parameters studied. We thus demonstrate
that, despite the simplicity and the approximations involved, shallow water equations
formulated assuming self-similar velocity profiles can elucidate the physics of planar
laminar jumps over slight inclinations, difficult to avoid in practice. The analytical
and simulated results have been extensively validated with experimental data obtained
from a specially designed test rig which ensures laminar flow before and after the
jump. To the authors’ knowledge, almost no experimental study has to date been
reported on films ‘thin enough’ to remain laminar even after the planar jump.
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1. Introduction

Due to flow resistance, often the supercritical flow in an open channel experiences
a rapid deceleration to the subcritical state through a discontinuity. The typical
discontinuity marked by an abrupt decrease in flow velocity and a rapid increase of
free surface elevation is termed the hydraulic jump. It is a complex fluid dynamic
phenomenon commonly encountered in nature. The phenomenon is also ubiquitous in
diverse practical applications, like energy dissipative hydraulic structures, flood control
systems, standing surf wave creation, mixing of fluids, hot leg of nuclear reactors,
etc. Due to its fascinating physics and wide range of occurrence, it has attracted
the attention of researchers for several decades. Nevertheless, most of the studies
(Chanson & Montes 1995; Montes & Chanson 1998; Beirami & Chamani 2000;
Meftah, Mossa & Pollio 2010; Chanson & Chachereau 2013; Richard & Gavrilyuk
2013) are reported in large dimensions where the jump results from the presence of
a downstream obstruction or an abrupt change in flow cross-section.

It is interesting to note that for very shallow liquid depths, a jump can occur solely
due to viscous shear without any downstream forcing. These are termed ‘natural
hydraulic jumps’ in the literature (Dasgupta, Tomar & Govindarajan 2015). Due to
the small depth and rapid motion, thin film flows exhibit high convective heat and
mass transfer coefficients but with jump formation, the decreased velocity in the
post-jump region results in reduced transfer rates. A detailed understanding of the
jump characteristics is, therefore, desirable in the thin film flows encountered in
surface cleaning, film coating, film drainage, etc.

A past survey reveals very few studies (Liu & Lienhard 1993; Higuera 1994; Singha,
Bhattacharjee & Ray 2005) on natural laminar jumps in a planar geometry, with most
of the studies inspired by the extensive literature on its counterpart, the circular
hydraulic jump (Craik et al. 1981; Bowles & Smith 1992; Higuera 1997; Bush &
Aristoff 2003; Kate, Das & Chakraborty 2007a; Bhagat et al. 2018). Encouraged
by the success of shallow water theory for circular jumps (Tani 1949; Bohr, Dimon
& Putkaradze 1993; Kasimov 2008), the analytical studies in the planar geometry
(Bohr, Putkaradze & Watanabe 1997; Singha et al. 2005) have extended the same to
propose scaling relationships or to investigate the flow structure in the jump vicinity.
One of the earliest study dates back to Rayleigh (1914) who assumed inviscid flow.
A significant contribution was made by Watson (1964) who considered the effect
of viscosity and proposed an expression to determine the jump location based on
the assumption that the post-jump height is a known constant instead of a solution
output. Singha et al. (2005) adopted the vertical averaging technique to propose a
scaling relationship for predicting the jump location. The relation showed that the
same parameters, namely liquid flow rate, kinematic viscosity and acceleration due to
gravity, influence the jump position for circular and planar jumps, although the power
law dependence of jump position on the aforementioned parameters are different
in the two cases. Some researchers (Bohr ef al. 1997, Watanabe, Putkaradze &
Bohr 2003; Bonn, Andersen & Bohr 2009) have proposed a variable velocity profile
characterized by a single shape parameter which could predict the abrupt change in
free surface height across the jump, the internal eddy and flow separation. Variable
velocity profiles are also conceived by Ruschak, Weinstein & Ng (2001) to avoid the
singularity at the jump location encountered in classical shallow water theory (Bohr
et al. 1993; Kasimov 2008). Efforts have also been directed to extending the analysis
to flow fields which are not strictly two-dimensional. Bonn et al. (2009) incorporated
flow averaging along the width of a narrow channel in addition to the commonly used
vertical averaging. They suggested that the viscous effect is substantially enhanced
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due to the turbulence caused by the reflection from the closely spaced side walls
and used Prandtl’s mixing length model of turbulence to reproduce their experimental
results. The few numerical studies involving the full solution of the Navier—Stokes
equations are also mostly reported for circular hydraulic jumps (Yokoi & Xiao 2002;
Passandideh-Fard, Teymourtash & Khavari 2011; Vishwanath er al. 2016; Singh &
Das 2018) and turbulent jumps in a planar geometry (Chippada, Ramaswamy &
Wheeler 1994; Witt, Gulliver & Shen 2015, 2018; Mortazavi et al. 2016).

For the numerical study of planar laminar jumps, Dasgupta et al. (2015) has
employed the volume-of-fluid technique to solve the two-dimensional Navier—Stokes
equation. They studied the effect of Reynolds number, Froude number, Weber
number as well as channel length and the presence of a downstream obstacle on
the structure and location of hydraulic jumps. Although the authors did not provide
any experimental validation of their results, they emphasized the need for experimental
investigation of planar laminar jumps in thin film flow.

The past survey thus reveals that only a limited number of studies are reported on
viscous shear induced planar jumps and almost all of these studies are confined to
horizontal flows. Slight deviations from the horizontal orientation, although inevitable
in practical situations, are grossly unexplored (Bohr ef al. 1997; Ruschak e al. 2001;
Watanabe et al. 2003). In particular, there are no studies on upslope flows anticipated
to aid jump formation. We also note that past researchers have adopted either an
analytical treatment or a numerical simulation. There is a dearth of experimental
investigations, especially in the subcritical regime, downstream of the jump. The few
reported experiments have presented either qualitative trends (Liu & Lienhard 1993;
Ruschak ef al. 2001) or results only in the upstream region (Singha ef al. 2005).
This can be attributed to the difficulties in ensuring laminar flow after the jump as
well as the general intricacies associated with experiments in thin film flows.

