
J. Fluid Mech. (2013), vol. 722, pp. 554–595. c© Cambridge University Press 2013 554
doi:10.1017/jfm.2013.122

Invariant recurrent solutions embedded in a
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We consider long-time simulations of two-dimensional turbulence body forced by
sin 4yx̂ on the torus (x, y) ∈ [0, 2π]2 with the purpose of extracting simple invariant
sets or ‘exact recurrent flows’ embedded in this turbulence. Each recurrent flow
represents a sustained closed cycle of dynamical processes which underpins the
turbulence. These are used to reconstruct the turbulence statistics using periodic orbit
theory. The approach is found to be reasonably successful at a low value of the forcing
where the flow is close to but not fully in its asymptotic (strongly) turbulent regime.
Here, a total of 50 recurrent flows are found with the majority buried in the part
of phase space most populated by the turbulence giving rise to a good reproduction
of the energy and dissipation p.d.f. However, at higher forcing amplitudes now in
the asymptotic turbulent regime, the generated turbulence data set proves insufficiently
long to yield enough recurrent flows to make viable predictions. Despite this, the
general approach seems promising providing enough simulation data is available since
it is open to extensive automation and naturally generates dynamically important exact
solutions for the flow.
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1. Introduction
Ideas from dynamical systems have recently provided fresh insight into transitional

and weakly turbulent flows where the system size is smaller than the spatial
correlation length. Viewing such flows as a trajectory through a phase space littered
with invariant (‘exact’) solutions and their stable and unstable manifolds has proved
a fruitful way of understanding such flows (Eckhardt et al. 2002; Kerswell 2005;
Eckhardt et al. 2007; Gibson, Halcrow & Cvitanović 2008; Cvitanović & Gibson
2010; Kawahara, Uhlmann & van Veen 2012). It is therefore natural to ask whether
any ideas attempting to rationalize chaos may have something to say about developed
turbulence. This is not to presuppose the two phenomena are simply related, that they
are not has surely been appreciated for over 30 years, but merely that an approach
found useful in one may provide some insight into the other. One promising line of
thinking in low-dimensional, hyperbolic dynamical systems stands out as a possibility:
periodic orbit theory.

† Email address for correspondence: R.R.Kerswell@bristol.ac.uk

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

12
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:R.R.Kerswell@bristol.ac.uk
https://doi.org/10.1017/jfm.2013.122


Two-dimensional Kolmogorov turbulence 555

The study of periodic orbits as a tool to understand chaos has been a longstanding
theme in dynamical systems dating back to Poincaré’s original work on the three
body problem in the 1880s (Poincaré 1892; Ruelle 1978; MacKay & Miess 1987;
Gutzwiller 1990). The fact that chaotic solutions can fleetingly, but also recurringly,
resemble different periodic flows over time has always suggested that the statistics
of the former may be expressible as a weighted sum of properties of the latter.
However, this has generally remained a vague hope except for a special subclass of
dynamical system where periodic orbit theory has formalized this link (see Auerbach
et al. 1987; Cvitanović 1988; Artuso, Aurell & Cvitanović 1990a and, for a recent
review, Lan 2010). For these systems, very low-dimensional, fully hyperbolic invariant
sets in which periodic orbits are dense (‘axiom A’ attractors), there have been some
notable successes (e.g. Artuso, Aurell & Cvitanović 1990b; Cvitanović 1992 and later
papers in the same journal issue, the evolving webbook Cvitanović et al. 2013). Here
the invariant measure across the attractor can be expressed in terms of the periodic
orbits which are dense within it so that ergodic averages can be determined from
suitably weighted sums across the periodic orbits. Central to applying the approach is
identifying a symbolic dynamics which can catalogue and order the infinite number of
periodic orbits present in a chaotic attractor to give convergent expressions.

Extending periodic orbit theory to higher dimensional dynamical systems, most
notably spatiotemporal systems, would obviously be highly desirable but represents
a very considerable challenge. However, there are encouraging signs that something
approaching this could be possible in fluid turbulence. The fact that a turbulent
flow fleetingly yet recurringly resembles a series of smoother coherent structures or
spatiotemporal patterns is a familiar observation perhaps first recorded by Leonardo da
Vinci in his famous drawings. Mathematically, Hopf (Hopf 1948; see also Robinson
1991, Holmes, Lumley & Berkooz 1996 and Panton 1997 for overviews of subsequent
work) made the key step forward in this direction by viewing the evolving solution
of the Navier–Stokes equations as a point moving in an infinite-dimensional state
space and observing that viscosity would lead to a contraction of the dynamics
onto a finite-dimensional (now known as ‘inertial’) manifold. Within this manifold,
it is then natural to view turbulence as a phase space flow transiently visiting
the neighbourhoods of unstable, simple invariant (spatiotemporal) solutions of the
governing equations (e.g. equilibria, periodic orbits, tori, etc.; hereafter also referred to
as ‘recurrent flows’). However, an attempt to build a prediction of turbulence statistics
from the recurrent flows present is fraught with difficulties. Not only is there the
daunting problem of initially identifying enough of them in such high-dimensional
systems (typically 104–105 degrees of freedom (d.o.f.s)) to make such a prediction
seem feasible, but there is the problem of understanding how each should be weighted
in any expansion. Finally, in the very likely eventuality that there is no symbolic
dynamics for turbulence, it is difficult to know if important recurrent flows have been
missed thereby compromising any prediction.

The situation although very daunting, promises much and is not without hope.
Efforts to extend the ideas of periodic orbit theory to higher-dimensional systems have
focused on 1-space and 1-time partial differential equations, most notably the one-
dimensional Kuramoto–Sivashinsky system (Christiansen, Cvitanović & Putkaradze
1997; Zoldi & Greenside 1998; Lan & Cvitanović 2008; Cvitanović, Davidchack
& Siminos 2010) and the complex Ginzburg–Landau equation (Lopez et al. 2005).
The emphasis in this work has mostly been to establish the feasibility of extracting
recurrent flows directly from the ‘turbulent’ dynamics although some predictions were
made (Christiansen et al. 1997; Lopez et al. 2005). The first attempt to extract
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a recurrent flow from three-dimensional Navier–Stokes turbulence was made in a
landmark calculation by Kawahara & Kida (2001). In this work they found one
periodic orbit embedded in the turbulent attractor in a 15 422-d.o.f. simulation of
small box plane Couette flow. This immediately raised the ‘bar’ of what had been
thought possible and interestingly, they found that this one orbit was a very good
proxy for their turbulence statistics. van Veen, Kawahara & Kida (2006) drew a similar
conclusion albeit after discarding all but one of the few orbits they found when
studying highly symmetric three-dimensional body-forced box turbulence. Subsequent
work in plane Couette flow by Viswanath (2007) essentially confirmed the existence
of Kawahara & Kida (2001) periodic orbit (using 180 670 d.o.f.), found another one
and identified four new relative periodic orbits (see also Lopez et al. 2005). These
are periodic orbits where the flow repeats in time but drifts spatially in directions
where the system has a continuous translational symmetry. Cvitanović & Gibson
(2010) report (using 61 506 d.o.f.s) having identified 40 periodic solutions, 15 relative
periodic solutions with streamwise shifts and one relative periodic orbit with a small
spanwise shift in low-Reynolds-number and small box plane Couette flow. More recent
work has focused on finding recurrent flows in symmetric subspaces at transitional
Reynolds numbers either in small box plane Couette flow (Kreilos & Eckhardt 2012)
or in short pipe flow (Willis, Cvitanović & Avila 2013).

The state of the field is then that recurrent flows can be found in three-dimensional
Navier–Stokes turbulence calculations requiring up to O(105) d.o.f. (low Reynolds
number turbulence) but understanding how many can be found in a reasonable
(tolerable) time and then identifying how dynamically important they are, remain
outstanding issues. As a result, making useful predictions with any confidence using
the set of recurrent motions found seems some way off. With this background, our
objective here is to make some contribution to this effort by mounting a systematic
investigation of these issues in the simpler context of two-dimensional Navier–Stokes
turbulence.

It’s worth emphasizing that even if a ‘turbulence’ version of periodic orbit theory
ultimately proves beyond our grasp, the procedure of identifying recurrent flows buried
within a turbulent solution has considerable value in its own right. This is because
each recurrent flow can be thought of as a sustainable dynamical process which helps
underpin the turbulent state. Since they are ‘closed’ (recur exactly), their spatial and
temporal structure can be dissected to reveal the fundamental physics involved. Just
such an approach has helped uncover the ‘self-sustaining process’ (Waleffe 1997)
– streamwise vortices generate streaks which are unstable to streamwise-dependent
flows which subsequently invigorate the streamwise vortices – in wall-bounded shear
flows following the discovery of a quasi-cycle in highly constrained plane Couette
flow by Hamilton, Kim & Waleffe (1995). Beautifully, this quasi-cycle turned out to
indicate the presence of families of exact (unstable) travelling wave (TW) solutions to
the Navier–Stokes equations (Waleffe 1998, 2001, 2003), the existence of which have
revolutionized our thinking about transitional and weakly turbulent shear flows (see the
reviews by Kerswell (2005), Eckhardt et al. (2007) and Kawahara et al. (2012)).

The specific framework investigated here is two-dimensional Kolmogorov flow on a
[0, 2π]2 torus (efficiently simulated using spectral methods) where the flow is forced
monochromatically and steadily at a large length scale. This flow has been extensively
studied since Kolmogorov introduced the model in 1959 (Arnol’d & Meshalkin
1960) as a simple example of linear instability which could be studied analytically
(Meshalkin & Sinai 1961). The flow has many possible variations: torus aspect ratio
(e.g. Marchioro 1986; Okamoto & Shoji 1993; Sarris et al. 2007), forcing wavelength
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(She 1988; Platt, Sirovich & Fitzmaurice 1991; Armbruster et al. 1996), forcing form
(e.g. Gotoh & Yamada 1986; Kim & Okamoto 2003) and three-dimensionalization (e.g.
Borue & Orszag 1996; Shebalin & Woodruff 1997; Sarris et al. 2007). It has been
experimentally realized using magnetohydrodynamic forcing (e.g. Bondarenko, Gak &
Dolzhanskii 1979; Obukhov 1983; Sommeria 1986) and latterly in soap films (e.g.
Burgess et al. 1999). With an additional Coriolis term, Kolmogorov flow can also be
used as a barotropic ocean model on the β-plane (e.g. Kazantsev 1998, 2001; Tsang &
Young 2008).

The work by Kazantsev (1998, 2001) is particularly relevant for this study as this
was the first attempt to use periodic orbits to reproduce properties of the chaotic
attractor in a 211-d.o.f. discretization of a two-dimensional Kolmogorov-like flow
(differences include the addition of non-periodic boundary conditions, rotation and
bottom friction). The work is most notable for his use of a minimization procedure to
identify periodic orbits (59 found) as well as a good survey of relevant atmospheric
literature. More recent work by Fazendeiro et al. (2010) (see also Boghosian et al.
2011) has started to study triply periodic body-forced turbulence using lattice-
Boltzmann computations. Their focus was on developing another variational approach
for identifying periodic orbits based upon the idea of Lan & Cvitanović (2004) and
they describe convergence evidence for two periodic orbits. The approach starts with
a closed orbit that does not satisfy the Navier–Stokes equations and uses a variational
method to adjust the orbit until it does. This requires manipulating the whole orbit
at once and requires massive computations which are facilitated by the inherent
parallelism of the lattice-Boltzmann approach. In contrast, the approach adopted here
is to start with a flow trajectory which does satisfy the Navier–Stokes equations but
is not closed and to adjust the start of the trajectory until it does. This boils down
to a Newton–Raphson root search in very high dimensions and iterative methods
have to be employed to make things feasible. We adopt a Newton–GMRES–hook-step
procedure developed by Viswanath (2007, 2009) and subsequently used with success
by Cvitanović & Gibson (2010) (see Duguet, Pringle & Kerswell 2008 for a slight
variation which replaces the ‘hook step’ with the ‘double dogleg’ step; Dennis &
Schnabel 1996).

