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We study the effect of turbulence on collisions between a finite-size bubble and small
inertial particles based on interface-resolved simulations. Our results show that the
interaction with the flow field around the bubble remains the dominant effect. Nonlinear
dependencies in this process can enhance the turbulent collision rate by up to 100 %
compared to quiescent flow. Fluctuations in the bubble slip velocity during the interaction
with the particle additionally increase the collision rate. We present a frozen-turbulence
model that captures the relevant effects providing a physically consistent framework to
model collisions of small inertial particles with finite-sized objects in turbulence.
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1. Introduction
Bubble–particle collisions are central to the flotation process, which is widely used (e.g. in
the mining industry) to separate minerals through their attachment to rising bubbles.
This intricate process involves a wide range of colloid science disciplines (Derjaguin
& Dukhin 1993; Nguyen & Schulze 2003; Kostoglou, Karapantsios & Oikonomidou
2020b), with significant complexity stemming from the interplay of hydrodynamics and
physicochemical interactions. The hydrodynamic bubble–particle interaction remains of
paramount importance for optimisation, as it is the rate-determining step that also sets the
conditions for other interactions.

Most of the work on bubble–particle collisions draws on the large body of work
on particle–particle collisions (Pumir & Wilkinson 2016), in particular the seminal
work of Saffman & Turner (1956) for the tracer limit and the model proposed by
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Abrahamson (1975) for the kinetic gas limit at large particle inertia. Such models predict
the collision rate without considering the hydrodynamic interaction between the collision
partners, but must take into account effects such as the segregation of bubbles and particles
in a turbulent flow (Chan, Ng & Krug 2023). However, the significant size difference
between the larger bubble and the mineral particles in a typical flotation process makes
it important to account for the flow distortion around the bubble. This can cause an
encountering particle to be deflected, reducing the actual number of collisions. For a
bubble rising in quiescent flow, this process is deterministic and has been studied widely
(Schulze 1989; Nguyen & Schulze 2003; Sarrot, Guiraud & Legendre 2005; Huang,
Legendre & Guiraud 2012). In this case, the effect of the hydrodynamic interaction can
be captured in terms of a collision efficiency, which relates the rate of actual collisions to
the encounter rate. The lack of a suitable concept to account for turbulence in this context
is widely acknowledged in the literature (Pyke, Fornasiero & Ralston 2003; Nguyen et al.
2016; Hajisharifi, Marchioli & Soldati 2021). Existing approaches are flawed because they
combine turbulent encounter rates with collision efficiencies applicable to pure gravita-
tional settling (Bloom & Heindel 2002; Koh & Schwarz 2007; Liu & Schwarz 2009; Yoon
et al. 2016). Others use a Reynolds-type decomposition, which is problematic given the
strongly nonlinear dependence of the problem on the flow velocity. Another conceptual
inconsistency is that the encounter rate is based on the bubble–particle relative velocity,
whereas the collision efficiency is determined by the bubble slip relative to the fluid.
Some of these deficiencies are overcome by the collision model presented in Kostoglou,
Karapantsios & Evgenidis (2020a), but this, however, remains limited to tracer particles.

The core problem is to determine the collision rate of small inertial particles with a
finite-size object in a turbulent flow. This is of general relevance to many other applications
beyond flotation, such as the collision of cloud droplets (Falkovich, Fouxon & Stepanov
2002; Poydenot & Andreotti 2024), the accretion of planetesimals by the collection of dust
particles (Guillot, Ida & Ormel 2014; Homann et al. 2016), depth filtration (May & Clifford
1967; Cushing & Lawler 1998), or bacterial degradation of marine snow (Arguedas-
Leiva et al. 2022). However, the scarcity of data, due to the difficulties in performing
the necessary experiments and interface-resolved simulations, has hindered the progress
of theoretical research in this area. In this paper, we present a combined numerical and
theoretical study of the effects of turbulence on bubble–particle collisions using direct
numerical simulations. We adopt homogeneous and isotropic turbulence (HIT), in which
we measure how turbulent fluctuation modifies the bubble–particle collision rate along the
bubble-rising path.