In this paper, our objective is twofold. Firstly, we demonstrate the efficacy of
shallow water theory in providing multifaceted results on laminar natural jumps in
slightly deviated channels. The most interesting conclusion is a modified expression
of the Froude number to account for the effect of inclination in both upslope
and downslope flows. Secondly, we obtain additional insight into jump phenomena
through numerical simulation, which elucidates the fluid dynamics at the jump, a
region where theory exhibits singularity. The success of our endeavour is largely due
to an ingenuously designed test rig which ensures jump formation during thin film
flows, ‘thin enough’ to remain laminar even after the jump over a wide range of
input parameters. The multitude of jump structures in planar laminar flow, as revealed
by simulation and experiments, has also not been reported earlier.

The organization of the paper is as follows. Section 2 is devoted to the formulation
of shallow water theory for capturing the free surface profiles upstream and
downstream of the jump and the jump location, for downslope and upslope flows,
at small inclinations. A modified expression of the Froude number has also been
proposed. In § 3, we discuss the formulation of Gerris for numerical simulation. The
simulation results are elaborated in §4. Section 5 discusses the experiments that
produce laminar planar hydraulic jumps in thin film flow and in the next section
(§ 6), the numerical, analytical and experimental results are compared and discussed.
In §7, we explore the influence of the Reynolds number, scaled channel length and
channel inclination on upstream and downstream free surface profiles, jump location
and its type. Finally, § 8 draws the important conclusions of this study.
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FIGURE 1. Schematic representation of the hydraulic jump considered for analytical and
computational study. Coordinate x increases in the flow direction and coordinate z is
normal to the plane and outwardly directed. The corresponding velocity components are
u and w respectively; u;, and h;, are the velocity and height of the liquid (of density p,
and kinematic viscosity v;) at the inlet of a channel of length L.. The jump occurs at a
distance x; from the inlet; 4 is the local height of the liquid layer at a distance x and g is
the acceleration due to gravity; 6 is the channel tilt with respect to horizontal, positive 6
for downward slope in the direction of flow and vice versa; O denotes the outlet boundary.

2. Analysis: shallow water theory
2.1. Vertical averaging across the liquid height

In the present study, shallow water equations with vertical averaging of the flow field
are used to predict the free surface profiles upstream and downstream of a steady
hydraulic jump for slight inclinations from the horizontal orientation. In addition,
a force balance across the jump is used to locate the jump position (Kasimov
2008; Bonn et al. 2009). Surface tension is neglected as it does not govern the
flow structure (Bohr et al. 1997) although it decides flow stability (not discussed in
this paper). Based on the common assumptions of shallow water theory, the local
continuity equation for an incompressible fluid in the planar geometry is

ou ow
— + — =0, 2.1
ox + 0z @D

and the pertinent momentum equation (similar to the boundary-layer flow equation) is

8u+ ou 9dh+ azui 0 2.2)
U—+w—=-—gcos—~+v,— sin 6. .
dx 0z 8 dx ez 8
The nomenclatures used in (2.1) and (2.2) are explained in figure 1; +ve sign precedes
gsinf for downslope flows and a —ve sign denotes adverse slope, where 6 gives the
absolute value of angle of inclination.

Further, the condition for constant volume flux gives

o [
q—W—/O u(x, 7) dz, 2.3)

where g is the volumetric flow rate per unit channel width. The boundary conditions
are no slip and no penetration on the bottom wall and zero shear stress at the free
surface (for stagnant air above the free surface)

ou

u(x, 0)=w(x, 0)=0,
9z

=0. (2.4a,b)

z=h(x)
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The scaling parameters obtained from the order of magnitude analysis of (2.1)-(2.3),

viz. u® = q'3g'? cos '3, w€ = g=2Pvg!3 cos 013, x¢ = ¢*Pv;7'g71? cos 6713 and
“=¢q*g 3 cos 6713, yield the rescaled equations
ou  Jow
— 4+ — =0, 2.5
dx 0z @5
du u dh  9%u
— —=——4+ — , 2.6
“ox Tz dx 972 (26)
h(x)
/ u(x, z)dz=1, 2.7
0
where A = gv; 7! tan 0. The corresponding boundary conditions are
au
u(x,00=0, wkx,0=0 — =0. (2.8a—c)
92 | ;)

Integrating (2.5) and (2.6) from z = 0 to z = h(x) and incorporating boundary
conditions, the following averaged momentum equation is obtained

Vo = (FV@) = —— — — —

av A, (2.9)
dx dx h 0z|._

where the average velocity V,, is defined as V,, = (1/h) foh u(x, z)dz and F =
( foh u?dz)/(hV?2). The mass conservation condition (2.7) yields V,,hi=1.

Based on the numerical results (§4) which display self-similar parabolic velocity
profiles upstream and downstream of the jump, we consider

u(x, 2) = Vo (0)f (), (2.10)

where n = z/h(x) and 0 < n < 1. Equation (2.10) must satisfy the mass flux and
boundary conditions, which implies f(0) =0, /(1) =0 and fol f(n)dn = 1. Based
on this, a simple and physically reasonable parabolic profile has been considered for
laminar flow in a thin film

fn) =3n—3n. 2.11)

This gives F = g =K, and du/0dz|,-0=3V,,/h=K,V,,/h. Constants K; and K, depend
on the velocity profile only.
Equation (2.9) is now reduced to

dVav dh K2 Vav

KV, —% ="
LT dx  m?

T A. (2.12)

The scales obtained from the order of magnitude analysis of (2.12), va =K, 1/ 3,
h®=K!” and x® =K;”K;" transform (2.12) to a general form as

Ve, dh V,,

Vav - 5
dx dx h?

+B, (2.13)

where B = K K,'A. It may be noted that, although the values of K, and K, may
change depending upon the velocity distribution across the liquid height, the general
form of the above equation remains the same.
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Incorporation of the mass conservation condition in (2.13) leads to

dh 15 B

N 19

where the —ve sign before B is applicable to downward inclinations, the +ve sign is
used for upslope flows and B =0 for horizontal flow.