The plan of the paper is as follows. Section 2 describes two-dimensional
Kolmogorov flow in detail, discusses its symmetries (§ 2.1) and makes connections
with some previous direct numerical simulations (DNSs) (§ 2.2). Key flow measures
to be used subsequently are listed in § 2.3. Section 3 describes the methodology used,
starting with the time stepping code in § 3.1, how initial guesses for recurrent flows are
identified in § 3.2, and then the Newton–GMRES–hook-step algorithm in § 3.3 (this
draws its inspiration from Viswanath (2009)). Section 3.4 discusses how the algorithms
were tested. Section 4 describes the results, first giving a flow orientation in § 4.1, then
reporting on how recurrent flows were actually extracted, before giving details of the
recurrent flows found in § 4.3. Section 5 describes an attempt to reproduce properties
of two-dimensional Kolmogorov turbulence before § 6 discusses the results and the
outlook for future work.

2. Formulation
The incompressible Navier–Stokes equation with what is called ‘Kolmogorov

forcing’ is

∂u∗

∂t∗
+ u∗ ·∇∗u∗ + 1

ρ
∇
∗p∗ = ν∇∗2u∗ + χ sin

(
2πny∗/Ly

)
x̂, (2.1)

∇
∗
·u∗ = 0 (2.2)
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558 G. J. Chandler and R. R. Kerswell

where ρ is the density, ν the kinematic viscosity, n an integer describing the scale
of the (monochromatic) Kolmogorov forcing and χ is the forcing amplitude per unit
mass of fluid over a doubly periodic domain [0,Lx] × [0,Ly] (and in this section only
∗ indicates a dimensional quantity). The system is non-dimensionalized by the length
scale Ly/2π and time scale

√
Ly/2πχ so that the equations become

∂u
∂t
+ u ·∇u+∇p= 1

Re
∇2u+ sin (ny) x̂, (2.3)

∇ ·u= 0 (2.4)

where the Reynolds number is

Re :=
√
χ

ν

(
Ly

2π

)3/2

(2.5)

to be solved over the domain [0, 2π/α] × [0, 2π] (α := Ly/Lx). Given the doubly
periodic boundary conditions, dealing with the cross-plane vorticity equation is more
natural and reduces simply to the scalar equation

∂ω

∂t
= ẑ ·∇ × (u× ωẑ)+ 1

Re
∇2ω − n cos (ny) (2.6)

where ωẑ :=∇ × u. (The form of the nonlinearity on the right-hand side is convenient
for computation but can be further reduced to simply −u · ∇ω as the vortex stretching
term ω · ∇u= 0 is, of course, absent in two dimensions.) Dealing with this equation is
analogous to working with the streamfunction u=∇×ψ(x, y)ẑ since spatially constant
velocity and vorticity fields are not present so ψ =∇−2ω.

2.1. Symmetries
There is a shift-and-reflect symmetry

S : [u, v, ω](x, y)→ [−u, v,−ω]
(
−x, y+ π

n

)
. (2.7)

which shifts half a wavelength of the forcing function in y and reflects in x
(u := ux̂ + vŷ and ω := ∂v/∂x − ∂u/∂y). Since there are n wavelengths in the domain,
this transformation forms a cyclic group of order 2n − 1. There is also a rotation-
through-π symmetry

R : [u, v, ω](x, y)→ [−u,−v, ω](−x,−y) (2.8)

and the continuous group of translations

Tl : [u, v, ω](x, y)→ [u, v, ω](x+ l, y) for 0 6 l<
2π
α
. (2.9)

The focus here is (unusually) not to take advantage of these, that is, the flow is
allowed to fully explore phase space.

2.2. Past literature
Of all the previous work on two-dimensional Kolmogorov flow, Platt et al. (1991)
seem to have carried out the most detailed study with n = 4 over the non-dimensional
domain [0, 2π] × [0, 2π]. The same choices n = 4 and α = 1 were therefore made
throughout the calculations reported here. With this, Re = 8

√
RePlatt and so the

critical Reynolds number for linear instability is Rec = 8 4
√

2 (RePlatt
c =√2). Platt et al.
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(1991) looked at the flow regime Re/Rec 6 3.54 over a 32 × 32 spatial grid so that
9.51 6 Re 6 33.6. Here we consider a 256 × 256 grid and look at 9.5 6 Re 6 100
(Re/Rec 6 10.5). Unfortunately, we were only able to confirm the detailed dynamics
reported by Platt et al. (1991) if we reduced our resolution down to theirs.

The next closest study was She’s (1988) which took n = 8, a 64 × 64 grid and
examined

√
2 6 ReShe 6 30 (26.9 6 Re 6 123.9 as Re= 83/2

√
ReShe) which corresponds

to Re/Rec 6 4.6. More recently, Sarris et al. (2007) considered three-dimensional
Kolmogorov flow over a variety of box aspect ratios considering 65 6 ReSarris 6 180
including the three-dimensionalization of the flow considered here (then Re= 8ReSarris).
Typically they use 128 mesh points per wavelength of the forcing. At the time of
writing, the world record for resolution when simulating doubly periodic body-forced
turbulence seems to be 32, 7682 (Boffetta & Musacchio 2010).

2.3. Key measures of the flow

Key measures of the flow which will aid the subsequent discussion are as follows: the
mean flow,

u(y) := 〈u · x̂〉t,x, (2.10)

(initial conditions are such that 〈u(x, 0) · ŷ〉x = 0 so that 〈u(x, t) · ŷ〉x = 0 for all time);
the bulk mean square of the fluctuations around the mean,

û2
rms(t) := 〈(u− u)2〉V, v̂2

rms(t) := 〈v2〉V, (2.11)

and root mean square (r.m.s.) of the fluctuations as a function of y,

urms(y) :=
√
〈(u− u)2〉t,x, vrms(y) :=

√
〈v2〉t,x; (2.12)

the total kinetic energy and the kinetic energy of the fluctuation field

E(t) := 1
2 〈u2〉V, Et(t) := 1

2 〈(u− 〈u〉t,x)2〉V; (2.13)

the total dissipation rate and the instantaneous power input

D(t) := 1
Re
〈|∇u |2〉V, I(t) := 〈u sin(ny)〉V, (2.14)

with finally the laminar state, bulk laminar kinetic energy and bulk dissipation rate

ulam := Re

n2
sin nyx̂, Elam := Re2

4n4
, Dlam := Re

2n2
, (2.15)

where the various averagings are defined as

〈 〉V :=
α

4π2

∫ 2π/α

0

∫ 2π

0
dx dy, (2.16a)

〈 〉x :=
α

2π

∫ 2π/α

0
dx, (2.16b)

〈 〉t := lim
T→∞

1
T

∫ T

0
dt. (2.16c)
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3. Methodology
3.1. Time stepping code

A two-dimensional fully de-aliased pseudo-spectral code was used as developed in
Bartello & Warn (1996). The original Leapfrog+filter approach was replaced by the
Crank–Nicolson method for the viscous terms and Heun’s method (Euler predictor
method) for the nonlinear and forcing terms so that only one state vector was required
to accurately restart the code. This together with a constant time step size (except
for the last step) means that the discretized flow is a dynamical system which closely
matches the Navier–Stokes flow. Specifically, if Ω(k) = fft(ω(x)) is the Fourier
transform of ω with k= (kx, ky), the vorticity equation (2.6) in spectral space is

∂Ω

∂t
=−GΩ + f (Ω) (3.1)

with

G(kx, ky) :=
k2

x + k2
y

Re
= |k|

2

Re
(3.2)

and

f (Ω) := −i
(
kx fft[uω] + ky fft[vω]

)− n

2
δkxδ(|ky|−n). (3.3)

Here δi is the Kronecker delta function and takes the value 1 when i = 0 and 0
otherwise. A time step is performed by solving

Ω̃ i+1 −Ω i

∆t
=−G

2

(
Ω̃ i+1 +Ω i

)
+ f (Ω i) (3.4)

followed by solving

Ω i+1 −Ω i

∆t
=− G

2

(
Ω i+1 +Ω i

)
︸ ︷︷ ︸

C−N

+ 1
2

(
f (Ω̃ i+1)+ f (Ω i)

)
︸ ︷︷ ︸

Heun

(3.5)

where the superscript is a time step index. With de-aliasing, a resolution of Nx × Ny

corresponds in practice to the vorticity representation

ω(x, y, t)=
Nx/3−1∑

j=−Nx/3

Ny/3−1∑
l=−Ny/3

Ωjl(t)ei(αjx+ly) (3.6)

where k = (αj, l), Ω00 = 0 and a mask is employed so that Ωjl = 0 for wavenumbers
outside a specified domain Σ . Calculations reported here have α = 1, n = 4 and
Nx = Ny so Σ := {(j, l) : j2 + l2 6 (Nx/3)

2} is used. The number of active (real) d.o.f.s
is therefore ≈ πN2

x /9 which is ≈22 800 (or exactly 22 428) for the Nx = 256 used here
(0 6 j 6 85 and −85 6 l 6 85 since Ω(−j,−l)=Ω∗(j, l)).

3.2. Near recurrences
The key idea pursued here is to extract recurrent flows directly from the turbulent
DNS data with the implication that they are clearly dynamically important. With this
in mind, the time stepping code was run for 105 time units starting from random initial
conditions and ‘near recurrences’ of the flow field searched for. These near recurrences
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were defined as episodes where

TsS
2mω(x, y, t + T) := ω(x+ s, y+ 1

2πm, t + T)= ω(x, y, t) (3.7)

‘approximately’ holds for some choice of the continuous shift 0 6 s < 2π, the discrete
shift m ∈ 0, 1, 2, . . . , n− 1 and T > 0 over 0 6 x, y< 2π. Periodic orbits correspond to
s = m = 0 and some period T > 0, TWs to m = 0 and s = cT with T > 0 free where
c is the phase speed, equilibria have s = m = 0 and T free and relative periodic orbits
have one or both of s and m not equal to zero with period T > 0. The existence of
relative periodic orbits, permitted by the inclusion of two free parameters (s and m)
here, is the signature feature of systems with discrete and/or continuous translational
symmetries. The presence of the further symmetry (2.8) means we could also have
searched separately for relative periodic orbits with reflection

RTsS
2mω(x, y, t + T)= ω(−x− s,−y− 1

2πm, t + T)= ω(x, y, t). (3.8)

This extra search was not done for reasons of expediency since these flows are
‘preperiodic’ (Cvitanović et al. 2010) to relative periodic orbits of period 2T and
are therefore picked up by checking (3.7). This was also the rationale behind not
extending the recurrence search to include

TsS
2m+1ω(x, y, t + T) := −ω(−x+ s, y+ 1

4π(2m+ 1), t + T)= ω(x, y, t). (3.9)

Again, these recurrent flows are captured as relative periodic orbits by (3.7) albeit after
integrating over two periods (presuming that they are not too unstable).

The key to this search is to understand how approximately (3.7) should hold to
signify the presence of a recurrent flow structure nearby. The only way to answer this
seems to be to perform computations and experiments. The search for near recurrences
was done most efficiently by calculating every, say t = 0.1 or 0.2 steps, the normalized
difference between states in wavenumber space suitably minimized over continuous
shifts in x and discrete shifts in y as follows:

R(t,T) := min
06s<2π

min
m∈0,1,2,...,n−1

∑
j

∑
l

|Ωjl(t)eiαjs+2imlπ/n −Ωjl(t − T)|2∑
j

∑
l

|Ωjl(t)|2
(3.10)

where
∑

j

∑
l |Ωjl|2 = α/ (4π)2

∫ 2π/x
0

∫ 2π
0 ω2 dx dy and 0 < Tthres ≈ 0.5 < T < 100. Since

R(t, 0) = 0 and dR(t, 0)/dT > 0, the offset Tthres is defined adaptively as the first time
at which dR(t,Tthres)/dT < 0. Figure 1 is a typical example of how R(t,T) looks as a
function of t and T during a recurrent episode. The nine black dots are the guesses
identified by the code (R< Rthres = 0.3) over this time interval. All except one (the last
dot at t ≈ 171) subsequently converged to an exactly recurrent solution (the four dots
for t < 130 to a periodic orbit (P1 in table 2) with period 5.3807 and the next four
dots with t ∈ [130, 160] to a TW (T1 in table 2) with phase speed c = 0.0198). The
threshold Rthres was chosen judiciously to give enough good quality guesses.