2. Statistical model
The collision frequency K of particles with a bubble is determined by K = Γ n p, where n p

is the particle number density, and the proportionality coefficient Γ (m3 s−1) is commonly
referred to as the collision kernel and is determined by the flow (Pumir & Wilkinson
2016). In quiescent flow, the collisions between a spherical bubble of radius rb rising
at constant velocity Ub with small inertial solid particles are deterministic. The particle
grazing trajectory Ψc determines a ‘collision tube’, where all the particles contained inside
collide with the bubble, as illustrated in figure 1(a). In this case, the collision frequency is
determined by the collision number flux, i.e. K = Qcn p. The collision number flux Qc can
be determined by the cross-sectional area of radius rc limited by the grazing trajectories
upstream far from the bubble: Qc = πr2

c Ub. Therefore, the collision kernel in quiescent
flow can be expressed as Γq = Qc = πr2

b Ub Ec, where the collision efficiency Ec = r2
c /r2

b
measures the ratio of collided particle number to the total encountering particle number.
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Figure 1. (a) Sketch of the grazing trajectory (red dashed line) in quiescent flow. The shaded region indicates
the collision tube where all particles collide on the bubble. (b) Sketch of the bubble–particle collision model
under temporary bubble slip velocity U ′

b. (c) Mean flow streamlines around the bubble for the case of imposed
velocity bubble (solid) and quiescent flow (dashed lines) at Reb = 120. (d) Trajectories of colliding particles
(rp/rb = 0.05, Stp = 0.04) for the case of imposed velocity bubble compared to the corresponding grazing
trajectories (red lines) in quiescent flow at the same Reb = 120. (e) Snapshot of the bubble–particle collision
process in turbulence for the imposed-velocity bubble with flow from left to right in the bubble frame of
reference. Incoming particles that end up colliding with the bubble are marked in red.

Notice here that Ec depends on the bubble Reynolds number Reb = 2rbUb/ν, the ratio
of the particle radius rp and rb, and the Stokes number Stp = τp/τ f , with τp the particle
response time, and τ f = 2rb/Ub the time scale of the bubble–particle interaction (Dai,
Fornasiero & Ralston 2000; Sarrot et al. 2005; Huang et al. 2012).

To provide an understanding of the relevant physical mechanisms of bubble–particle
collision in turbulence, we propose a statistical model. We start from the assumption
that the flow field in the vicinity of the bubble is approximately stationary and uniform
during the bubble–particle interaction. Conceptually, this implies that the temporal scale
τ f is (much) shorter than the correlation time scale of flow fluctuations (O(τη)), but it
remains to be tested from the data under what conditions exactly this assumption is valid in
practice. Additionally, we consider the flow correlation length scale to be comparable to or
larger than the bubble size. Within this ‘frozen turbulence’ assumption, the instantaneous
bubble–particle collision process in turbulence can be related back to that observed
in quiescent flow. Therefore, the equivalent steady flow problem is characterised by
the magnitude of the instantaneous bubble slip velocity U ′

b with corresponding values
Re′

b = 2rbU ′
b/ν and St ′p = τp/(2rb/U ′

b), as shown in figure 1(b). The entire bubble–
particle collision process in a turbulent flow can then be viewed as a superposition of
collision events in quiescent flow with varying parameters Re′

b and St ′p. In the framework,
the collision number Nc|�τ during a short period �τ (O(τη)) in turbulent flow, with
mean particle number density n p, is given by Nc|�τ = πr2

b Ec(Re′
b, St ′p)U ′

bn′
p �τ , where

n′
p is the instantaneous encountering particle number density, which depends on Re′

b
and St ′p. Importantly, Ec(Re′

b, St ′p) denotes the collision efficiency in quiescent flow
for varying flow parameters, which is deterministic and can be parametrised. Then the
total expected collision number Nc during a sufficiently long time period T = ∑

�τ is
given by

Nc = πr2
b T

∫
Ec(Re′

b, St ′p) U ′
b f (U ′

b)n′
p dU ′

b. (2.1)
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Simulation cases Reλ η/�x τη/�t L/η TL/τη λ/η Reb Ti