2.2. Connecting upstream and downstream solutions

The solutions upstream and downstream of the jump can be linked by means of
a Rayleigh’s shock (Rayleigh 1914) across which mass and momentum flux are
conserved. Assuming friction within the jump region to be negligible, the momentum
equation for jumps in inclined channels can be written as

1 1 1 h2 h]
f,olgh? cos 6 — E,olghg cos @ + ESplgL(hl + hy) sin 0 = p, / u%(z) dz — p / u%(z) dz,
0 0

2
(2.15)

where subscripts 1 and 2 correspond to positions immediately upstream and
downstream of the jump, L is the distance between 1 and 2 and S is a shape
factor which takes care of the actual surface profile in the jump region. The third
term on left-hand side of (2.15) accounts for the weight component of the fluid
contained in the jump region and is thus +ve for downslope, —ve for adverse slopes
and zero for horizontal flow.

Using the depth averaged velocity and mass conservation condition, equation (2.15)
can be rewritten as

| 1 . ¢ 7
—g(hy —h5)cos @ £ —SgL(hy + hy) sin@ =F— — F—, (2.16)
2 2 hy h
based on similar velocity profiles upstream and downstream of the jump, for which
Fy =F, = F. The non-trivial solution obtained from the above cubic equation is as

follows:

h] SFFI"%

=7 |1+ SL
cos@:Fh

—-11, (2.17)
sin 6

S}

where Fri(=V,/s/gh) is the Froude number immediately upstream of the jump.
Most of the previous studies on downslope flows have assumed S = (h, — h;)/L.

Although the assumption has no strong fundamental basis, we obtain model

predictions close to experimental results (as shall be seen in §6). So the same
has been adopted in the present analysis to obtain the jump strength from (2.17)

h 1+ 8FF2, —1
2 _ : (2.18)

h 2 ’

where the Froude number (the natural dimensionless number for this phenomenon) has
been obtained from mass and momentum balance across the jump.

Fr

JcosO Fsinf

Fr, = (2.19)
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2.0 s T T T

FIGURE 2. Typical solution of shallow water theory. The blue solid curves represent the
upstream and the downstream solutions from (2.14), and the dashed magenta curve shows
the height to which upstream flow is expected to rise based on the jump condition (2.18).
The intersection of downstream heights obtained from (2.14) and (2.18) represents the
jump location (blue dotted line).

We note that (2.18) reduces to the Bélanger equation (classical jump equation based
on inviscid theory) for F =1 and Fr, ; = Fr,. It is important to note that, in (2.19),
the Froude number incorporates the effect of inclination through the term cos 6 Fsin8
(—ve and +ve signs pertaining to downslope and upslope flows respectively and for
horizontal flow Fr,, reduces to Fr). This is different from the straightforward inclusion
of a gravity component to describe buoyancy forces in single phase flow and suggests
that a laminar hydraulic jump cannot be regarded as a simple problem of single phase
flow over sloped channels.

2.3. Solution methodology

We solve (2.14) numerically by using the standard Runge—Kutta method of fourth
order and obtain the supercritical flow solution upstream of the jump (curve AB
in figure 2) from the inlet boundary condition (h = h;, at x = 0). The subcritical
flow solution downstream of the jump (curve CD in figure 2) is obtained by using
an outlet boundary condition. This is a critical parameter in the analysis and it
is difficult to precisely define this condition since, at the outlet, liquid runs off
the channel with an appreciable curvature of the streamline. A survey of the past
literature suggests that several researchers (Higuera 1994; Singha et al. 2005; Bonn
et al. 2009) have assumed the exit liquid height to be critical. The same can be
shown by energy balance and has also been obtained from our numerical results,
discussed later. Accordingly, we consider the liquid height to be critical (h = 1) at
the end of the channel. Since the solution is singular at 2 =1, we start the solution
slightly before the channel end, where the liquid height is slightly above the critical
value. Figure 2 presents the typical solutions upstream and downstream of the jump
for all channel inclinations. The solution predicts & to increase with x in the upstream
section and decrease downstream as one moves away from the jump. At 2 =1 the
upstream solution diverges, which is a characteristic of shallow water theory well
documented in the literature (Bohr et al. 1993; Singha et al. 2005). To overcome this
limitation, we use the jump condition (2.18) to pinpoint the jump location (x;) as the
point of intersection of downstream heights obtained from (2.14) and (2.18).
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FIGURE 3. Evolution of the free surface profile in normalized time ¢/(h;,/u;,) for Re =
87.5 and L./h;, =360. The free surface profiles are depicted for different time instants ()
scaled with the time required for the liquid layer to travel its inlet height (4;,) at inlet
velocity (u;,).

3. Numerical simulation

Although the shallow water theory has successfully predicted jump parameters in
inclined channels, it exhibits a discontinuity at the jump. Therefore, to understand
the physics in the vicinity of the jump, extensive numerical simulations have been
performed using the open source code, Gerris, following the methodology of Dasgupta
et al. (2015). They have simulated jumps for horizontal channels and we have used
the same for numerical simulation in inclined channels (figure 1) for both upslope
and downslope flows. The phenomenon is modelled as a two phase flow problem
with stagnant air above the liquid region. Usual no-slip and no-penetration boundary
conditions are imposed for the solid wall and the classical outflow boundary condition
(i.e. Dirichlet in pressure and Neumann in velocity) is employed at the outlet boundary
O (figure 1). As shown in figure 1, the end of the channel is attached to a straight wall
projected downward to ensure smooth liquid drainage from the computational domain.