3.3. UPO extraction method: Newton–GMRES–hook step
Once a near recurrence has been found by the above-stated criterion, we then
attempted to find whether an exact recurrent flow was lurking nearby in phase space.
This required a high-dimensional root finding algorithm acting on a state vector which
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FIGURE 1. (Colour online) Example of R(t,T) at Re = 40 contoured over t ∈ [95, 175]
(x-axis) and T ∈ [thres, 50] (y-axis). The nine blue dots are the guesses identified by the
code (R < Rthres) over this time interval. All except one (the last dot at t ≈ 171) subsequently
converged to exact solutions: the four dots for t < 130 to a periodic orbit with period 5.3807
(P1 in table 2) and the next four dots with t ∈ [130, 160] to a TW (T1 in table 2) with phase
speed c= 0.0198. The R values above 0.55 are not drawn/coloured for clarity.

completely specifies the velocity field

X =

Ωs
T

 (3.11)

and contains information about the potential recurrence (Ω is a vector containing the
scalars Ωjl arranged in some fashion). The shift s is included since it can be adjusted
continuously whereas the discrete shift m cannot and therefore is preset. To set up
the Newton–Raphson algorithm (and we follow the excellent description by Viswanath
2009), it is convenient to define the infinitesimal generators Tx and Ty of translations in
x and y, respectively,

Tx ω(x, y, t)→ ∂ω

∂x
=

Ny/3−1∑
−Ny/3

Nx/3−1∑
−Nx/3

iαjΩjl(t)ei(αjx+ly), (3.12a)

Ty ω(x, y, t)→ ∂ω

∂y
=

Ny/3−1∑
−Ny/3

Nx/3−1∑
−Nx/3

ilΩjl(t)ei(αjx+ly) (3.12b)

as they act in spectral space

Tx Ω→Ωx and Ty Ω→Ωy (3.13)
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where each element Ωjl of Ω is mapped to iαjΩjl in Ωx and ilΩjl in Ωy. Then, in
spectral space the recurrence condition (3.7) becomes

F(Ω0, s,T;m) := exp(sTx + 1
2πmTy)Ω̂(Ω0,T)−Ω0 = 0 (3.14)

where Ω0 = Ω(t) and Ω̂ = Ω(t + T). If X0 = (Ω0, s0,T0)
T is an initial guess for a

solution, then a better (next) guess X0 + δX0 = (Ω0 + δΩ , s0 + δs,T0 + δT)T is given
by

∂F
∂Ω0

δΩ + ∂F
∂s
δs+ ∂F

∂T
δT =−F(Ω0, s0,T0;m) (3.15)

These are dim(Ω) equations for dim(Ω) + 2 unknowns. The extra two equations
come from removing the degeneracy associated with these translational symmetries
(the system is invariant under (x, t)→ (x + s, t + T)). This can be done by imposing
that δΩ , has no component which shifts the solution infinitesimally in the x-direction
or the t-direction (i.e. just redefines the time origin of the flow). The Newton–Raphson
problem is then to solve



. . .
...

...

∂Ω̂s

∂Ω0
− I TxΩ̂s

∂Ω̂s

∂T
. . .

...
...

· · · (TxΩ0)
T · · · 0 0

· · · ∂Ω0

∂t

T

· · · 0 0





...

δΩ
...

δs

δT


=−



...

F(Ω0, s0,T0;m)
...

0

0


(3.16)

where Ω̂s := exp(sTx + (1/2)πmTy)Ω̂ is the ‘back-shifted’ final state and I is the
dim(Ω)×dim(Ω) identity matrix. This is now in the standard form AδX = b with only
the Jacobian matrix ∂Ω̂s/∂Ω not straightforward to evaluate (∂Ω̂s/∂T and ∂Ω0/∂t are
found by substituting Ω̂s or Ω0 into the Navier–Stokes equations).

Typically, the size of the matrix A is too large to store explicitly let alone attempt to
solve AδX = b directly. As a result, the only way to proceed is iteratively and GMRES
(Saad & Schultz 1986) is convenient (see the excellent description by Trefethen & Bau
(1997)). Here only the effect of A on an arbitrary vector is needed. The effect of the
troublesome Jacobian can be handled easily by a forward difference approach since

∂Ω̂s

∂Ω0
y≈ Ω̂s(Ω0 + εy)− Ω̂s(Ω0)

ε
(3.17)

where ε is chosen such that ‖εy‖ = 10−7‖Ω0‖ which balances truncation error with
round-off error using double precision arithmetic and ‖ · ‖ is the Euclidean norm
(using a more physically orientated norm is clearly an interesting direction awaiting
exploration).

Straight Newton–GMRES is typically not good enough as guesses are usually not
in the region where linearization holds sufficiently well and divergence to infinity is
commonplace. Instead it proves useful to modify the approach to incorporate a trust
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region. Following Viswanath (2007, 2009), we use the ‘hook-step’ method (Dennis
& Schnabel 1996, § 6.4.1) which can be easily built on top of the GMRES process.
Exactly how the approach is implemented can vary and we adopt what looks to be a
slightly different algorithm to Viswanath (2007, 2009) in which GMRES is used first
to derive an approximate solution to AδX = b before this ‘solution’ δX is moved into
the trust region. The advantage of this is there is a clear convergence criterion that can
be imposed to terminate the initial GMRES algorithm. Before stating this, it is worth
first briefly describing the GMRES algorithm itself which is based upon a simple
idea. The GMRES algorithm for solving AδX = b at iteration n approximates δX by
the vector δXn in the Krylov space Kn := 〈b,Ab,A2b, . . . ,An−1b〉 that minimizes the
norm of the residual

‖AδXn − b‖ (3.18)

(Trefethen & Bau 1997). For numerical stability, an orthonormal basis for Kn is
constructed using a Gram–Schmidt-style iteration as follows

q1 =
b
‖b‖ , q̃i+1 = Aqi −

i∑
j=1

qj

qT
j Aqi

‖qj‖2 qi+1 = q̃i+1/‖q̃i+1‖ i ∈ 1 . . . , n− 1 (3.19)

so that if Qn is the matrix with columns q1, q2, . . . , qn, then AQn = Qn+1Hn+1,n where
Hn+1,n is the upper (n + 1) × n left section of an upper Hessenberg matrix generated
by the basis orthonormalization (Trefethen & Bau 1997, p. 252). With this basis
the solution δXn = Qnyn (where yn is an n-vector) minimizes ‖Qn+1Hn+1,nyn − b‖
(N equations and n unknowns) or equivalently ‖Hn+1,ny − ‖b‖ê1‖ (n + 1 equations
and n unknowns) since the only non-zero entry in QT

n+1b is the first entry. This can
be accomplished by a singular value decomposition (SVD) of Hn+1,n into Un+1DVT

n
(where Un+1 and V n are orthonormal matrices and D is an (n+ 1)× n diagonal matrix
with a zeroed bottom row) through straightforwardly solving the first n equations
Dzn = pn+1 := ‖b‖UT

n+1ê1 followed by VTyn = zn and then δXn = Qnyn. The modulus
of the remaining unbalanced component pn+1(n + 1) then gives the minimum value or
residual. The iterations are continued until

‖AδXn − b‖
‖b‖ = ‖Dzn − pn+1‖

‖pn+1‖
= | pn+1(n+ 1) |

‖pn+1‖
6 tol (3.20)

where tol is a small number typically chosen in the range 10−4 to 10−2 (the
majority of the computations reported here were obtained using a value of 10−3).
If ‖F(X + δXn)‖ is not smaller than ‖F(X)‖ or more specifically not well predicted by
the linearization around X , i.e. ‖F(X) + AδXn‖, then the approximate solution of the
linearized problem is transformed back to a smaller trust region where the linearized
problem is valid. This is done by adding the constraint ‖δXn‖ 6 ∆ or equivalently
‖yn‖6∆ to the GMRES minimization (3.18): this is the hook step. The beauty of this
adjustment is that it is a very natural modification of the GMRES approximate solution
since the (innermost) problem for zn is then

min‖Dzn − pn+1‖ s.t. ‖yn‖ = ‖zn‖6∆. (3.21)

Constructing the Lagrangian

L := (Dzn − pn+1)
2+µ(z2

n + β2 −∆2) (3.22)
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where µ is a Lagrange multiplier imposing the trust region constraint, leads to the
minimization equations

2d(i)(d(i)zn(i)− pn+1(i))+ 2µzn(i)= 0 (3.23)
2µβ = 0 (3.24)

z2
n + β2 −∆2 = 0 (3.25)

where di is the ith diagonal element of D. The solution to this is

zn(i) := pn+1(i)di

d2
i + µ

1 6 i 6 n (3.26)

with either µ= 0 as ‖zn‖<∆ (the original GMRES solution) or µ 6= 0 chosen so that
‖zn‖ = ∆ (in practice µ is just increased until ‖zn‖ < ∆). An acceptable solution δXn

is signalled by

F(X + δXn)6 F(X)+ cAδXn (3.27)

where some value of c ∈ (0, 0.5) is chosen (see Dennis & Schnabel 1996, (6.4.14):
we took the least demanding value of c = 0). If this does not hold, ∆ is decreased
and the hook step repeated until it is. Depending on how easily this improvement
condition is met, the trust region may be relaxed (e.g. if linearization holds well,
F(X + δXn)≈ F(X)+ AδXn) or not for subsequent Newton steps.

This algorithm can be readily extended to perform solution branch continuation: see
Appendix. Furthermore, since we know how to calculate the action of the Jacobian
on any vector (see (3.17), the linear stability of an exactly recurrent flow can also
be readily found using the Arnoldi technique (e.g. using ARPACK to extract extremal
eigenvalues).

3.4. Testing
The modified (Crank–Nicholson+ Heun) time stepping code was thoroughly validated
against the well-tested Leapfrog+filter code developed by Bartello & Warn (1996).
The Newton–GMRES–hook-step algorithm developed on top of this was tested by
attempting to converge onto a known periodic orbit. This orbit was originally found
by tracing bifurcations up from the basic state. For n = 4, the one-dimensional basic
state becomes linearly unstable at Re= 9.9669 for disturbances 2π-periodic in x giving
rise to a steady two-dimensional state which is R-symmetric. This state loses stability
to a stable periodic orbit within the R-symmetric subspace for 30 < Re < 31 before
this orbit becomes unstable at Re & 32 through a torus bifurcation. The periodic orbit
at Re = 31 was easily found by time stepping within the R-symmetric subspace yet
is unstable to R-asymmetric disturbances in the full unrestricted space. Having such
an orbit to experiment with was invaluable for building up confidence in the code and
some feel for how the tolerances of the algorithm should be set (e.g. tol in (3.20)).