Imposed-velocity bubble 32 8 780 27.3 9.1 11.6 120 0.25
Freely rising bubble 32 8 780 27.3 9.1 11.6 110 0.27
Freely rising bubble 64 4 780 67.9 16.7 16.2 150 0.53

Table 1. Parameter of the numerical simulations and relevant turbulence scales: Reλ is the Taylor–Reynolds
number; η = (ν3/ε)1/4 is the Kolmogorov dissipation length scale in grid space units �x ; τη is the Kolmogorov
time scale in time-step units �t ; L = u′3/ε is the integral scale; TL = L/u′ is the large-eddy turnover time;
λ= u′√15ν/ε is the Taylor micro-scale; Reb = 2rbUb/ν is the bubble Reynolds number based on the mean
rising velocity Ub; Ti = u′/Ub is the turbulent intensity.

Based on this, the collision kernel can be derived as

Γ = K

n p
= πr2

b

n p

∫
Ec(Re′

b, St ′p) U ′
b f (U ′

b) n′
p dU ′

b. (2.2)

Note that collision efficiency has been studied extensively, and the general dependence of
Ec on the bubble Reynolds number and particle Stokes number has been established in
the literature (Schulze 1989; Sarrot, Guiraud & Legendre 2005; Huang et al. 2012). The
collision kernel is thus determined by the probability density function (PDF) f (U ′

b) of the
bubble slip velocity U ′

b, the modelling of which remains an open question. Furthermore,
we note that the collision kernel will also be affected by the preferential sampling for
particles with large Stp, as this alters the incoming particle number density.

3. Numerical methods and simulations
We perform interface-resolved direct numerical simulations (DNS) to test this model. The
turbulent flow is governed by the incompressible Navier–Stokes equations, which read

∂u
∂t

+ u · ∇u = − 1
ρ f

∇ p + ν ∇2u + f + f b, (3.1)

∇ · u = 0, (3.2)

where u is the fluid velocity, p denotes the pressure, and the parameters are the kinematic
viscosity ν and the reference liquid density ρ f . The vector f denotes an external random
large-scale volume force, which is statistically homogeneous and isotropic, with constant-
in-time global energy input (Perlekar et al. 2012). This force is used to generate and
maintain the turbulent flow. The bubble-free turbulent flow intensity is characterised by the
Reynolds number based on the Taylor microscale, Reλ = √

15u′/(νε), where u′ denotes
the root mean square velocity of the turbulence, and ε is the mean energy dissipation rate.
The vector f b accounts for the bubble–fluid two-way coupling.

In the practice of flotation, commonly a large amount of surfactants is present in the
liquid. Therefore, it is reasonable to assume that the bubbles with a typical Reynolds
number below 200 are fully contaminated and approximately spherical, resulting in a
boundary condition that is nearly no-slip (Nguyen & Schulze 2003; Huang et al. 2012).
The Weber number W e = 2rbρ f U 2

b /χ based on the surface tension χ of water and the
bubble rise velocity is O(0.1) for our simulations, and even lower based on turbulent
fluctuations. Therefore, bubble deformations remain negligible even if surface tension
is lowered by the presence of surfactants. Under these conditions, the bubble behaves
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similarly to buoyant spheres. In this case, the translation and rotation of the bubble are
governed by the Newton–Euler equations

mb
dUb

dt
=

∮
Sb

σ · n dS + Vb(ρb − ρ f )g, (3.3)

dIΩ

dt
=

∮
Sb

(x − xb) × (σ · n) dS, (3.4)

where Ub(t) = dxb/dt and Ω(t), respectively, are the bubble velocity and angular velocity
vectors at position xb(t). The bubble mass is given by mb = ρbVb (where ρb is the bubble
density, and Vb is the volume), and I is the moment of inertia tensor. Here, σ = −p I +
ρν(∇u + ∇uT) is the fluid stress tensor, x − xb is the position vector relative to the bubble
centre, and n is the outward-pointing normal to the bubble surface Sb. This term σ is
solved by the immersed boundary method (IBM) to account for the two-way coupling
between the flow and the bubble. In the last decades, the IBM has been used widely for
studying the multi-phase flow (Peskin 2002; Mittal & Iaccarino 2005; Uhlmann 2005). In
the IBM, the Euler grids of the fluid are fixed, and the surface of the bubble is represented
by Lagrangian nodes that move with the bubble motion. To avoid the formation of a mean
flow due to the buoyancy driving exerted by the bubble, we compensate the average force
applied from the bubble to the liquid to attain a statistically stationary state (Höfler &
Schwarzer 2000; Chouippe & Uhlmann 2015). To achieve this, the spatial average of the
IBM volume force term needs to be subtracted. More explicitly, we compute the average
at each simulation time step:

〈 f ibm〉Ω(t) = 1
‖Ω‖

∫
Ω

f ibm(x, t) dx, (3.5)

where Ω denotes the entire computational domain, 〈· · · 〉Ω indicates the spatial average
over the entire Ω region, and ‖Ω‖ is the volume of the Ω region. Then the bubble-related
contribution to the volume force, f b, is obtained from

f b(x, t) = f ibm(x, t) − 〈 f ibm〉Ω(t). (3.6)

We adopt an implicit method (Tschisgale, Kempe & Fröhlich 2017) to solve the bubble
dynamics as the conventional explicit method is numerically unstable when the bubble
is light (Uhlmann 2005). To avoid the build-up of momentum in the triply periodic
domain over time, the force applied by the bubble on the liquid is compensated to attain a
statistically stationary state (Chouippe & Uhlmann 2015).

We use a code based on the lattice Boltzmann method to solve the Navier–Stokes
equations (Calzavarini 2019; Jiang et al. 2022). Two sets of simulations are carried
out: (1) a simplified ideal configuration where a constant bubble velocity is imposed,
and (2) simulations with a freely rising bubble, where the bubble–fluid density ratio is
ρb/ρ f = 10−3. Matching practically relevant conditions (Wang et al. 2022), we consider
a moderately turbulent flow (Reλ = 32 and 64) and a bubble Reynolds number Reb ∼
O(100). Detailed parameters of the simulations are summarised in table 1. There are
two computational conditions that should be satisfied in the simulations. First, the wake
of the fully contaminated bubble presents a steady axisymmetric vortex at such a high
Reb in a quiescent flow (Johnson & Patel 1999; Sarrot et al. 2005). As the flow domain
is periodic, the incoming flow ahead of the bubble might be disturbed by the remnants
of this bubble wake. To avoid this issue, the flow domain in the bubble rising direction
should be sufficiently large. The whole flow domain adopted in this work is rectangular,
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with uniform grid sizes Nx × Ny × Nz = 3072 × 512 × 512, where the bubble rises in
the x-direction. We found that using this domain length was sufficient to avoid wake
effect. Second, the number of lattices within the boundary layer of the bubble should
be sufficient. The approximate boundary layer thickness is estimated as δ = 1.13/Re1/2

b
(Johnson & Patel 1999), where δ denotes the boundary layer thickness normalised by 2rb.
Additionally, the minimum particle size (rp/rb = 0.025) should be larger than the lattice
unit to ensure the accuracy of interpolation when the particle is close to the bubble. To
this end, the bubble diameter is resolved by 80 grids to make sure that the boundary layer
is well resolved, as well as the minimum distance of the point-like particle to the bubble
being larger than one grid unit. The ratio of turbulent dissipation time scale τη to τ f in
our simulations is close to 1.2. We note that the typical auto-correlation time scale of the
turbulent flow is longer than τη, which implies the validity of the assumption of frozen
turbulence in our model. In the flotation process, the mineral particles are significantly
smaller than the turbulent dissipation scale η. We represent these as one-way coupled
point particles, considering the non-Stokesian drag force and the added mass force. We
do not account for potential alterations to the drag force when a particle is close to the
bubble surface. The particle response time τp = r2

p/(3βν) includes the density coefficient
β = 3ρ f /(ρ f + 2ρp), where ρp denote the density of the particle. The particle dynamics
is driven by the instantaneous turbulent flow. The collision frequency K = Nc/T , and
thus the collision kernel Γ = K/n p, is measured by counting the number of particles
(Nc) that collide with the bubble over a long time period T . A collision is detected when
the distance between the particle and bubble is smaller than rp + rb. Additionally, we
conduct simulations of bubble–particle collisions in a quiescent flow at Reb ranging from
80 to 210 to obtain the dependence of Ec on Reb and Stp. In these simulations, a constant-
velocity inflow is applied at the inlet, while a homogeneous Neumann boundary condition
is imposed at the outlet. The bubble is fixed at the centre of the domain, and the spatial
resolution is kept the same as for the turbulent flow case and the turbulence forcing term
f is switched off.