Gerris solves the transient incompressible Navier—Stokes equation, following a finite
volume approach and uses a second-order accurate staggered-in-time discretization
over the entire domain for volume fraction, density, velocity and pressure fields.
For spatial discretization in the entire domain, Gerris uses a quad/oct tree mesh
refinement technique (Popinet 2003). In the present case, efficient mesh refinement
and adaptation are based on predefined criteria for vorticity and the gradient of the
liquid fraction. The predefined maximum refinement takes place only at the required
locations and time depending on the defined criteria. Examining the simulations with
higher and lower refinement levels, the grid independent refinement level has been
adopted. The details for the understanding and implementation of Gerris are provided
in Popinet (2003, 2009) and Dasgupta et al. (2015).

4, Simulation results

For a comprehensive understanding of the hydrodynamics of flow, the results have
been presented for different Reynolds numbers in figures 3-7. Initially, the transient
evolution of the free surface profile is discussed for a representative flow situation
in figure 3 and then the steady state results are presented at four different channel
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FIGURE 4. Planar hydraulic jump for Re=287.5 and L./h;, =360. (a) Streamline patterns
and the free surface profile. Axial velocity distribution, scaled with maximum axial
velocity at that particular location for (b) upstream of the jump, (c) jump region, (d)
downstream of the jump and (e) exit from the channel.

positions, namely before and after the jump, at the jump and near the channel exit in
figure 4 to illustrate the axial development of the flow. The corresponding development
of the pressure profile is presented in figure 5. The results for two higher Reynolds
numbers are presented in figures 6 and 7. Streamline patterns have been included
in figures 4, 6 and 7 to identify the jump type and vorticity (indicated by a closed
streamline). In order to extend the results to similar flows occurring at different scales,
the parameters are depicted in dimensionless terms (u scaled with maximum axial
velocity, U, at that location, z with local height & of the free surface and x with
the inlet liquid height 4;,).

The transient evolution of the free surface profile is presented in figure 3 for the
Reynolds number Re = ¢q/v; = 87.5 and L./h;, = 360. The figure shows that the
simulation results attain steady state after a reasonable period of time. During this
period, the liquid layer of local height & proceeds towards the channel exit and a
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FIGURE 5. Pressure distribution on the channel floor for Re=87.5 and L./h;, =360. Red
dashed-dot curve and blue continuous curve represent the fluid pressure and the hydrostatic
component of the fluid pressure respectively. The hydrostatic pressure is evaluated from
the weight of the liquid column (p,gh) above the bottom wall.

jump-like structure forms due to viscous dissipation. Once the liquid layer reaches
the channel exit, the liquid falls freely from the channel floor and the boundary
condition at the exit changes. The height of the liquid film at the exit end gradually
increases and the information of the increased height propagates upstream (blue
curves in figure 3). As expected, this upstream propagation of information is confined
within the subcritical region of the flow (i.e. the region downstream of the jump).
Consequently, the overall height of the post-jump liquid layer increases while the
free surface upstream of the jump remains unchanged. The flow structure eventually
stabilizes and the jump becomes stationary at a certain location.

Figure 4 depicts the streamline patterns and free surface profile, along with the
axial evolution of the velocity profile after the flow attains the steady state. We
observe that the flow upstream of the jump decelerates and, as a consequence, the
height of the free surface increases while in the downstream region the slope of
the free surface is negative, the trends being similar to the shallow water results.
Just after the inlet section, the axial velocity distribution across the liquid height
follows a parabolic profile and evolves along the axial direction for a short distance.
Beyond the flow development zone (close to the inlet), the shape of the velocity
profile does not evolve any further up to the jump region, retaining its parabolic
shape with the maximum streamwise velocity on the free surface. The profiles
exhibit self-similarity both upstream and downstream of the jump, thus justifying
(2.10) in shallow water theory. Nevertheless, in the jump region (figure 4c), the
self-similarity is completely destroyed. This is because the liquid height abruptly
increases and the free surface profile becomes very steep. In addition, undulations
appear at the free surface depending on the flow conditions and the maximum axial
velocity may not always occur at the free surface. The velocity profiles (in figure 4c)
further display flow separation near the floor, indicating local flow reversal. This
phenomenon is similar to boundary-layer separation for flow over a solid surface
and suggests the predominance of form friction during the transition from super- to
subcritical flow. Nevertheless, the physics of the flow is different in the two cases.
While boundary-layer separation is caused by the adverse pressure gradient imposed
by inviscid flow external to the boundary layer, the thin film in the present case
flows with a free surface where external inviscid flow is absent but the hydrostatic
pressure gradient is dominant due to the abrupt elevation of the free surface. This is
evident from the pressure distribution along the channel floor. Figure 5 shows that
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FIGURE 6. Planar hydraulic jump for Re = 137.5 and L./h;, = 360. (a) Streamline
patterns and the free surface profile. Axial velocity distribution, scaled with maximum
axial velocity at the same location for (b) upstream of the jump, (¢) jump region and
(d) downstream of the jump.
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FIGURE 7. No jump is formed for Re =175 and L./h;, = 360. Streamline patterns and
the free surface profile.
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the fluid pressure is almost close to the hydrostatic pressure everywhere, except near
the jump. This adverse pressure gradient along the floor causes flow separation and
vortex formation at the jump, as displayed by the closed streamline patterns near the
floor in figure 4(a).

Near the channel exit, the velocity profile again changes (figure 4e) as the flow is
accelerated by gravity while it takes an almost 90° turn and the maximum streamwise
velocity occurs close to the channel floor, far below the free surface.

The results for higher Re presented in figures 6 and 7 show that an increase in
Reynolds number results in a weaker jump (lower elevation of the free surface) shifted
towards the exit. At still higher Re (figure 7) there is no jump and the flow remains
supercritical throughout the channel length. This is an expected outcome since the
increased inertial force overcomes the viscous forces necessary for the required flow
deceleration to a subcritical condition. Figure 6 also shows that, for a higher Re,
the hydrostatically generated adverse pressure gradient is not strong enough to cause
flow separation and vortex formation. From a close comparison of figures 4 and 6,
we further note that Re primarily influences the jump structure and location, while
the other features, such as the nature of velocity distribution and free surface profile
upstream and downstream of the jump, remain the same. In all cases, the velocity
profiles are self-similar both before and after the jump (except close to the inlet and
exit) and at the exit, profiles similar to that depicted in figure 4(e) (not shown for
conciseness) are obtained. Interestingly, the upstream free surface profiles follow the
expression dz/dx=1.81/Re proposed by Watson (1964). This is contrary to the results
reported by Bonn ef al. (2009) for narrow channels with a width of the order of the
liquid height. Their observation that the upstream free surface profile is independent of
Re can be attributed to the enhancement of the viscous effect from the closely spaced
side walls. In our case, since the channel width is sufficiently large compared to the
maximum liquid height (occurring downstream of the jump), the associated side wall
effects are negligible and, due to the interplay of inertial and viscous forces, the slope
of the free surface upstream of the jump is not independent of Re.