4. Results
4.1. Flow orientation

Two-dimensional Kolmogorov flow is linearly unstable at a comparatively low Re
which depends strongly on the imposed periodicity in the forcing direction: see
figure 2. For the domain studied here (α = 1), disturbances to the base flow (2.15)
fail to decay monotonically at ReE = 6.8297 and then start to grow exponentially
at Relin = 9.9669. Figure 3 shows that this initial bifurcation is to a steady
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FIGURE 2. (Colour online) The energy stability Reynolds number ReE (dashed line, shown in
red online) and the linear instability Reynolds number Relin (solid line, shown in blue online)
for sin 4yx̂ forcing over the torus [0, 2π/α] × [0, 2π]. Note that Relin→∞ as α→ 4 so the
domain is squeezed down to [0,π/2] × [0, 2π]. The dotted line at α = 1 is the present case
(ReE = 6.8297 and Relin = 9.9669). Here ReE→ 0 and Relin→ 8 4

√
2≈ 9.5137 as α→ 0.

flow (D/Dlam < 1 and Et/E = 0) until Re ≈ 15 whereupon time dependence appears
(note instabilities tend to decrease the dissipation rate because the flow is body-
forced). For 15 . Re . 23, some metastability is noticed which is illustrated in
figure 4 at Re = 22 for two different initial conditions. One leads to a chaotic-looking
dissipation signal across the time interval [500, 1500] whereas the other drops out
of this chaotic state at just over t = 1000 to converge on a stable TW solution
(later named T1). Beyond Re ≈ 23, the chaotic state presumably becomes an attractor
or the probability of dropping out of this state becomes so small that it is not
picked up over the time windows studied (103 units here and 105 later). Finally, an
asymptotic regime is approached for Re & 50. The preliminary calculations performed
here for 100 < Re < 200 tentatively support the asymptotic scaling laws D ∼ Re−1/2

and U := √2E ∼ Re2/5 although the noisy data clearly warrants much longer time
averaging to confirm this.

Given this general flow behaviour, we chose to concentrate on analysing the flow
at Re = 40 (approaching the asymptotic regime), and three values, Re = 60, 80 and
100, which get deeper into the asymptotic regime. Figures 4 and 5 give an idea
of the temporal and spatial scales in the flow at the two extremes, Re = 40 and
Re= 100, of our study. Both indicate a hierarchy of temporal and spatial scales (which
broaden with Re) indicative of two-dimensional turbulence. Figure 6 confirms that the
flows studied for Re 6 100 are well-resolved: there is 10 orders of drop off in the
enstrophy spectrum in the most demanding case (Re = 100) for the 2562 resolution
used throughout this work.

4.2. Finding recurrent structures
A standard hunt for recurrent flows involved integrating the flow from random initial
conditions for a period of 105 time units. Initially, Rthres was set at 0.15 for three runs
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FIGURE 3. (Colour online) The normalized dissipation D/Dlam (solid line with dots, shown
in blue online) and fractional fluctuation kinetic energy Et/E (dotted line connecting dots,
shown in red online) to illustrate how the flow changes with Re. The first bifurcation
at Relin = 9.9669 is steady so D/Dlam decreases below 1 but Et/E remains 0 until time-
dependent flows appear at around Re = 15. Curves were generated by using a random initial
condition, running for 500 time units and then calculating averages over the next 1000 time
units. This produces a unique average except over the interval 15 . Re . 23 where there is
some metastability as shown. Inset: Re1/2D (upper line, shown in blue online) and 3Re−2/5E1/2

(lower thick line, shown in red online) against Re on a log scale showing the apparent start of
the asymptotic regime D∼ Re−1/2 and U := √2E ∼ Re2/5. The downward sloping lowest line
shows U/Re1/2 for comparison.

at Re = 40 (labelled a, b and c in table 1) which produced only 9, 7 and 13 guesses
respectively. Relaxing Rthres to 0.3 (run d), however, produced 885. This threshold
value proved adequate at Re = 60 (nearly 300 near recurrences detected over runs e, f
and g) but had to be further relaxed to 0.35 at Re = 80 and 0.4 for Re = 100: see
table 1. Unfortunately, it was noticed after these (series A) runs had been completed
and the guesses tested for convergence that only s = m = 0 shifts had been searched
over. So the runs were repeated (series B runs o, p, q and r) searching specifically for
recurrences which selected either s 6= 0 and/or m 6= 0 to minimize R. This was done
to indicate the frequency of observing strictly periodic near-recurrences and relative
periodic near-recurrences.

The initial trawl for near recurrences took a few weeks (each case run on a Xeon
X5670 processor) with the DNS code slowed considerably by the need to search for
near-recurrences every 0.1 or 0.2 units in time (which is anything from 20 to 100
numerical time steps). The more time-consuming activity, however, was attempting to
converge the near-recurrent guesses to exact solutions. Adopting fairly conservative
limits for the Newton–GMRES–hook-step procedure (the maximum period considered
was 100, maximum number of Newton, GMRES and hook steps were 75, 500 and
50, respectively) typically lead to run times of a couple of months for each of the
Re= 60, 80 and 100 runs. The data for Re= 40 had to be subdivided 12 ways to make
the process manageable. These numbers make it clear why a very efficient DNS code
was important for this work.
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FIGURE 4. (Colour online) The normalized dissipation D(t)/Dlam versus t ∈ [500, 1500] for
Re = 22 (two different initial conditions: top solid line, shown in blue online, and dashed
line, shown in green online), Re = 40 (second lowest solid line, shown in red online)
and Re = 100 (lowest black line). Here Re = 22 shows chaotic saddle behaviour with one
trajectory seemingly dropping out back randomly to the TW T1 (stable at Re= 22).

Table 1 also indicates the conversion rate of near-recurrence guesses to exactly
recurrent solutions. There is considerable duplication of such solutions so that a much
smaller set of distinct recurrent structures is obtained.

4.3. Recurrent structures found
4.3.1. Re= 40

Table 2 lists the recurrent structures found at Re = 40. The equilibrium flow E1
(see figure 7), which was found many times in the series A runs, corresponds to the
R-symmetric steady state which bifurcates off the basic solution at Re = 9.9669 as
shown in figure 3. E1 loses stability at about Re = 15 to the TW T1 or later via
P1 in the R-symmetric subspace for a Re ∈ (30, 31) (P2 which is R-symmetric and
P3 which is not bifurcate at yet higher Re from E1). All three flows, E1, P1 and
T1 are found to be repeatedly visited by the (series A) DNS indicating the strong
influence of the R-symmetric subspace on the ‘turbulent’ dynamics despite them all
being unstable (e.g. E1 has 9 unstable directions at Re = 40; see table 2). However,
a further 47 recurrent flows were also identified from the DNS: another TW T2,
two further periodic orbits P2 and P3, and 44 relative periodic orbits, R1–R6 and
R18–R55 (note all have a non-zero shift s and some also a non-zero integer m). A
priori, we expected to find mainly small period recurrent structures due to the method
of extraction. Longer periods mean more time for the turbulent trajectory to diverge
away from the unstable recurrent flow and hence a higher probability for: (a) the
episode to escape detection as a nearly recurrent flow and; (b) even if detected, for
GMRES to fail to converge due to the quality of the initial approximation. This seems
borne out by the periodic orbits found but not for the relative period orbits where the
majority have a period over 20 and some over 50 time units. That such long period
structures exist and were ‘extractable’ from the DNS frankly was a surprise and begs
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(a)

(b)

FIGURE 5. (Colour online) A time sequence of vorticity plots at Re = 40 (a) and Re = 100
(b) over the 2π × 2π domain. Time difference between plots is 1 time unit and 10 contours
are drawn between the maximum (light, shown in white online) and minimum values
(dark, shown in red online) of the perturbation vorticity −10.25 6 ω 6 8.6 at Re = 40 and
−18.4 6 ω 6 20.3 at Re= 100.

the question whether our ‘long’ runs of 105 time units (now known to be only a factor
of O(1000) longer than some recurrent flows) were actually really long enough to
capture all of the structures possible. This issue will be raised again below.

With so many recurrent flows found, it becomes impractical to display and
characterize each flow separately. Table 2 lists some key characteristics along with
their stability information (all are unstable but none with more than 9 unstable
directions out of 22,428 possible directions). One useful projection, however, is the
‘energy out (D(t)) verses energy in (I(t))’ plot which is shown in figure 8 (both
quantities normalized by Dlam). The line D = I corresponds to dissipation exactly
balancing energy input which has to be the case over all times for equilibria and
TWs (which are just equilibria in an appropriate Galilean frame): these are therefore
just points on this line in this plot. Figure 8 shows how a representative subset of
these recurrent flows look when compared with the joint dissipation-input probability
density function (p.d.f.) of the DNS. The darkest shading makes it clear that the DNS
stays predominantly in the region 0.055 < I/Dlam < 0.115, 0.06 < D/Dlam < 0.11. The
recurrent flows shown are also dominantly concentrated in this region although there
are two relative periodic orbits shown, R26 and R50, which have large dissipation
episodes (it is worth emphasizing that the basic state would be represented by the
point (1, 1) in this plot so the turbulent flow adopts a much reduced dissipative
state). Since this D versus I plot is such a drastic projection of the dynamics, the
fact that two flows look close there does not necessarily mean they are close in the
full phase space (see Willis et al. 2013 for further discussion). However, because all
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FIGURE 6. (Colour online) The enstrophy spectrum for the rightmost snapshots in figure 5
at Re = 40 (circles, shown in blue online) and Re = 100 (crosses, shown in red online)
D(n) :=∑

n−(1/2)6
√

j2+l2<n+(1/2) |Ωjl|2 for n = 1, 2 . . . 85: recall definition ((3.6) with α = 1;

e.g. there are 264 and 516 wavenumbers included for n = 40 and 84, respectively). The
energy spectrum E(n) ≈ D(n)/n2 has a steeper drop off. The dotted line indicates the
wavenumber of energy injection.

of the recurrent flows discussed here have been extracted from turbulent DNSs, this
conclusion nevertheless seems reasonable.

In figure 9 we focus on one typical ‘embedded’ relative periodic orbit R25 which
stays within the central region of the DNS joint p.d.f. There is a clear temporal cycle
where the energy input increases (exceeding the dissipation) and then decreases (now
exceeded by the dissipation). Plotting the associated vorticity fields over this cycle
(figure 10) shows the character of the flow. At the dissipation low point (time 17
in figures 9 and 10), the vorticity is concentrated into weak y-aligned patches which
are separated from each other whereas at the high dissipation point (time 8), the
vorticity seems to be undergoing a shearing episode with only one stronger vortex
recognizable. These two extremes bear more than a passing resemble to either T1
(D/Dlam = 0.071) or T2 (0.071) and E1 (0.102) respectively suggesting that R25 is
probably a closed trajectory linking their neighbourhoods. In contrast, R50 undergoes
a large high dissipation excursion as shown more completely in figure 11. The
associated vorticity fields (see figure 12) show similar structures to R25 when in
the same part of (I,D) space (compare t = 5 for R25 with t = 0 for R50, and t = 15
for R25 and t = 31 for R50) but R50 exhibits intense shearing too and vortex break-up
at times 5, 8 and 9. So R50 clearly reflects an important but infrequent aspect of the
turbulent dynamics as indicated by the fact that the joint (D, I) p.d.f. of the DNS
stretches to such high values of the dissipation. Whether we have extracted enough of
such recurrent structures to capture this episodic behaviour is of course a key issue for
this study and will be discussed in § 6.