4. Results
We start from the discussion of the bubble with an imposed velocity. In figure 1(c),
we demonstrate that the impact of turbulent fluctuations on the mean streamlines is
insignificant for the present parameters. In particular, in the incoming flow, which
determines the collision rate, the differences are very small, lending support to our
modelling approach. More noticeable differences in the wake region are a consequence
of turbulence disrupting the symmetric recirculation pattern behind the bubble. However,
the influence of turbulence on the collision process is distinct, as becomes evident from
the supplementary movie and figure 1(d), where trajectories of colliding particles are
shown. These trajectories originate from a cone-shaped region that is notably larger
than the corresponding collision radius rc, based on the grazing trajectory in quiescent
flow. Correspondingly, the collision angle relative to the direction of the imposed bubble
velocity is found to be wider in the turbulent flow (see Appendix A). Nevertheless, the
collision trajectories appear to follow straight paths towards the bubble, and the colliding
particle stream exhibits a band-like pattern, as shown in figure 1(e), both of which are
consistent with our modelling assumptions.

For quiescent flow, the dependence of Ec, normalised by the result for tracer particles
Ec(Reb, 0), on Reb and Stp is presented in figure 2(a). For very small Stp, the inertial
effect is negligible and the particles follow the flow streamlines, so that interception is
the dominant factor determining the number of collisions in this range (Dai et al. 2000).

1006 A19-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

44
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.44


Journal of Fluid Mechanics

0 1 2

1

2

10−2 10−1

10−2 10−2

10−2

10−1

100

100100

100

101

102

100 101

1.0

1.5

2.0

(a) (b)

(c) (d)

Reb = 80

rp /rb =

Reλ = 32

Reb = 120

Ti = 0.25

0.025
0.05
0.1
0.025
0.05
0.1

Model

DNS

(1 + rp /rb)2

Reb = 120
Reb = 140
Reb = 180
Reb = 210

Γ /
 (

2
�

r3 b 
/τ f

)

Γ*

Stp

Stp = 0.01

Stp = 0.1

Stp = 1

Stp

Stp

Stp′ /Stp

F 
(S

t p′ )
/E

c 
(S

t p
)

E c
 (

Re
b,

 S
t p

)/
E c

 (
Re

b,
 0

) 

Figure 2. (a) Normalised Ec as a function of Stp in quiescent flow for various Reb compared to the fits
according to (4.1) (dashed lines). (b) Dimensionless collision kernel versus Stp at Reb = 120 for bubble with
imposed velocity in HIT (symbols) and model (dashed lines). (c) Turbulent collision kernel relative to that in
quiescent flow for the imposed velocity bubble. Error bars represent fluctuations between subsets of the data.
(d) Scaled PDF of St ′p as a function of St ′p for different Stp .

Analytical predictions based on flow streamlines in quiescent flow indicate that Γ scales
with (rp/rb)

2 (Weber & Paddock 1983) in this case. However, as particle inertia becomes
more pronounced, particles deviate from the flow streamlines and collide on the bubble
even if their initial position is outside the grazing trajectory of the inertialess particle. This
leads to a higher collision rate and explains the rapid increase in Ec as Stp approaches 0.1,
beyond which the inertial effect dominates. At very large Stp, the particles are barely
influenced by the flow such that Ec approaches (1 + rp/rb)

2. To be able to evaluate
Ec(Reb, Stp) analytically, we employ an empirical expression, which is the sum of its
two contributions: interceptional collision Ei and the collision associated with particle
inertia (Schulze 1989):

Ec = Ei +
(

1 + rp

rb

)2 (
Stp

Stp + a

)b (
χ − Ei

(1 + rp/rb)2

)
. (4.1)

Here, we adopt Ei = 3
2 (rp/rb)

2(1 + Re2/3
b /5) (Sarrot et al. 2005) for the collision

efficiency in the tracer limit, and the fitting parameters are set to a = 0.2 and b = 2.
Also, χ = 1 − 0.9 × 10−((log(St)+1.3)/1.6)2

is a fitting correction term to better capture the
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transition around Stp ≈ 0.1. The resulting fit is in good agreement with the data for the
evaluated parameter range, as shown in figure 2(a).

