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In this work a cephalopod-like deformable body that fills an internal cavity with fluid
and expels it to propel an escape manoeuvre, while undergoing a drastic external shape
change through shrinking, is shown to employ viscous as well as mainly inviscid
hydrodynamic mechanisms to power an impressively fast start. First, we show that
recovery of added-mass energy enables a shrinking rocket in a dense inviscid flow to
achieve greater escape speed than an identical rocket in a vacuum. Next, we extend
the shrinking body results of Weymouth & Triantafyllou (J. Fluid Mech., vol. 702,
2012, pp. 470–487) to three-dimensional bodies and show that three hydrodynamic
mechanisms must be combined to achieve rapid escape performance in a viscous
fluid: added-mass energy recovery; flow separation elimination; and an optimized
energy storage and recovery. In particular, we show that the mechanism of separation
elimination achieved through rapid body shrinking, coordinated with the mechanism
of recovering the initially imparted added-mass energy, is critical to achieving a high
escape speed. Hence a flexible, collapsing body can be vastly superior to a rigid-shell
jet-propelled body.

Key words: biological fluid dynamics, boundary layer control, drag reduction

1. Introduction
In this paper we consider the mechanics of rapid acceleration of a flexible body in

a viscous fluid. The inspiration comes from the reported performance of cephalopods,
i.e. the octopus, the squid and the cuttle fish, but we simplify the problem to study
the basic hydrodynamic mechanisms at work rather than analyse the performance of
a specific animal: we consider a flexible body that refills a cavity with fluid, hence
hyperinflating its external shape to a spherical form, and then expels the fluid rapidly
to form a propelling jet, while causing its shape to shrink, taking the form of a prolate
spheroid with decreasing radial dimension.

Deformable bodies offer intriguing possibilities of flow control, because their added
mass varies with their changing shape allowing significant and rapid variations in
the fluid force and the energy exchange between body and fluid. Added-mass energy
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transfer and recovery is shown for a deformable fluid in an inviscid fluid by Saffman
(1967) who shows that, as a result, a wake-less propulsion is possible. Daniel (1984)
considered the unsteady aquatic locomotion of animals, arguing that in periodic motion
of deformable bodies the average added-mass force is zero and hence does not affect
overall propulsion. Kanso et al. (2005) also considered motion in potential flow
where a body controls its motion by actively changing its shape variables. In the
experimental work of Childress, Vanderberghe & Zhang (2006), a body with flexible
surface was tested in oscillatory flow, with a variable frontal area exposed to the
flow. The flapper-like body could suspend itself against gravity by taking advantage
of a change in added mass between its upstroke and downstroke. Also, Spagnolie
& Shelley (2009) conducted numerical simulations varying the frontal area of a two-
dimensional cylinder against an oscillatory oncoming flow. Propulsive forces were
obtained by actively controlling the phase difference between the shape change and the
fluid oscillation. Childress, Spagnolie & Tokieda (2011) considered propulsion through
simultaneous change in shape (and hence added mass) and change in the distribution
of the mass the body, resulting in what they termed recoil locomotion. Hence, in these
studies, a change in object area or shape was responsible for the net force on the body,
as unequal levels of kinetic energy are imparted by the body to the flow in opposing
stroke planes.

The model system in this study is inspired by cephalopods, which have a highly
developed jet propulsion system and, although they lack a skeleton, can match the
performance of vertebrates. Squids, for example, swim as well as many fishes using
jet propulsion, while small squids, such as the larvae of Loligo vulgaris, can achieve
bursts of 25 body lengths per s (Gosline & DeMont 1985). Water is taken into a
compression chamber, the mantle cavity, through a wide inlet, the mantle aperture, and
then squeezed out through a narrow funnel that can vector in any desired direction
(Packard 1969). Their mantle contains muscles that are circumferentially arranged to
pressurize the mantle cavity by contraction and hence help expel the water to form a
jet (Anderson, Wuinn & deMont 2001).