Figure 13 is an attempt to show more of the recurrent structures found by zooming
in on the central dashed box drawn in figure 8. This illustrates the intricacy of most
of the flows found: many of the relative periodic orbits trace complicated D–I curves
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Run Rthres dt Duration Number of
guesses

Number of
convergences

Series A (s= m= 0)
Re= 40 a 0.15 0.005 105 9 5

b 0.15 0.005 105 7 3
c 0.15 0.005 105 13 5
d 0.30 0.005 105 885 553

Re= 60 e 0.30 0.003 105 102 64
f 0.30 0.003 105 104 67
g 0.30 0.003 105 78 58

Re= 80 h 0.35 0.0025 105 53 31
i 0.35 0.0025 105 60 37
j 0.35 0.0025 105 41 25

Re= 100 l 0.4 0.002 105 75 34
m 0.4 0.002 105 91 33
n 0.4 0.002 105 93 42

Series B (s 6= 0 or m 6= 0)
Re= 40 o 0.30 0.005 105 1223 540
Re= 60 p 0.30 0.003 3×105 163 7
Re= 80 q 0.35 0.0025 3×105 66 15
Re= 100 r 0.4 0.002 3×105 84 12

TABLE 1. DNS data used to extract equilibria, TWs, periodic orbits and relative periodic
orbits at Re= 40, 60, 80 and 100. The value of Rthres cannot be set too ambitiously. Run d
yielded all of the solutions thrown up by runs a, b and c combined.

whereas, in contrast, the periodic orbits are simple loops. Another key observation
is that some relative periodic orbits look very similar, e.g. R28 and R29 (and other
pairings not shown). This, of course, resonates with the mental picture one has of
periodic orbits being dense in a chaotic attractor. In fact, the consecutive numbering
of R28 and R29 indicates that these relative periodic orbits were found concurrently
from the DNS confirming their proximity in phase space. Also it is clear than some
relative periodic orbits look like merged versions of two shorter orbits (not shown)
again consistent with low-dimensional dynamical systems thinking.

4.3.2. Re= 60, 80 and 100
At higher Re, we managed to extract far fewer recurrent flows from the DNS. There

are certainly reasons to expect this, most notably that the recurrent flows present
should become more unstable and it is therefore harder to find good guesses from the
DNS. There is also the fact that the ‘turbulence’ should explore more of phase space
and therefore close visits to simple invariant sets should become rarer. However, the
sharp drop in the number of recurrent flows found (see table 3) was still a surprise. In
keeping with the philosophy of this work, only recurrent flows extracted from the DNS
at that Re are listed in table 3 under the relevant Re heading. This then says nothing
about whether a certain recurrent flow found at one Re might not exist at another. To
explore this a little, we carried out some branch continuation (see Appendix) on the
recurrent flows extracted from the series A DNSs while the runs and analysis for the
series B DNSs were progressing. The results are shown in figure 14 colour coded to
group recurrent flows found at the same Re and with black dots indicating branches
detected at a given Re (note the rescaled dissipation measure on the ordinate to make
the plot clearer). For example, the T3 branch is shown as a dashed line (second dashed
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UPO Frequency c T −s −m N
∑N

j=1Re(λj)(max Re(λj))

Re= 40 E1 >261 0 9 1.296(0.249)
T1 127 0.0198 0 4 0.142(0.068)
T2 1 0.0096 0 4 1.227(0.454)
P1 143 5.380 0 7 0.570(0.191)
P2 6 2.830 0 5 0.742(0.223)
P3 2 2.917 0 7 0.992(0.236)
R1 1 56.677 0.092 0 3 0.156(0.077)
R2 1 25.401 0.199 0 5 0.254(0.123)
R3 1 54.280 0.200 0 3 0.195(0.108)
R4 1 6.720 0.106 0 8 0.870(0.343)
R5 1 23.780 0.022 0 4 0.376(0.156)
R6 4 20.808 0.060 0 3 0.258(0.172)
R18 1 37.233 0.270 0 5 0.242(0.165)

R19 12.207 0.243 0 2 0.141(0.070)
R20 16.586 5.827 1 4 0.289(0.103)
R21 17.470 5.765 3 5 0.348(0.143)
R22 19.723 0.222 0 4 0.297(0.172)
R23 19.762 0.513 0 4 0.302(0.127)
R24 19.779 6.035 0 5 0.292(0.202)
R25 20.201 5.898 3 6 0.380(0.138)
R26 20.385 1.334 2 7 0.714(0.270)
R27 20.632 5.871 3 4 0.365(0.127)
R28 20.885 5.987 1 4 0.360(0.121)
R29 20.909 0.306 1 5 0.380(0.124)
R30 21.310 5.694 0 5 0.330(0.100)
R31 21.725 5.799 0 3 0.319(0.133)
R32 22.560 0.006 1 4 0.283(0.096)
R33 22.617 5.660 0 5 0.478(0.156)
R34 23.157 0.265 0 3 0.260(0.113)
R35 23.417 5.936 3 4 0.489(0.183)
R36 24.465 6.010 3 4 0.358(0.191)
R37 25.870 0.182 0 3 0.272(0.122)
R38 25.934 0.227 0 4 0.263(0.125)
R39 27.138 6.248 0 4 0.391(0.107)
R40 28.817 5.971 0 5 0.238(0.116)
R41 32.541 0.349 1 4 0.224(0.153)
R42 34.316 5.886 0 5 0.163(0.120)
R43 34.530 5.742 0 3 0.220(0.134)
R44 34.917 −0.059 3 4 0.325(0.139)
R45 36.549 6.027 3 3 0.183(0.118)
R46 36.627 0.197 3 4 0.202(0.139)
R47 36.812 5.648 0 3 0.155(0.074)
R48 37.079 6.103 0 4 0.171(0.134)
R49 37.233 0.270 0 3 0.241(0.165)
R50 37.698 3.499 1 6 0.477(0.146)

TABLE 2. (Continued on next page)

line up from the Re axis, shown in red online) as it was first found at Re = 60
and it bears three black dots marked at Re = 60, 80 and 100 as T3 was extracted
from the DNSs at all three Re. This type of analysis can indicate the bifurcation
structure, e.g. T3 clearly bifurcates off a recurrent flow found at Re = 40, but is very
time-consuming to pursue through to completion as branches can become difficult to
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UPO Frequency c T −s −m N
∑N

j=1Re(λj)(max Re(λj))

R51 39.368 6.070 0 5 0.192(0.098)
R52 39.619 0.380 0 5 0.242(0.067)
R53 41.400 5.806 0 4 0.176(0.081)
R54 49.645 6.054 3 4 0.160(0.065)
R55 53.073 6.031 0 4 0.189(0.105)

TABLE 2. All of the invariant sets found directly from turbulent DNS data (from series
A above the separating blank line and from series B below). ‘Frequency’ is the number
of times the solution was extracted (Series A runs). There is one steady Equilibrium, c is
the phase speed of the Travelling waves found, T is the Period of periodic and Relative
periodic orbits which also either have a shift s and/or shift m. Here N is the number
of unstable directions and

∑N
j=1Re(λj) the sum of the real parts of all of the unstable

eigenvalues.

(a) (b) (c)

FIGURE 7. (Colour online) The steady solution E1 (a) and the TWs T1 (b) and T2 (c)
at Re = 40. Vorticity is contoured using 15 contours between −7.2 (dark, shown in red
online) and 12.1 (white); the range is −6.5 6 ω 6 12.1 for E1, −7.2 6 ω 6 7.2 for T1 and
−6.8 6 ω 6 10.4 for T2.

continue and interpret (note the number of open circles in figure 14 which indicate
where the branch continuation procedure stagnated for some reason). This aside, the
overriding impression is one of simple invariant sets proliferating with increasing
Re. Notably, only two recurrent flows found at Re = 40 are also extracted from the
Re = 60 DNSs: E1 (the highest line with a dot at Re = 60, shown in blue online) and
T1. Here E1 seems to lose dynamical importance for yet higher Re but T1 is found for
all four Re studied here.

Figure 15 shows the new TWs found and figures 16–18 show the D–I plots where
now all of the recurrent flows found at the respective Re are marked. Again most
sit in the D–I region where the DNS spends the majority of its time although
as at Re = 40 there are some outliers (e.g. E1 at Re = 60, R8 at Re = 80, and
P4 and R14 at Re = 100). That R14 actually appears outside the footprint of the
DNS p.d.f. at first looks erroneous but is in fact merely an indication that when the
‘turbulence’ approached R14 in phase space, it maintained higher (global) dissipation
and energy input than R14. This can occur when part of the domain resembles R14
while the rest does not and exhibits enhanced dissipation. A good example of this is
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UPO Frequency c T −s −m N
∑N

j=1Re(λj)(max Re(λj))

Re= 60 E1 4 0 14 5.053(0.858)
T1 High 0.0019 0 4 0.139(0.064)
T3 High 0.0124 0 17 3.377(0.684)
T4 1 0.0082 0 3 0.257(0.178)
R7 High 2.472 0.036 0 9 0.911(0.214)
R8 1 1.638 0.022 0 14 2.903(0.681)

R56 16.326 0.588 2 6 0.609(0.139)
R57 17.909 5.802 0 7 0.805(0.169)
R58 20.546 0.659 2 8 0.529(0.168)

Re= 80 T1 High 0.0115 0 6 0.360(0.105)
T3 8 0.0154 0 21 5.588(0.958)
T5 3 0.0831 0 20 4.183(0.658)
R7 10 2.299 0.054 0 13 1.326(0.181)
R8 2 1.705 0.028 0 18 4.318(1.105)
R9 1 2.150 0.032 0 19 3.987(1.026)

R10 1 1.280 0.020 0 20 5.310(0.878)
R11 1 2.443 0.031 0 10 0.704(0.277)
R12 1 2.095 0.034 0 11 3.083(1.004)
R13 1 15.285 0.181 0 8 0.409(0.131)

R59 15.667 0.397 1 11 0.949(0.176)
R60 16.071 0.462 1 11 1.136(0.248)

Re= 100 T1 High 0.0155 0 10 0.646(0.122)
T3 7 0.0179 0 25 6.491(1.042)
T4 5 0.0118 0 3 0.684(0.370)
T5 6 0.0691 0 28 6.238(0.689)
P4 1 1.185 0 16 7.376(1.201)
R7 4 1.971 0.030 0 15 1.933(0.326)
R11 3 2.262 0.001 0 9 0.905(0.385)
R12 1 1.902 0.029 0 14 3.953(1.244)
R14 5 4.526 0.071 0 8 0.428(0.105)
R15 2 1.984 0.122 0 16 3.110(0.556)
R16 2 1.938 0.121 0 6 0.945(0.270)
R17 1 3.827 0.008 0 16 2.894(0.818)
R61 1 1.344 0.090 0 21 4.997(0.476)

TABLE 3. All of the invariant sets found directly from turbulent DNS data (from series A
above the separating blank line and from series B below: none were found at Re = 100
in the series B runs despite the numerical gap between R17 and R61). ‘Frequency’ is the
number of times the solution was extracted. Solutions listed under each Re indicate those
actually extracted at that Re, hence multiple entries. ‘Frequency’ is the number of times
the solution was extracted (series A runs). There is one steady Equilibrium, c is the phase
speed of the Travelling waves found, T is the Period of periodic and Relative periodic
orbits which also either have a shift s and/or shift m. Here N is the number of unstable
directions and

∑N
j=1Re(λj) the sum of the real parts of all of the unstable eigenvalues.

shown in figure 19 which details the turbulent episode which signalled the presence
of P4 (figure 19a) alongside the successfully converged periodic orbit P4 (figure 19b).
Visually, the eye is drawn to the centre of the domain where in both columns an
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0.16

0.14

0.12

0.10

0.08

0.06
0.240.200.160.120.080.04

FIGURE 8. (Colour online) The normalized dissipation D(t)/Dlam versus I/Dlam for a small
collection of the recurrent flows found with the p.d.f. of the DNS turbulence plotted in
the background (11 shades at levels 10α where α = −5,−4.5, . . . ,−0.5, 0). Plotted are E1
(D/Dlam = I/Dlam = 0.102), T1 (0.071), T2 (0.070), P1, P2, R1 − 6, R18, R26 (large orbit,
shown in blue online) and R50 (the even larger orbit, shown in magenta online). The dashed
box is used to show more recurrent structures in figure 13.