5. Experimental investigation

In order to validate the results of the numerical simulations and the predictions
from shallow water theory, experiments have been designed to generate thin film
flow in a rectangular channel 10 cm wide with side walls of 2 cm height. The
selected channel width minimizes side wall effects to approach the approximation of
two-dimensional flow. Three different channel lengths of 3, 6 and 9 cm have been
selected to investigate the effect of channel length on jump type (as shall be seen in
figure 18). The channel dimensions are selected to ensure that the hydraulic jump is
contained within the channel over the entire range of experimental parameters and
the height of the liquid layer can be regarded as ‘thin’ (laminar flow condition) both
before and after the jump. The channel is mounted on levelling screws in order to
tilt it and align it perfectly at the desired inclination. The angle of inclination with
horizontal is measured by a digital protractor with a resolution of 0.05°.

As depicted in figure 8, the set-up comprises of a closed-loop flow system where
water from the main reservoir is circulated by a centrifugal pump to a constant-head
tank via a Coriolis mass flow meter and after flowing through the channel, water
discharges into the collecting tank (CT). To obtain the volumetric flow rate at the
entry, the volumetric flow of liquid to the collecting tank is measured and a calibration
curve is generated to estimate the liquid flow rate as a function of liquid height in the
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FIGURE 8. Schematic of the experimental facility. The electrical conductivity principle
is used to measure the free surface depth. The measurement system consists of a point
electrode connected to the digital depth micrometer (DD). To examine the continuity, a
digital multimeter (MM) is used. The external circuit is made using electrical connecting
wires W1 and W2. W1 connects the depth micrometer with one terminal of the multimeter,
while W2 makes the connection between the other terminal and water.

constant-head tank (CH). The constant water level at the tank is varied with the help
of a bypass valve (BV) to obtain the desired flow velocity.

Since boundary conditions are key parameters in thin film experiments through
small dimension channels, special care has been taken to design the entry and exit
sections. At the entry, the depth of the liquid film is controlled by a sluice gate (G)
which forms the right wall of a constant-head tank and a flow distributor (FD) ensures
a uniform velocity through the gate opening. The gate opening is kept constant at
0.25 mm in order to maintain a constant value of 4; in all the experiments. The
small uniform gap between the gate and the floor of the tank forces water to flow as
a thin film of uniform thickness across the width. The edge of the gate is straight and
sharp to ensure an opening normal to the channel axis and to minimize the resistance
at the liquid inlet. Special care has been taken to secure a leak proof operation.

The importance of the exit condition on fluid draining and the jump parameters
has been widely acknowledged for both circular and planar jumps. The sensitivity of
the jump parameters to the exit conditions has been discussed at length by Duchesne,
Lebon & Limat (2014) for circular hydraulic jumps. Researchers determining the
solution of the shallow water equations for circular jumps have also specified exit
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FIGURE 9. Photographic view of a typical hydraulic jump in thin film flow through a
wide channel.

conditions and numerical studies (Dasgupta ef al. 2015; Dasgupta & Tomar 2015)
have included the liquid exit in their computational domain. In the present study,
experiments are performed to validate the results of theory and simulation, and thus
the exit is designed to mimic the exit region of the computational domain (figure 1).
Accordingly, a downward projected face is attached to the channel end perfectly
at 90° to guide the free fall of water. The corners at the exit are provided with a
chamfering of 0.5 mm radius to ensure a smooth streamline curvature during vertical
acceleration of the fluid.

Since the downstream drainage effect (the small chamfering) is decisive for channels
of relatively smaller dimensions, especially with regard to location, strength, stability
and also the type of jump, we have performed a few experiments with different
extents (radii) of the corner chamfering. Our observations reveal that liquid can drain
with greater ease along smoothened corners. As the chamfering radius increases,
the jump position shifts downstream and the strength decreases, thus favouring the
transition from wavy to smooth and then to no jump condition. This suggests the
need for a detailed study on the effect of downstream drainage on planar jump
characteristics. However, in the present paper, the primary focus is on understanding
the influence of the flow velocity and channel inclination on the jump characteristics.
So we have performed all the reported experiments with the same exit conditions,
i.e. with a chamfering radius of 0.5 mm. A similar chamfered exit was adopted by
Kate et al. (2007a), Kate, Das & Chakraborty (2007b, 2008) in their experiments on
circular hydraulic jumps.

The free surface profile along the channel length is estimated by measuring the
depth of the water layer at different axial locations by a digital depth micrometer
(DD; lowest count of 0.01 mm and accuracy of £0.02 mm). It employs a conductivity
(electrical) principle to identify the gas-liquid interface. The same has been adopted
by a number of researchers (Arakeri & Rao 1996; Kate et al. 2008; Vishwanath
et al. 2016) to measure film thickness in viscous hydraulic jumps. Each experiment
is repeated at least three times to verify the reproducibility of the results. The error
bars in the experimental data depict the spread obtained by repeating the experiments
for the same flow conditions.