As shown for the case with constant bubble velocity in figure 2(b), the general trends
of Γ in turbulence, in particular the increase with increasing Stp for all particle sizes, are
consistent with those observed in quiescent flow. In this simplified configuration, the PDF
of the U ′

b required to evaluate our model (2.2) can be obtained by combining the constant
bubble rise velocity with the Gaussian distribution of turbulent velocity fluctuations. The
collision kernel predicted in this way is in excellent agreement with the simulations. This
is further confirmed in figure 2(c), where we scrutinise the result by plotting it relative to
the collision kernel at the same bubble velocity in quiescent flow as Γ ∗ = Γ/Γ q . In this
way, it also becomes clear that turbulent flow significantly enhances the collision kernel.
Here, two interesting aspects should be underscored. First, Γ ∗ surpasses 1 when inertia is
negligible (Stp � 1), indicating that turbulent fluctuations enhance interceptional bubble-
particle collision. Second, the collision enhancement is not uniform across the considered
range of Stp, suggesting that the combined influence of turbulence and particle inertia
leads to further amplification of the collision rate. The collision enhancement can reach
approximately 100 % for particles with size ratio rp/rb = 0.025. For larger particles, the
maximum collision enhancement is lower, though the peak still occurs at a similar value
Stp ≈ 0.1.

The good agreement with the simulations indicates that the model adequately captures
the relevant turbulence effects on the collisions, enabling us to explore their origin. We
notice that due to the increase of Ec with increasing Re′

b, the integrand in (2.2) depends
nonlinearly on U ′

b. This results in an increase in the predicted collision rate even if f (U ′
b)

is symmetric around Ub. In the present case, this effect amounts to almost a 15 % increase
in Γ , consistent with what is observed at low Stp.

In addition, there is an inertial effect as a change in U ′
b also changes St ′p. The

strongly nonlinear dependence of Ec on St ′p, especially in the intermediate range
Stp ≈ 0.1, leads to an asymmetric response to positive and negative velocity fluctuations.
This is demonstrated by the scaled PDF of St ′p, F(St ′p) = Ec(St ′p) P DF(St ′p), shown
in figure 2(d). For low and high Stp, the dependence of F(St ′p) on St ′p is almost
symmetric. However, for an intermediate value Stp ≈ 0.1, the contribution to collisions
from fluctuating St ′p exhibits a positive bias, which explains the strongly enhanced
turbulent collision rate in this range, and the non-monotonic dependence on Stp. Due to
the higher interceptional collision efficiency, the increase in the inertial range – and hence
the turbulent enhancement – is less pronounced for larger size ratios rp/rb.

Another way to validate the model is to consider the spatial distribution of the collision
probability P(r, l), where r and l are distances perpendicular to and along the bubble
velocity direction, respectively (see figure 3a). In quiescent flow, the collision process
is deterministic and the collisions probability is a binary function, which has a tube
shape based on the grazing trajectory (see the shaded region in figure 3a). We represent
this using the binary function S(r, l; Ub), which is equal to 1 inside the collision tube,
and 0 otherwise, as shown in figure 3(a). Practically, S can be determined from the
grazing trajectory. Based on the ‘frozen turbulence’ assumption, the collision probability
in turbulence can be predicted as the superposition of the binary probability distributions
corresponding to the instantaneous slip velocity Ub

′. This leads to

P(r, l) =
∫

f (Ub
′) S(r, l; Ub

′) G(r, l, Ub
′) dUb

′. (4.2)

Note that the additional factor G(r, l, Ub
′) = θ(r, l, Ub

′)/2π in (4.2) is a geometrical
coefficient related to the azimuthal integration required for the projection onto the
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Figure 3. (a) Sketch of the bubble–particle collision with temporary slip velocity Ub
′. The blue shaded region

indicates the binary function S(r, l, Ub
′), which is the projection of the collision tube on the r–l plane. (b)