0.115
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FIGURE 9. (Colour online) The normalized dissipation D(t)/Dlam verses I/Dlam for the
relative periodic orbit R25 at Re = 40 with the p.d.f. of the DNS turbulence plotted in the
background (11 shades at levels 10α where α = −5,−4.5, . . . ,−0.5, 0). The labels refer to
times along the orbit at which snapshots are shown in figure 10.

isolated vortex is clearly seen rotating in a clockwise fashion. However, the corners are
just as significant in that they also indicate an isolated vortex, yet this is stronger with
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(a) (b) (c) (d)

(e) ( f ) (g) (h)

FIGURE 10. (Colour online) A time sequence of vorticity plots for R25 at Re = 40 at times
(running left to right across the top and then bottom) t = 0, 5, 8, 10, 13, 15, 17, 20 (marked as
dots on figure 9). The period is 20.2 so the flow in the bottom right is nearly the same as the
top left except for shifts in x and y. For all, 15 contours are plotted from −12 to 12.

0.30

0.25

0.20

0.15

0.10

0.05
0.300.250.200.150.100.05

8

9 5

31

0

10
26

37

FIGURE 11. (Colour online) The normalized dissipation D(t)/Dlam versus I/Dlam for the
relative periodic orbit R50 at Re = 40 with the p.d.f. of the DNS turbulence plotted in the
background (11 shades at levels 10α where α = −5,−4.5, . . . ,−0.5, 0). The labels refer to
times along the orbit at which snapshots are shown in figure 12.

higher gradients (and, hence, larger dissipation) for P4 than the DNS signal. Plotting
the two time sequences on a D–I plot shows P4 as a closed loop much higher up the
D= I line than the DNS (not shown).
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(a) (b) (c) (d )

(e) ( f ) (g) (h)

FIGURE 12. (Colour online) A time sequence of vorticity plots for R50 at Re = 40 at times
(running left to right across the top and then bottom) t = 0, 5, 8, 9, 10, 26, 31, 37 (marked
as dots on figure 11). The period is 37.7 so the flow in the bottom right is nearly the
same as the top left except for shifts in x and y. In all plots, 15 contours are plotted
from −12 to 12.

5. Recurrent flows as a turbulent alphabet

Given the sets of recurrent flows extracted at each Re, the question is then
how to use them to predict properties of the turbulence encountered. Periodic orbit
theory advocates a weighted expansion of ‘pseudo-cycles’, sequences of ‘prime cycles’
(Cvitanović et al. 2013), such that

Γ N
prediction :=

N∑
i=1

wiΓi

N∑
i=1

wi

(5.1)

where Γ is any property such as the mean dissipation rate, the mean profile or a p.d.f.
and N is a finite but large number (to be discussed below). The weights wi are not
simply expressed but emerge from a recursive construction and depend on the type of
periodic orbit averaging formula being used. Since the full set of Floquet multipliers
corresponding to each recurrent orbit is very costly to obtain, we use the dynamical-
zeta-function periodic orbit averaging formula which needs only information about the

(typically much smaller number of) unstable Floquet multipliers. If Λ(i)
k := eRe(λ(i)k )Ti is

the modulus of the kth Floquet multiplier of the linearized (Jacobian) operator around
the ith recurrent flow of period Ti (λ(i)k the complex growth rate), then the weight
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FIGURE 13. (Colour online) A sampling of the recurrent structures found at Re = 40 plotted
over the zoom-in box shown in figure 8: (a) P1,P2,R2 and R4; (b) R28,R29 and R38; (c)
R19,R39 and R55; and (d) R40,R48 and R53. In all cases, symbols added to lines are to
assist in their distinction and are placed one time unit apart to indicate speed of flow.

associated with the ith recurrent flow depends on

Λi :=
∏

k,Λ(i)k >1

Λ
(i)
k = exp

∑
k∈Ki

Re(λ(i)k )Ti

 . (5.2)

(see, e.g., Gaspard 1997; Lan 2010, § 20 Cvitanović et al. 2013) where Ki is the set
of k such that Re(λ(i)k ) > 0. For bounded flows (no trajectories escape; see Cvitanović
et al. 2013, § 20.4.1), the zeta-function averaging formula takes the simple form

Γ N
prediction :=

〈Γ 〉
〈T〉 (5.3)

where

〈Γ 〉 :=
′∑
π

(−1)k+1

k∑
i=1

TpiΓpi

Λp1Λp2 · · ·Λpk

(5.4)
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Re

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

20 30 40 50 60 70 80 90 100 110

FIGURE 14. (Colour online) The scaled, time-averaged dissipation Re 〈D/Dlam〉t versus Re
for recurrent flows discovered by the series A runs. Thin lines (shown in blue online) trace
recurrent flows found at Re = 40, thin dashed lines (shown in red online) trace new recurrent
flows found at Re = 60, thick lines (shown in cyan online) those found at Re = 80 and
very thick lines (shown in magenta online) those at Re = 100. The black dots identify the
subset of solutions which were identified by processing the DNS runs at the respective Re as
opposed to just being continued up or down from other Re (e.g. there are six dots at Re = 60
corresponding to E1,T1,T3,T4,R7 and R8: R56–R58 were discovered in the series B runs,
and none of the dashed (red) lines join dots at Re = 40). Open circles indicate limits beyond
which a solution branch could not be continued. The situation is clearly complicated with
solutions seemingly dynamically important at some Re but not at others.

(a) (b) (c)

FIGURE 15. (Colour online) The TWs T3 (a), T4 (b) and T5 (c) at Re = 100. Vorticity is
contoured using 15 contours between −20 (dark, shown in red online) and 15 (white); the
range is −18.9 6 ω 6 8.03 for T3, −11.5 6 ω 6 11.5 for T4 and −13.7 6 ω 6 13.7 for T5.
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R58

R56

R57

R7

FIGURE 16. (Colour online) The normalized dissipation D(t)/Dlam versus I/Dlam for the
recurrent flows found at Re = 60 with the p.d.f. of the DNS turbulence plotted in the
background (11 shades at levels 10α where α = −5,−4.5, . . . ,−0.5, 0). Plotted are E1
(D/Dlam = I/Dlam = 0.091), T1 (0.033), T3 (0.068), T4 (0.034), R7, R8 and R56–R58.
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FIGURE 17. (Colour online) The normalized dissipation D(t)/Dlam versus I/Dlam for the
recurrent flows found at Re = 80 with the p.d.f. of the DNS turbulence plotted in the
background (11 shades at levels 10α where α = −5,−4.5, . . . ,−0.5, 0). Plotted are T1
(D/Dlam = I/Dlam = 0.0196), T3 (0.0514), T5 (0.0435, light dot, shown in yellow online),
R7–R13 and R59–R60.
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FIGURE 18. (Colour online) The normalized dissipation D(t)/Dlam versus I/Dlam for the
recurrent flows found at Re = 100 with the p.d.f. of the DNS turbulence plotted in the
background (11 shades at levels 10α where α = −5,−4.5, . . . ,−0.5, 0). Plotted are T1
(D/Dlam = I/Dlam = 0.0137), T3 (0.0353), T4 (0.0170), T5 (0.0297, light dot, shown in
yellow online), P4, R7, R11, R12, R14–R17 and R61.

and

〈T〉 :=
′∑
π

(−1)k+1

k∑
i=1

Tpi

Λp1Λp2 · · ·Λpk

=
∑
i=1

Ti

Λi
−
∑
i=1

∑
j=i+1

Ti + Tj

ΛiΛj
+
∑
i=1

∑
j=i+1

∑
k=j+1

Ti + Tj + Tk

ΛiΛjΛk
− · · · (5.5)

(see Cvitanović et al. 2013, §20.4.1). Here the subscript pi refers to the pith prime
cycle (here taken to be all of the recurrent flows identified), Γpi is the temporal
average of the quantity Γ over this cycle and

∑′
π represents a sum over all

(k = 1, 2, 3, . . .) non-repeating, ordered combinations of prime cycles making up a
pseudo-cycle (e.g. π= (p1, p2, p3, . . . , pk) represents a pseudo-cycle of prime cycles p1

to pk concatenated to create a total period of
∑k

i Tpi). Very roughly, the geometrical
meaning of a pseudo-cycle is that it is a sequence of shorter periodic orbits that
shadow a longer periodic orbit along the segments p1, p2, . . . , pk with the relative
minus signs ensuring shadowing cancellations.

The truncation parameter N is now a function of which pseudo-cycles are to be
included in the various sums. One strategy is to apply a total period cut-off in
which only pseudo-cycles with

∑k
i=1Tpi 6 Tmax are included in the sum. A more

appropriate choice is one based on stability (Dahlqvist & Russberg 1991; Dahlqvist
1994; Dettmann & Morriss 1997, §20.6; Cvitanović et al. 2013) in which only pseudo-
cycles with

Λp1Λp2 · · ·Λpk 6Λmax (5.6)
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(a) (b)

FIGURE 19. (Colour online) The DNS trajectory (a) synchronized with the subsequently
converged periodic orbit P4 (b) at Re = 100. Time proceeds downwards with snapshots at
t0, t0+ 0.2, t0+ 0.6, t0+ 0.8 and t0+ 1.0 (the period of P4 is 1.185). The vorticity scale ranges
from −26 (dark, shown in red online) to 12 (white).
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are included, where
Λmax :=max

k
Λk. (5.7)

Figure 20 shows how Λi varies across the 47 periodic and relative periodic flows
found at Re = 40 (they have been reordered in this plot by their stability so
Λmax = Λ47 ≈ 108). The last two recurrent flows seem like outliers and there could
be an argument to take Λmax =Λ45 ≈ 105 instead but this makes little difference to the
results reported below.

The predictive formulae which emerge from periodic orbit theory are not
straightforward to understand or their validity easy to assess. For example, why
do TWs or equilibria not contribute? Why in constructing pseudo-cycles is it not
necessary to include repeated traversals of prime cycles (this contribution is actually
included but in a different way)? And how much is lost in working only with the
unstable eigenvalues of a cycle rather than its full spectrum? The theory is derived
under special conditions not necessarily satisfied by the Navier–Stokes equations (e.g.
hyperbolicity) and requires the appropriate convergence and successful truncation of
many singular-looking expressions during its derivation. Given this, it is tempting to
also consider purely heuristic choices of weights based on the same general philosophy
(i.e. an expansion over recurrent flows) as discussed by Zoldi & Greenside (1998) and
Kazantsev (1998, 2001). These authors proposed and tested weights in expression (5.1)
based solely on the unstable eigenvalues associated with the recurrent flow. Zoldi &
Greenside (1998) used the ‘escape-time’ weighting

wi := 1∑
k∈Ki

Re(λ(i)k )
protocol 1 (5.8)

(recall that Ki is the set of k such that Re(λ(i)k ) > 0) which they argue captures how
unstable the recurrent flow is and inversely correlates this with how long the turbulent
trajectory should spend in its vicinity. Kazantsev (1998, 2001) argued that this formula
should be modified to reflect the fact that longer period orbits have a greater ‘presence’
in phase space than shorter period orbits and added the period T (i) to the numerator

wi := Ti∑
k∈Ki

Re(λ(i)k )
protocol 2 (5.9)

Significantly, this protocol suppresses any contribution from equilibria or TWs in
common with periodic orbit theory. Finally we also consider a ‘control’ choice of ‘no
weighting’ so just

wi := 1 protocol 3. (5.10)

In what follows, we compare how periodic orbit theory (in the form of expression
(5.3) and referred to hereafter as ‘POT’) and protocols 1, 2 and 3 perform using the
sets of recurrent flows identified at each Re. The key measures we use to characterize
the two-dimensional turbulence simulated here are p.d.f.s of E(t) and D(t) together
with the profiles ū(y), urms(y) and vrms(y) (the p.d.f. of I(t) was also considered but
adds little information to that provided by the p.d.f. for D(t)).