The experimental data are reported for —0.6° < 6 < 1.5° and 5 x 1075 < ¢ <
19 x 107> m? s~!. Figure 9 displays a snapshot of thin film planar jump observed
in the present experiments. From experimental measurements, it is observed that the
height of the free surface upstream of the jump increases linearly (as is evident from
figures 10 and 11) while after the jump, the profile exhibits a decreasing trend and
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FIGURE 10. Free surface profiles for g=7.5 x 10> m? s~!, L. =90 mm and 6 = (a) 0°,
(b) 0.3° and (c) 0.6°. Points (diamond symbols) represent experimental data; red solid
curve A represents the numerical solution and blue solid curve B represents the analytical
solution. The magenta dashed curve shows the height to which upstream flow is expected
to jump based on the jump condition. Analytically obtained jump location is shown by
the blue dotted line.

finally displays a sharp drooping nature at the channel exit where liquid falls off
freely. The large standard deviation (error bars in figures 10 and 11) of the data
points in the jump region also denotes a large fluctuation of the free surface across
the jump. From flow visualization and measurements of the free surface height, we
distinguish a variety of jumps namely — (i) submerged jump (Chow 1959) where
the flow occurs with an elevated free surface right from the entry and exhibits a
descending profile all along the channel length, (i) wavy jump with significant
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FIGURE 11. Free surface profiles for g=12.5x 10~ m? s7!, L.=90 mm and 8 = (a) 0°,
() —0.3° and (¢) —0.6°. Points (diamond symbols) represent experimental data; red solid
curve A represents numerical solution and blue solid curve B represents analytical solution.
The magenta dashed curve shows the height to which upstream flow is expected to jump
based on the jump condition. Analytically obtained jump location is shown by the blue
dotted line.

undulations of the free surface in the jump region, (iii) smooth jump, where the
increase in free surface height occurs smoothly without undulations and (iv) no
jump, where the free surface exhibits a positive gradient without any undulation. A
schematic of the jump configurations is presented in figure 18 and the dependence of
the hydrodynamic states on different flow and geometric parameters is described in
later sections.
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6. Validation of numerical and analytical results

The free surface profiles as obtained from shallow water theory, Gerris and
experiments are superimposed in figures 10 and 11 to validate the numerical and
analytical predictions with the experimental results. In the figures, experimentally
measured liquid heights at discrete axial locations are marked by filled diamonds and
the continuous free surface profiles obtained from Gerris and shallow water theory
are depicted by the red and blue curves, respectively. The magenta dashed curves
depict the post-jump height to which the upstream flow is expected to rise according
to the theoretically predicted jump condition (2.18) and the blue dotted lines represent
the jump location, connecting the upstream and downstream solutions obtained from
shallow water theory.

In all the experiments the height of the gate opening (h; in figure 1) is kept
constant at 0.25 mm and the same has been provided as an input for the theoretical
predictions. This ensures thin film flow in the pre- and post-jump regions — a
requirement for laminar hydraulic jumps. The flow rate controlled by the liquid level
in the constant-head tank is an input parameter for the experiments and is specified
in theory and simulations by the liquid height and velocity at the inlet.

We observe an excellent trend matching between theoretical, numerical and
experimental results in the pre-jump, jump and post-jump regions for the entire
range of input parameters. Both shallow water theory and numerical predictions
capture the experimental trend of an increasing upstream and gradually decreasing
downstream profile. The quantitative match improves as one moves away from the
jump on either side. However, the experimental data commonly indicate a larger liquid
height over the entire length of the channel. This can be attributed to unavoidable
side wall friction, although the width of the channel is sufficiently high compared
to the maximum liquid height. Capillary waves generated by the side walls, inherent
flow fluctuations and other experimental uncertainties also contribute to this mismatch.
It is noteworthy that the drooping nature of free surface profile at the channel exit as
observed during the experiments is captured accurately by both methods of prediction.

The jump location can be predicted from a noticeable change in the slope of the
free surface profile and a transition of Fr, from supercritical (>1) to subcritical
(<1) conditions. It is interesting to note that the agreement between jump locations
predicted by shallow water theory and observed in experiments is close. The numerical
solutions always depict a higher value of jump location, except close to the inlet.

It is a well-known fact that during hydraulic jumps the transition from supercritical
to subcritical flow is marked by a gradual, albeit fast, increase of liquid height over
a finite length. It is difficult to estimate this length. Both experiments and numerical
solutions exhibit gradual change of free surface height near the jump, thus suggesting
a finite length of the jump region. On the other hand, shallow water theory, due to
its inherent simplicity, fails to capture this gradual increase and predicts an abrupt
change in height at the jump. This indicates that, although the theory can predict jump
location unambiguously, it provides a poor prediction of the free surface profile near
the jump.

By introducing a variable velocity profile in the shallow water theory, it has been
possible to improve the jump profile, although such profiles are not very successful
in reproducing the experimental results (Bonn et al. 2009). The results of the
present exercise of modelling a thin film hydraulic jump in a planar channel through
shallow water theory also suffer from the same limitation. The numerical predictions,
on the other hand, are better equipped to capture the jump profile, including
the undulations at the free surface, common for large upstream Froude numbers.
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FIGURE 12. Influence of channel upslope for L./h; = 360. Panels (a) and (b) denote
respectively the free surface profiles obtained from shallow water theory and numerical
simulation and (c) displays the numerical results of local Fr,,. Panel (d) shows streamline
patterns for flow conditions I, Il and II denoted in (b). In (a—c), the black, red and blue
curves correspond to 8 = 0°, —0.6° and —1.2° respectively for (a) Re = 125 and (b,c)
Re=175. W, S and N marked in (b) denote wavy, smooth and no jump respectively.

The present simulations indicate increased undulations in the free surface profile with
a decrease in both flow rate and inclination angle (downward inclination taken as
+ve). The corresponding experimental measurements also reveal a larger fluctuation,
as evident from the large standard deviation (see error bars in the figures) of the data
in the jump region.

7. Additional insights into the jump phenomenon and its type

We further extend the results from shallow water theory to understand the effect
of channel inclination, which has not received much attention in the past. The
influence of Reynolds number and channel length are also discussed. Additionally,
Gerris results are used to ratify the theoretical findings and identify jump types for
50 < Re <190, —0.6° < 6 < 1.5° and 60 < L./h;, < 420. The free surface profiles
obtained from theory and simulations are depicted in figures 12, 13, 15 and 16. In
figures 12 and 13, the respective flow behaviour for negative and positive slopes is
presented. The consolidated effect of flow and geometric parameters on jump type is
displayed in figure 18.