Sketch of the cross-section (grey region) between the collision tube and the plane l in the view along the l-axis.
Here, θ(r, l, Ub

′) indicates the radian of the arc that occupied by the grey region in the circle of radius r , which
is used to measure the term G(r, l, Ub

′). (c,d) Contour lines of P(r, l) from simulations (solid) and model
(dashed lines) for (rp/rb = 0.05, Stp = 0.04) and (rp/rb = 0.1, Stp = 0.37), respectively. (e) Sketch of the
collision probability under different bubble slip velocities. The region with more overlaps corresponds to the
one with higher collision probability.

two-dimensional (r, l) space. It measures the fraction of the circle with radius r that falls
inside the collision tube at distance l, as illustrated in figure 3(b). The result of the model
prediction according to (4.2) is again in excellent agreement with the data as shown in
figures 3(c) and 3(d), confirming that the basic physical processes are well represented in
the model. Consistent with figure 1(d), the impact of turbulence is clearly evident, leading
to a much wider distribution of P(r, l) compared to the binary distribution in quiescent
flow. This effect is especially pronounced if Stp is low, as is the case for figure 3(c).
The collision efficiency is low, and the associated collision stream tube is slender for this
case, such that fluctuations in the instantaneous bubble slip direction lead to low values of
P(r, l) even close to the bubble surface, as is illustrated in figure 3(e). Since the collision
efficiency increases for larger Stp and the collision tube widens, this effect becomes less
strong, and the values of the collision probability close to the bubble are much higher in
the plot for Stp = 0.37 in figure 3(d).

Having established the general suitability of the model to capture the relevant turbulence
effects on the collision rate, we now turn to the more realistic case of a freely rising
bubble. The corresponding results in terms of Γ are shown in figures 4(a,b) for different
Reλ. In these cases, the bubble slip velocity PDF f (U ′

b) required as input for the model
is measured by averaging the fluid velocity located on a spherical surface of radius 3rb
that is centred at the bubble’s centre position (Kidanemariam et al. 2013). The size of
the spherical surface is chosen in a way such that the fluid velocity is not significantly
influenced by the presence of the bubble boundary. The radius 3rb of the spherical surface
is tested in the case of uniform flow past a fixed sphere (Kidanemariam et al. 2013), which
results in a measured fluid velocity corresponding to approximately 90 % of the incoming
flow velocity.

The general agreement between Γ predicted by the model (dashed lines in figures 4a,b)
and the data remains good also for the free rising cases. Difference arises at low Stp, where
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Figure 4. Normalised collision kernel for the freely rising bubble at (a) Reλ = 32, Reb = 110 and (b) Reλ = 64,
Reb = 150. (c) Comparison of auto-correlation function of U ′

b for the imposed velocity (Reλ = 32, Reb = 120)
and freely rising bubbles (Reλ = 32, Reb = 110), respectively. (d) The normalised mean incoming particle
number density as a function of Stp at Reλ = 64. (e) Sketch in the bubble reference frame, showing how
fluctuations U ′

b during the interaction effectively enlarge the particle collision radius.

the model is found to underpredict the simulation result. This can be explained by the
correlation time of U ′

b, which is shorter for free rising bubbles compared to the imposed
velocity case (see figure 4c). The resulting changes in U ′

b during the bubble–particle
interaction cause the particle trajectory to fluctuate in the bubble frame of reference (see
the sketch in figure 4e). This increases the effective collision radius of the particle to
rp + d, where d is a measure of the drift from the original particle trajectory. The relevant
time and velocity scales for this drift are τ f and uη, respectively, such that d ∼ τ f uη in
analogy to Taylor dispersion in the ballistic regime (Taylor 1922). Indeed, we find that
using d = 0.06τ f uη results in good agreement with our data across different Reλ and for
different rp, as shown by the dash-dotted lines in figures 4(a,b). This effect is relevant only
at Stp � 0.1, and becomes negligible once rc � d due to the inertial effect at larger Stp.