5.1. Re= 40
The p.d.f.s of E(t)/Elam and D(t)/Dlam at Re = 40 are shown in figure 21 along
with the predictions using periodic orbit theory (5.3) and protocols 1–3 where the
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FIGURE 20. (Colour online) The stabilities Λ of the 47 periodic and relatively periodic
recurrent flows (reordered by stability from table 2) at Re = 40 (filled circles, shown in blue
online). The upper (blue online) dashed line indicates Λmax, the stability of the most unstable
recurrent flow found (the cut-off stability value indicated by the lower (blue online) dashed
line was also tried but produced little discernable difference in the periodic orbit theory
predictions). The periods T of the recurrent flows (filled squares, shown red online) are also
shown to indicate that there is a (expected) positive correlation with stability.
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FIGURE 21. (Colour online) The p.d.f. for E(t)/Elam (a) and D(t)/Dlam (b) from DNS (thick
line, shown in blue online) and predictions using periodic orbit theory (thick line with squares,
shown in magenta online) and weighting protocols 1 (medium line with circular dots, shown
in red online), 2 (thin line, shown in green online) and 3 (black thick dashed line) at Re = 40.
A total of 40 bins were used to calculate the p.d.f.s for the recurrent flows and 100 bins for the
DNS due to its greater range. These choices gave the best balance of resolution with the data
available.

individual p.d.f.s of each recurrent flow are weighted together appropriately to produce
an overall p.d.f. as in (5.1). In the case of D(t)/Dlam all three protocols give very
good predictions of the central peak of the p.d.f. but each fails to capture the clear
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shoulder at higher energies in the DNS albeit at a level of the p.d.f. a factor of
≈30 lower. The POT prediction is noticeably poorer but still captures the p.d.f. peak
reasonably well. There is a similar story for the E(t)/Elam p.d.f. although in this case,
the performance of protocols 1 and 2 seem marginally more effective than (the control)
protocol 3 in capturing the DNS p.d.f. Again, the extremes of the DNS p.d.f. are not
captured reflecting the fact, as commented earlier, that perhaps not enough recurrent
flows with large or small dissipation excursions have been found. (The POT prediction
seems especially sensitive to this.) Given the reduced value of the p.d.f. there, these
are infrequently visited and thus require very long runs to realistically have a chance
to extract them. As already mentioned, what initially looked like long runs of 105 time
units were actually not long enough. As further independent evidence of this, plots
of the mean profiles ū(y) from each ‘long’ run at the same Re (see table 1) showed
noticeable differences between each other and to the expected asymptotic state which
respects all of the symmetries of the system: see figure 22. In particular, the obvious
symmetry that the mean profile should be invariant under π/2 shifts in y was clearly
violated. To ameliorate this, we decided to ‘symmetrize’ the DNS mean profile by
extracting that part (USR(y)) from the signal (ū) which does satisfy all the symmetries
listed in § 2.1. Explicitly

USR(y) := 1
2n

2n−1∑
m=0

S −mUR(S my) with UR := 1
2
[ū(y)+R−1ū(Ry)] (5.11)

(recall n = 4) and similarly for uSR
rms and vSR

rms. This process picks out the following
Fourier coefficients

USR(y) :=
∑
m=0

am sin(4(2m+ 1)y) (uSR
rms, v

SR
rms)=

∑
m=0

(bm, cm) cos(8my)m, (5.12)

from the complete Fourier series for ū, urms and vrms. In particular, the symmetrized
mean profile USR(y) has the leading Fourier modal form of sin 4y, which mimics the
forcing, and a leading correction of sin 12y. Such a profile needs only be plotted over
y ∈ [0,π/4] which is done in figure 23 along with the predictions. This comparison
looks impressive with a0 = 0.232 (cf. expression (5.12)) in the DNS, compared with
0.200 for POT, 0.214 (protocol 1), 0.215 (protocol 2) and 0.219 (protocol 3). For
POT a1 = 1.1 × 10−5 and a2 = −1.54 × 10−7 whereas otherwise a1 = O(10−6) and
a2 = O(10−8) (as way of comparison, the ‘raw’ mean flow ū has a leading non-
symmetrized part given by 0.0280 cos y + 0.0268 sin y, i.e. roughly 10 % smaller than
the symmetrized part: see figure 22). The explanation for why the (symmetrized)
mean profile matches the forcing profile so well is currently unclear to us and it is
tempting to speculate that actually an→ 0 (n > 1) with the period of averaging. Sarris
et al. (2007) study the statistics of three-dimensional Kolmogorov flow for various
computational domains and use two measures to signal whether their statistics have
converged sufficiently over a period of time integration. The first

γ2 := (〈I〉t−〈D〉t)
2

〈D〉2t
(5.13)

(Sarris et al. 2007, equation (22)) assesses the extent to which the energy input into
the flow matches the energy dissipated and is easily calculated from our output data:
γ2 is at most O(10−8) for all our 105 time unit runs. Even with this small value,
the mean profile is far from converged to what is expected (i.e. satisfies all of the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

12
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.122


586 G. J. Chandler and R. R. Kerswell

6

5

4

3

2

1

0

y

–0.2 –0.1 0 0.1 0.2

U

6

5

4

3

2

1

0
–0.2 –0.1 0 0.1 0.2

U

(a) (b)

FIGURE 22. (Colour online) (a) The DNS mean flow (solid line, shown in blue online)
compared with the symmetrized mean flow USR(y) (dashed line, shown in red online) at
Re= 40 from run d (see table 1). (b) DNS means from runs e, f and g (see table 1) at Re= 60
again showing a lack of convergence even after 105 time units.
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FIGURE 23. (Colour online) The symmetrized mean flow USR(y) (left) and symmetrized
uRS

rms(y) (right plot left part) and vRS
rms(y) (right part of right plot) from DNS (thick line, shown

in blue online) and predictions using periodic orbit theory (line with squares, shown in
magenta online), weighting protocol 1 (thick line with dots, shown in red online), 2 (thin line,
shown in green online) and 3 (black thick dashed line) at Re= 40.

symmetries of the problem) which emphasizes how easy it is to unwittingly collect
unconverged statistics.

Figure 23 also shows the equivalent plot for urms and vrms. For urms, b0 = 0.687
for the DNS which clearly differs from all of the predictions: 0.115 (POT), 0.272
(protocol 1), 0.289 (protocol 2) and 0.276 (protocol 3). The comparison for vrms,
however, is much better: c0 = 0.933 for the DNS versus 0.891 (POT), 0.887
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(protocol 1), 0.891 (protocol 2) and 0.879 (protocol 3). One possible reason why the
urms comparison is poor is that urms is calculated in the DNS ‘on the fly’ by subtracting
the current best estimate of the mean ū from the current streamwise velocity (see
(2.12)) rather than using the final mean profile to a posteriori calculate the streamwise
fluctuation field. Given our realization now that the mean profile takes a long time to
converge to its (symmetric) asymptotic state, there is likely to be a significant error
(henceforth we consider only vrms for Re= 60, 80 and 100).

An inescapable conclusion from these comparisons so far is that the ‘control’
protocol 3 of actually ‘no weighting’ performs almost as well as the other stability-
motivated protocols 1 and 2 and better than POT. It is worthwhile at this point
to clarify why. Figure 24 shows how the peak symmetrized mean value, USR(π/8),
varies for each recurrent flow and compares these values with the DNS and the
predictions. From this it is clear that most of the recurrent flows are good predictors
individually and so, however they are mixed together, the result is still reasonably
good. The upper plot in figure 25 indicates how the weights of the recurrent flows
vary for the three different protocols. Again, there is not that much variation over the
majority (although note that wi = 0 for i = 1, 2, 3 in protocol 2 since T (i) = 0) which
presumably reflects the fact that the values of

∑
k∈Ki

Re(λ(i)k ) for the recurrent flows
are all pretty similar. The lower plot of figure 25 shows the effective weights of the
periodic and relative periodic flows which emerge from the POT prediction. These
vary much more dramatically in amplitude than the heuristic formulae (protocols 1 and
2) because Λi rather than logΛi is used in the prediction (see (5.4) and (5.5)). In fact,
the simple choice of weights

wapprox
i := Λ−1

i∑
i

Λ−1
i

(5.14)

is quite a good approximation to the POT weights which would reflect only counting
prime cycles rather than all the pseudo-cycles made up of multiple prime cycles
(note the similarity to those of protocols 1 and 2 if

∑
k∈Ki

Re(λ(i)k ) is replaced by

Λi = exp(
∑

k∈Ki
Re(λ(i)k )Ti) up to factors of Ti). Figure 25 also indicates that one prime

cycle dominates the prediction: R19 (i = 11). This is a simple relative periodic orbit
(see figure 13) which does not explore much of the turbulent attractor and results in
the lumpy form of the POT p.d.f. prediction. This highlights the importance of not
only identifying lots of recurrent flows but also many which have similar stability
characteristics (i.e. Λ).

5.2. Re= 60, 80 and 100
The smaller number of recurrent flows extracted for Re > 40 means that it is harder
to generate reasonably smooth predictions for the p.d.f.s of the energy and dissipation.
While the same number of 100 bins as at Re = 40 can be used to generate a smooth
DNS p.d.f., only 60 bins could be used to sum the p.d.f.s of the recurrent flows.
This number produced the best compromise of granularity across the range while
ensuring that there is enough data in each bin for (reasonable) smoothness at least for
Re = 60 and 80 (the sparse coverage of the dissipation range by the recurrent flows at
Re = 100, see figure 18, prevented any useful plot from being generated). Figure 26
shows the result of this procedure for the dissipation p.d.f. at Re = 60 and 80 (plots
not shown for the energy are similar). Here, protocol 2 offers the best partial fit both
at Re = 60 and 80 and POT the worst (note both are only built upon five recurrent
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FIGURE 24. (Colour online) The peak symmetrized mean URS(π/8) for the DNS (thick
horizontal line, shown in blue online), predictions using periodic orbit theory (line with
squares, shown in magenta online), protocol 1 (dotted line, shown in red online), protocol 2
(thin line, shown in green online), and protocol 3 (dashed black line) and for each recurrent
flow (crosses, shown in blue online) listed in the order given in table 2 at Re= 40 (so i= 20 is
R25 and i= 45 is R50 marked with black dotted lines).

flows with Ti 6= 0). It is clear that much of the dissipation range extends higher than
any of the recurrent flows found at both Re (also clear from figures 16 and 17) and
that all of the ‘predictions’ are of limited quality. It is also worth remarking that
the predictions are now more distinguishable at these higher Re which can be traced
back to the separating stability characteristics of the recurrent flows. For example, E1
has

∑
Re(λj) = 5.053 whereas this is just 0.139 for T1. Again the POT prediction

struggles to smooth across the set of recurrent flows found because of the large
differences in the sizes of the weights.

Figure 27 shows the symmetrized mean profile as calculated from the DNS and
predicted by POT and the three protocols at Re = 60 and 80. Again, somewhat
paradoxically, the ‘control’ protocol does the best job in both cases. At Re = 60 a0 =
0.2277, 0.2298 and 0.2296 (cf. expression (5.12)) across the three series A DNS runs
listed in table 1 (with again ≈10 % non-symmetrized part in all cases). In comparison,
a0 = 0.182 for POT, a0 = 0.148 (protocol 1), 0.175 (protocol 2) and 0.200 (protocol
3). For vrms, c0 = 1.099 in the DNS run to be compared with the predictions of 1.018
(POT), 1.064 (protocol 1), 1.057 (protocol 2) and 1.055 (protocol 3). At Re = 80,
a0 = 0.2009, 0.2016 and 0.1998 across the three series A DNS runs listed in table 1
with predictions a0 = 0.1323 (POT), a0 = 0.1416 (protocol 1), 0.1403 (protocol 2) and
0.1944 (protocol 3).

Finally, we note that at Re = 100, a0 = 0.1777, 0.1782 and 0.1783 across the three
series A DNS runs listed in table 1 (with now ≈20 % non-symmetrized part in all
cases).