7.1. Influence on downstream free surface profile

An increase in upslope tilt (—0) shifts the jump upstream and increases the jump
strength and free surface undulations. This is because upflow against gravity leads
to rapid loss of energy and induces an early jump. Laminar dissipation also leads
to repeated undulations of high amplitude and increased vorticities underneath the
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FIGURE 13. Influence of channel downslope for L./h;, =360. Panels (a) and (b) denote
respectively the free surface profiles obtained from shallow water theory and numerical
simulation while (c) displays simulated values of local Fr,,. In (a), the red, green, magenta,
black, cyan and blue curves correspond to  =0°, 0.6°, 1.5°, 2.1°, 5° and 10° respectively
for Re=75. In (b,c), the red, green, magenta, black and blue curves correspond to 8 =0°,
0.3°, 0.6°, 0.9° and 1.2° respectively for Re = 100. W, S and N marked in (b) denote
wavy, smooth and no jump conditions respectively.

undulations, as is evident from the streamline patterns in figure 12. Interestingly,
beyond a critical channel tilt, the jump condition (2.18) is not satisfied by upstream
and downstream conditions. This indicates that, even at high Reynolds numbers,
although the incoming flow is supercritical the flow throughout the channel is
subcritical, a situation akin to a submerged jump condition.

As expected, the reverse phenomenon occurs for downslope flow. With an increase
in inclination, the jump shifts downstream and gradually disappears. Shallow water
theory further predicts that, for sufficiently high downward inclination when the jump
disappears, the free surface height, obtained from the upstream solution, initially
increases along the axial distance and eventually becomes constant without exhibiting
a discontinuity (black, cyan and blue curves in figure 13a). The constant height
(ho) decreases monotonically with increasing channel inclination. Figure 14 further
shows that the constant height during supercritical flow throughout the channel can be
obtained from the exact analytical solution (Ruschak et al. 2001) of the Navier—Stokes
equation for fully developed free falling films

3 1/3
ho = ( g ) , (7.1)
gsin6

The observations thus demonstrate that shallow water theory can capture the effect
of channel inclination over the entire zone of laminar jump formation and can also
predict the range of inclinations where jump occurs.

An increase in channel length displays an effect similar to a decrease in channel
inclination. The jump shifts upstream and increases its strength and undulations for
longer channels, thus changing the flow from wavy to smooth and no jump conditions
with a decrease in L./h; (figure 15). This is an expected outcome as an increased
channel length increases viscous flow dissipation and hinders the liquid in continuing
its rapid motion. A similar effect has also been reported by Dasgupta et al. (2015)
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FIGURE 14. Constant liquid heights for Re =75 under no jump condition as obtained from

shallow water theory (red circles) and exact solution (7.1) of the Navier—Stokes equations
for fully developed free falling film.

for an increasing height of the obstacle placed after the jump. However, the authors
had noted that an increase of obstacle height beyond a critical value removes the
possibility of attaining steady state since the undulations develop steeper fronts and
eventually break. On the other hand, in our simulations, such an unsteady process is
not encountered for either increasing channel length or increasing upward inclination.

The variation of the downstream free surface profile with Re (figure 16) is as
expected. In a horizontal channel, for very low Reynolds number (red curves in
figure 16a), a submerged jump occurs and, on increasing the Reynolds number, the
jump shifts downstream from the inlet.

7.2. Influence on upstream free surface profile

Unlike the downstream profile, the upstream free surface profile is independent
of both channel inclination and channel length and is influenced by Re only. The
effect of varying the channel length can be regarded as equivalent to a variation
of the downstream boundary condition and so this is an expected outcome as the
information of changes in the downstream boundary condition cannot propagate across
the jump to the upstream supercritical flow. On the contrary, the influence of channel
tilt appears to be counterintuitive since the flow encounters the change in slope right
from the entry. To ascertain this observation, we have extended our investigations to
6 = 30°. Figure 13(a) reveals that even for higher €, the increasing height profile,
no jump condition coincides with the upstream free surface profile when a jump
occurs. However, further investigations are required when turbulent flow or a wavy
free surface comes into the picture.

To summarize, the observations demonstrate that, while flow variables influence
the hydrodynamics both before and after the jump, the geometric variables appear to
influence the flow downstream of the jump only.

A comparison of Froude number for circular and planar hydraulic jumps reveals
a fascinating trend. We note that in the case of a circular hydraulic jump on a
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FIGURE 15. Influence of channel length on free surface profiles as obtained from (a)
shallow water theory and (b) numerical simulations. Numerical results of (c¢) local Fr,,
and (d) streamline patterns for flow conditions I, II and III denoted in (). In (a), the red,
black and blue curves correspond to L./h;, =360, 240 and 120 respectively for Re =75.
In (b,c), the red, green, magenta, black and blue curves correspond to L./h;, =360, 300,
240, 180 and 120 respectively for Re = 100. W, S and N marked in (b) denote wavy,
smooth and no jump conditions respectively.

horizontal plane, different researchers have reported conflicting trends of Froude
number measured just after the jump. Duchesne et al. (2014) have noted the Froude
number to be locked on to a constant value independent of the flow rate, kinematic
viscosity and surface tension while Mohajer & Li (2015) obtained constant values
of the Froude number independent of the flow rate and plate size but dependent on
surface tension. The origin of the constant values is to date not fully understood. In
the present case of planar laminar jumps, we observe the variation of Froude number
with axial distance as a function of Reynolds number (figure 16¢), channel length
(figure 15¢) and channel inclination for both upslope (figure 12¢) and downslope
(figure 13c) flows. No locking of Froude number is noted. This may be attributed to
the definition of the Froude number, which for circular jumps (Fr., = Q/Q27nr\/gh?))
involves two variables — the liquid height & and the radial location r for a given
flow rate Q and for planar jumps (Fr,, =¢q/ (\/ gh?(cos 6 Fsin#))) involves only one
variable — the liquid film thickness & — at a given ¢ for all channel orientations
(horizontal, downslope and upslope cases).