Another finding is that the incoming particle number density can differ from the global
value. This is caused by clustering of bubbles and particles in different regions of the
flow, leading to segregation (Chan et al. 2023). As a result, 〈n′

p〉/n p shown in figure 4(d)
decreases as Stp increases, reaching minimum value of approximately 0.8 for Stp ≈ 1,
where clustering effects are known to be strongest. The segregation effect explains why
the inertial limit (1 + rp/rb)

2 at high Stp is not reached in the simulations and in the
model, where this effect is accounted for by multiplying with the factor 〈n′

p〉/n p obtained
from the simulations.
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5. Conclusions
We have elucidated the relevant mechanisms governing the collision rate of inertial
particles with a finite-size bubble in turbulence. We demonstrated that for the investigated
practical conditions, inertial effects induced by the flow around the bubble are the
dominant effect. The nonlinear dependence of these effects on the bubble slip velocity
leads to an increase of the collision rate in turbulence of up to 100 % at Stp ≈ 0.1
compared to quiescent flow. An additional increase in the turbulent collision rate is due
to the short temporal correlation of the bubble slip velocity in the free-rising case. The
effect of the resulting fluctuations during the bubble–particle interaction can be captured
by an increase in the effective collision radius of the particle, and is mostly relevant in the
tracer limit for Stp � 0.1. Segregation of bubbles and particles in turbulence reduces the
particle density encountered by the bubble and hence the collision rate by up to 20 % at
Stp ≈ 1. Remarkably, the effect of turbulence-induced motion of the particles was found
to have negligible impact during the transient bubble–particle interaction, whereas the
incoming particle number density is reduced for particles with large Stokes number. The
developed frozen turbulence model provides a physically consistent framework that can
be easily extended to a full collision model (by combining it with a prediction for f (U ′

b)).
The approach is also transferable to other conditions, such as more complex shapes (by
adopting a different parametrisation of Ec), and thus offers a more general relevance for
collisions with finite-size objects in turbulence.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2025.44.
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Appendix A
As we observe that the trajectories of collided particles in HIT are significantly different
from those in quiescent flow, it is interesting to study how turbulence affects the collision
angle. In figure 5, we investigate the collision angle θ for the case where the bubble
velocity is imposed. Here, θ denotes the angle between the direction of the imposed
bubble velocity and the vector of collision position in the bubble frame. We observe that
the mean collision angle 〈θ〉 for the turbulence flow is higher than that for the case of
quiescent flow. However, 〈θ〉 shows a similar dependence on Stp for both cases, where
〈θ〉 first decreases as Stp, and rises after. This can be explained by inertial effects on the
particles as illustrated in figures 5(b) and 5(c) for the deterministic case. At low Stp, rc is
small. Consequently, particles collide on the bubble front region, where the streamlines are
strongly curved. Therefore, particle trajectories deviate significantly from the streamlines
as Stp increases. As a consequence, higher-inertia particles collide at a smaller collision
angle, as illustrated in figure 5(b). When Stp surpasses the critical value, rc becomes
larger. In this case, increasing particle inertia leads to a higher collision rate as well as
to a higher collision angle, which is illustrated in figure 5(c). These general trends for
〈θ〉 are retained in the turbulent case, which is in line with our approach of representing
the instantaneous collision process by the deterministic case. Figures 5(d–f ) show the
scaled PDF of collision angle θ for different particle sizes. The scaled PDF illustrates the
distribution of the collision angle, as well as where the collision differences occur between
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Figure 5. (a) Mean collision angle 〈θ〉 as a function of Stp . (b,c) Sketches illustrate the mechanism that 〈θ〉
declines/increases as increasing inertia when Stp is low/large in quiescent flow. The solid lines denote the
streamlines along which the particles originally stay, and the dashed lines are the particle trajectories. (d–f ) The
PDFs of collision angle f (θ) scaled by the normalised collision kernel for particle size rp/rb = 0.025, 0.05, 0.1
in HIT (solid lines) and quiescent flow (dashed lines).

HIT and quiescent flow. The distributions of collision angle indicate that the collisions are
more likely to take place at intermediate angles. Moreover, we observe that the distribution
extends to a wider range in HIT, and more collisions occur, which is consistent with the
observations for 〈θ〉.
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