6. Discussion

In this study, we have considered two-dimensional turbulence on the torus [0, 2π]2
forced monochromatically in one direction (Kolmogorov flow). By looking for near
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FIGURE 25. (Colour online) (a) The weights for the three protocols (1, line with dots, shown
in red online; 2, full line, shown in green online; 3, black horizontal line) plotted for all of
the recurrent structures at Re = 40. Again the vertical (black) dotted lines indicate R25 and
R50. (b) The (implicit) weights wi which emerge from the periodic orbit theory (thick line
with squares, shown in magenta online) for the recurrent flows as ordered in table 2. The thin
black line with dots indicates the weights Λ−1

i /
∑

iΛ
−1
i which are strongly correlated with the

weights wi from periodic orbit theory (note the log scale).

recurrences of the flow in long DNS runs, sets of exactly closed flow solutions
‘embedded’ in this turbulence have been extracted at different forcing amplitudes
(Re). We have then tried to use these sets of recurrent flows to reconstruct key
statistics of the turbulence motivated by periodic orbit theory in low-dimensional chaos.
The approach has been reasonably successful at Re = 40 (see figures 21 and 23),
where 50 recurrent flows were found with the majority buried in the part of phase
space most populated by the turbulence. In contrast, at Re = 60, 80 and 100, the
limited size of the recurrent flow sets found has made the approach largely impotent.
Even at Re = 40, the success achieved seems more reliant on just extracting lots of
similar-looking recurrent flows buried in the most popular part of phase space for
the turbulence than on any sophisticated choice of weighting coefficients. Indeed,
one is reminded of Kawahara & Kida’s (2001) conclusion that one judiciously
chosen periodic orbit is ‘enough’ to be a valuable proxy of the turbulence. We
can sympathize with this viewpoint but only if the comparison with the turbulence
statistics is not too demanding. The key issue, of course, plaguing this investigation
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FIGURE 26. (Colour online) The p.d.f. for D(t)/Dlam from DNS (blue thick line, cyan and
magenta lines) and predictions using periodic orbit theory (thick line with squares, shown in
magenta online), weighting protocol 1 (thick line with dots, shown in red online), 2 (thin line
with triangles, shown in green online) and 3 (black thick dashed with squares) at Re = 60 (a)
and Re = 80 (b). A total of 60 bins were used to calculate the p.d.f.s for the recurrent flows
and 100 bins for the DNS due to its greater range. These choices gave the best balance of
resolution with the data available.
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FIGURE 27. (Colour online) The symmetrized mean flow USR(y) from DNS (thick line,
shown in blue online) and predictions using periodic orbit theory (line with squares, shown in
magenta online), weighting protocol 1 (thick line with dots, shown in red online), 2 (thin line,
shown in green online) and 3 (black thick dashed line) for Re= 60 (a) and Re= 80 (b).

is the paucity of recurrent flows found from the finite DNS data generated. This is
perhaps the main message to come out of this work: periodic orbit theory for fluid
turbulence is a promising approach but only if enough (say, O(100)) recurrent flows
of similar stability characteristics are gathered which requires very long turbulence
data sequences. A time sequence of 105 time units seems marginally adequate for
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Re = 40 but is maybe two orders of magnitude too short for Re = 60 and beyond.
Unfortunately, without these large sets, it has been impossible to see periodic orbit
theory, which has some rationale basis, outperform the other purely heuristic protocols
tested which have none.

Operationally, the work described here has been time-consuming both
computationally in generating near-recurrence episodes and attempting to converge
them, as well as ‘manually’ because of all of the careful processing (e.g. calculating
their stability) and archiving of the recurrent flows needed (e.g. does a new
convergence from a DNS guess represent a new recurrent flow or a repeat of a
previously extracted flow?). Fortunately, there is no reason why this process could
not be automated with the objective being to ‘automatically’ generate a basis set
of recurrent flows for each Re. Indeed, one could hope that such a set at given
Re = Re1 could be used to predict the turbulent statistics at another Re = Re2. This
would require each recurrent flow at Re1 being continued to Re2 and the fresh
weights for an expansion being generated from the (new) stability information for
each recurrent flow: again, painstaking work, but readily automated. One fly in the
ointment is the possibility of bifurcations in the interval [Re1,Re2], particularly saddle
node bifurcations where two recurrent flows at Re1 merge and annihilate before Re
reaches Re2. Working with large enough recurrent flow sets would presumably smooth
over this effect somewhat but will not eliminate it entirely.

Leaving aside these issues for a moment, it is worth re-emphasizing that any
recurrent flow extracted from DNS data is a simple invariant solution ‘buried’ in
the turbulence. As such, each represents a sustained sequence of dynamical processes
which contributes to, if not underpins, the turbulence itself. Since they are closed
in time, they can be analysed relatively easily in whatever detail is required to
understand key dynamical relationships in the flow. This seems a very promising
byproduct of the analysis whether one believes a periodic-orbit-theory-type expansion
of turbulence is possible or not (pursuing this has not been the focus here due to the
two-dimensionality of the flow).

Finally, the ever-improving computational resources available now have only
recently made this type of study possible. Even with these, we have underestimated
the demands of data collection in two-dimensional turbulence over the small torus
[0, 2π]2. Major challenges ahead include treating large aspect ratio domains (can
we find localized recurrent flows?) and handling fully three-dimensional flows (with
automated machinery, will the approach be practical?). There is plenty to explore.
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Appendix.
The Newton–GMRES–hook-step algorithm described in the main text is easily

extended to continue solutions over parameter space such as Re or the domain
geometry (e.g. α). We briefly describe this extension for solution branch continuation
in Re which was used to generate figure 14. A simple strategy is to use the solution
X(Re) as an initial guess in the Newton–GMRES–hook-step algorithm with the hope
of converging to X(Re + δRe). This should work provided that δRe is ‘small enough’
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but is ill-equipped to negotiate turning points in the solution branch. A standard, more
sophisticated approach is arclength continuation which uses the branch arclength as a
natural, monotonically increasing, parametrization of the solution branch. The key idea
is to take small controllable steps in the arclength rather than Re. As a result the state
vector needs to be extended as follows

X =


Ω

s
T
Re

 (A 1)

and an extra equation

∂X
∂r
·
∂X
∂r
= 1 (A 2)

added to determine Re. Previous converged solutions X(r−1) and X(r0) indicate a
reasonable step size in r, δr = r0 − r−1 =

√
(X(r0)− X(r−1))

2 and allow a prediction
to be made for the next solution

X(r1)≈ X(r0)+ δr ∂X
∂r

∣∣∣∣
r0

. (A 3)

Given X(r0) and δr, the extra constraint for the Newton method comes from
approximating (A 2) as follows

N (Xn) := ∂X
∂r

∣∣∣∣
r0

· (Xn − X(r0))− δr ≈ 0 (A 4)

for the nth iterate to estimate X(r1). Writing δXn := Xn+1 − Xn, then setting

N (Xn+1)= δXn.
∂X
∂r

∣∣∣∣
r0

+N (Xn)= 0 (A 5)

puts the required extra constraint on the iterative improvement δXn. The Newton
problem (3.16) then becomes



. . .
...

...
...

∂Ω̂s

∂Ω0
− I TxΩ̂s

∂Ω̂s

∂T

∂Ω̂s

∂Re
. . .

...
...

...

· · · (TxΩ0)
T · · · 0 0 0

· · · ∂Ω0

∂t

T

· · · 0 0 0

· · · ∂X0
∂r

T · · ·





...

δΩ

...

δs

δT

δRe



=−



...

F(Ω0, s0,T0;m)
...

0

0

N (X0)



. (A 6)
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Depending on how easily convergence is obtained, δr can be increased or decreased
if the algorithm shows signs of divergence. A second-order approach to estimating
∂X/∂r was actually adopted for the predictive step but the first-order estimate proved
sufficient for the constraint present in (A 6).
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CVITANOVIĆ, P. 1992 Periodic orbit theory in classical and quantum mechanics. Chaos 2, 1.
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CVITANOVIĆ, P. & GIBSON, J. F. 2010 Geometry of turbulence in wall-bounded shear flows:
periodic orbits. Phys. Scr. 142, 014007.

DAHLQVIST, P. 1994 Determination of resonance spectra for bound cahotic systems. J. Phys. A:
Math. Gen. 27, 763–785.

DAHLQVIST, P. & RUSSBERG, G. 1991 Periodic orbit quantization of bound chaotic systems.
J. Phys. A 24, 4763–4778.

DENNIS, J. E. & SCHNABEL, R. B. 1996 Numerical Methods for Unconstrained Optimisation and
Nonlinear equations. In SIAM Classics. SIAM.

DETTMANN, C. P. & MORRISS, G. P. 1997 Stability ordering of cycle expansions. Phys. Rev. Lett.
78, 4201–4204.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

12
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://ChaosBook.org/~predrag/trace.pdf
http://ChaosBook.org/~predrag/trace.pdf
http://ChaosBook.org/~predrag/trace.pdf
http://ChaosBook.org/~predrag/trace.pdf
http://ChaosBook.org/~predrag/trace.pdf
http://ChaosBook.org/~predrag/trace.pdf
http://ChaosBook.org/~predrag/trace.pdf
http://ChaosBook.org/~predrag/trace.pdf
http://ChaosBook.org/~predrag/trace.pdf
http://ChaosBook.org/~predrag/trace.pdf
http://ChaosBook.org/~predrag/trace.pdf
http://ChaosBook.org/~predrag/trace.pdf
http://ChaosBook.org/~predrag/trace.pdf
http://ChaosBook.org/~predrag/trace.pdf
http://ChaosBook.org/~predrag/trace.pdf
http://ChaosBook.org/~predrag/trace.pdf
http://ChaosBook.org/~predrag/trace.pdf
http://ChaosBook.org/~predrag/trace.pdf
http://ChaosBook.org/~predrag/trace.pdf
http://ChaosBook.org/~predrag/trace.pdf
http://ChaosBook.org/~predrag/trace.pdf
http://ChaosBook.org/~predrag/trace.pdf
http://ChaosBook.org/~predrag/trace.pdf
http://ChaosBook.org/~predrag/trace.pdf
http://ChaosBook.org/~predrag/trace.pdf
http://ChaosBook.org/~predrag/trace.pdf
http://ChaosBook.org/~predrag/trace.pdf
http://ChaosBook.org/~predrag/trace.pdf
http://ChaosBook.org/~predrag/trace.pdf
http://ChaosBook.org/~predrag/trace.pdf
http://ChaosBook.org/~predrag/trace.pdf
http://ChaosBook.org/~predrag/trace.pdf
http://chaosbook.org
http://chaosbook.org
http://chaosbook.org
http://chaosbook.org
http://chaosbook.org
http://chaosbook.org
http://chaosbook.org
http://chaosbook.org
http://chaosbook.org
http://chaosbook.org
http://chaosbook.org
http://chaosbook.org
http://chaosbook.org
http://chaosbook.org
http://chaosbook.org
http://chaosbook.org
http://chaosbook.org
http://chaosbook.org
http://chaosbook.org
http://chaosbook.org
https://doi.org/10.1017/jfm.2013.122


594 G. J. Chandler and R. R. Kerswell

DUGUET, Y., PRINGLE, C. C. T. & KERSWELL, R. R. 2008 Relative periodic orbits in transitional
pipe flow. Phys. Fluids 20, 114102.

ECKHARDT, B., FAISST, H., SCHMIEGEL, A. & SCHUMACHER, J. 2002 Turbulence transition in
shear flows. In Advances in Turbulence IX: Proceedings 9th European Turbulence Conference
(Southampton) (ed. I. P. Castro et al.), p. 701, CISME.

ECKHARDT, B., SCHNEIDER, T. M., HOF, B. & WESTERWEEL, J. 2007 Turbulence transition in
pipe flow. Annu. Rev. Fluid Mech. 39, 447–468.

ECKMANN, P. & RUELLE, D. 1985 Ergodic theory of chaotic systems. Rev. Mod. Phys. 57,
617–656.

FAZENDEIRO, L., BOGHOSIAN, B. M., COVENEY, P. V. & LÄTT, J. 2010 Unstable periodic orbits
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