7.3. Influence on jump location

In an earlier work, Singha et al. (2005) had proposed a scaling dependence of x; on
g/ for horizontal flow. In the present paper, we observe that the linearity (of x; as a
function of ¢°) holds for inclined channels as well (figure 17) in the present range of
investigation (—0.6° <6 < 0.6°), provided the jump is not near the exit (x;/L. <~0.5).
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FIGURE 16. Influence of Reynolds number for a constant channel length L./h;, = 360.
Panels (a) and (b) display the respective free surface profiles obtained from shallow water
theory and numerical simulations with (c) displaying the numerical results of local Fr,,.
The inset in (b) gives the magnified view of upstream free surface profiles. The horizontal
dashed line in (c) represents Fr,, =1 and the vertical dashed lines indicate the location
in the jump region where local Fr, is unity. In (a), the red, green, magenta and black
curves correspond to Re =150, 75, 100 and 125 respectively. Red curve in (a) corresponds
to submerged jump. In (b,c), the red, green, magenta and black curves correspond to Re =
100, 125, 150 and 175 respectively. W, S and N marked in in (b) denote wavy, smooth
and no jump conditions respectively.

The slope of the linear fit increases with 6, thus suggesting a faster downstream shift
of jump position for higher 6. This is probably because the increased gravitational
force in the flow direction aids in countering the viscous resistance. Further, the linear
fit for a particular 6, when extrapolated to x; =0, gives the condition for a submerged
jump, denoted by g = ¢go in the inset of figure 17. The value of g, decreases as 6
increases and for g < g, the flow is subcritical throughout the channel.

It is interesting to note that, despite exhibiting a singularity at the jump region, the
shallow water results (blue legends) are in close agreement with experimental data
(black legends) and the consistent linearity predicted from theory is also demonstrated
from experiments.

7.4. Jump types

The simulated results consolidated as a pair of phase diagrams in figure 18 display
the presence of submerged, wavy, smooth and no jump conditions. As discussed
above, each transition is characterized by a decrease in (i) jump strength, (ii) free
surface undulations and (iii) steepness in the jump front. The transition from a wavy
to a smooth jump is observed to occur at hy/h; & 2 and the no jump condition is
characterized by Fr,, > 1 throughout the flow length. In the figure, the experimental
data obtained from channels of three different lengths and six different inclinations
are also superimposed. A reasonable agreement between experiments and simulations
is evident in both figures, barring some mismatches close to the transition boundaries.
This can be attributed to experimental factors and the subjectivity in distinguishing a
wavy jump and a smooth jump based on undulations of the free surface.

We observe that jumps are favoured at low Re, for longer channels and adverse
slopes and change to smooth and no jump conditions with a gradual decrease in L./h;,
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FIGURE 17. Scaling relationship of jump location with ¢*3 for different channel
inclinations. Black and blue colours correspond to experimental and analytical results
respectively.

and gradual increase in 6. Both simulations and experiments also indicate that, for
any channel length, a jump does not form beyond a critical Re whose value is less
for shorter channels and no jump will occur if the channel length is smaller than a
critical value. The critical channel length and critical Re are thus interdependent: a
higher critical Re for longer channels and a lower critical length for lower flow rates
(smaller Re values).

Similarly, for downslope flows aided by gravity, an increase in 6 causes the
transformation from wavy to smooth and subsequently no jump conditions at lower
Re. With an increase in 6, the critical Re for jump formation decreases and for a
particular Re, there is a critical & beyond which no jump is formed under the balance
of gravity, inertia and viscous forces. Thus, we conclude that jump formation and
its nature depend on the coupled effects of channel length, channel inclination and
Reynolds number and a stronger jump can result even at higher Re for a long enough
channel and a large enough (—#6).

8. Conclusion

We explore viscous shear induced natural hydraulic jumps in thin film flow through
channels slightly deviated from the horizontal. The exercise is performed through
shallow water theory supplemented by numerical simulations and experimental results.
The following major conclusions can be drawn from the present investigation:
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FIGURE 18. Phase diagram for jump type (shown schematically in c¢) as a function of
Reynolds number and channel geometry — (a) scaled channel length and (b) channel
inclination. In (a,b), curves demarcate zones of numerically simulated jump types. Hatched
region shows zone of numerically simulated submerged jump.

(1)

(ii)

(iii)

(iv)

Despite the simplicity and the approximations involved, shallow water theory
developed assuming self-similar velocity profiles is an effective tool for
elucidating the physics of planar laminar jumps over a wide range of flow
and geometric parameters.

The theory presents a modified Froude number for predicting jumps in inclined
channels. The definition, being different from the conventional expression to
describe buoyancy forces in single phase flows, highlights the complexity induced
by jumps in sloped channels.

The theory also predicts the occurrence of a submerged jump beyond a critical
upslope tilt and no jump below a critical downslope. Under the latter condition,
the film thickness initially increases and eventually attains a constant value, which
can be predicted from the exact solution of the Navier—Stokes equations for a
fully developed free falling film.

The available scaling relationship between jump location and flow rate, originally
proposed for horizontal flow, has been extended to inclined channels.
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(v) In concurrence with experiments, the numerical results reveal the coupled effects
of Reynolds number, channel tilt and channel length on jump formation and its
geometry. We observe a variety of jump types, namely submerged jump, wavy
jump, smooth jump and no jump even under laminar flow conditions.

(vi) Interestingly, both theory and simulations emphasize that the hydrodynamics
upstream of the jump is a function of Reynolds number only, while the
downstream profile is influenced by both the Reynolds number and channel
length, as well as tilt.

The evident efficacy of shallow water theory as demonstrated suggests that it can
be generalized to analyse more complex flows.
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