It is particularly interesting to study the rapid escape response, where an animal
employs its full power over a short period of time. Marine animals have to confront
the large reactive forces of a heavy liquid and must avoid flow separation that can
induce additional, large resistive forces. While the escape responses of fish have been
studied in detail experimentally and theoretically (Domenici & Blake 1997; Domenici,
Blagburn & Bacon 2011a,b; Gazzola, van Rees & Koumoutsakos 2012), the escape
trajectories of cephalopods has attracted less attention.

Squids escaping predators employ a mode called escape jetting (Williamson 1965),
whereby the squid first hyperinflates, increasing its lateral dimension by up to 30 %,
and then contracts its mantle at full power, while keeping its fins wrapped closely
against the body (Gosline & DeMont 1985). Neumeister et al. (2000) show that squid
(Loligo opalescens), ranging from 95 to 125 mm in mantle length, when stimulated by
a visual flash employ escape jetting, to travel 4 mantle lengths within 700 ms with a
maximum velocity of 10 mantle lengths per s, reached at ∼400 ms.

The escape response in the octopus is similar, although there are differences as well
(Gosline & DeMont 1985): water is brought into the mantle cavity and then expelled
quickly through the funnel (Wells 1990), with the mantle forward and the legs tightly
trailing behind the body (Forsythe & Hanlon 1988). Longitudinal muscles prevent the
elongation of the mantle as the radial muscles pressurize the mantle cavity. Maximum
jetting speeds are reported to be 3.29 body lengths per s for mantle length of 45 mm
in Huffard (2006). In addition, medusoid jetting may occur, when the octopus opens
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and then closes its arms and arm crown like an umbrella to aid jet propulsion (Huffard
2006).

Interestingly, the relatively bluff initial shape of cephalopods does not prevent them
from achieving impressive velocities and bursts of acceleration. Unlike man-made
rigid-hull rockets, cephalopods can also derive thrust as well as control their local
flow field through the change in the size and shape of their bodies during jetting.
Also, of particular relevance are the results of Weymouth & Triantafyllou (2012)
who studied the effect of rapidly shrinking the diameter of two-dimensional circular
cylinders moving steadily in viscous flow. It was shown that such size reduction in a
viscous flow may enable recovery of added-mass energy from the fluid, depending on
the kinematics and form of body shrinking employed. At one extreme is a ‘melting’
cylinder, defined as a body which undergoes progressively a phase change from solid
to fluid, starting from the outer layers and progressing to the inner layers. This case
allows no energy recovery and large-scale vortices form which entrain the differential
from the original to the final added-mass energy. A contrasting case is that of a rapidly
collapsing cylinder, where there is no mass flux through the body boundary. In this
case the potential-like flow energy can be largely recovered, while the initial vorticity
in the boundary layer is partially annihilated by opposite-sign vorticity generated
during the shrinking. The result is that no significant vorticity is shed and hence no
wake forms. In this paper we first show that these results hold for three-dimensional
bodies as well, and then focus on the case of a deflating body, as it provides a
mechanism for separation elimination and energy recovery.

To study this mechanism of unsteady flow control and propulsion, in this work
we consider the model problem of a deflating prolate spheroid, which starts from
rest and accelerates by ejecting the fluid contained in its cavity to form a propelling
jet. First, in § 2, we consider the governing equations for self-propelled rockets in
vacuo and in a fluid, and demonstrate that a shrinking rocket in inviscid flow can
outperform a rocket in a vacuum via added-mass energy recovery. As viscous effects
cannot be ignored in the real system, we next review our numerical methodology
for the simulation of general viscous flows in § 3, and then present a series of
prescribed speed tests in § 4. These preliminary tests allow us to isolate the effect
of body shrinking, particularly in preventing flow separation, from the other effects
in the self-propelled system. In particular, a shape-change number is defined in § 4.3,
which parameterizes the ability of a deflating body to reduce separation, and thereby
reduce drag. Finally, in § 5, we address the principal problem under study, that of a
self-propelled body shrinking and expelling fluid to propel itself. We show that an
initially bluff-body rocket which deflates can suppress separation, enabling added mass
recovery, and achieving nearly double the final speed of a rigid streamlined body.

2. Energetics of jet-propelled motion
First we contrast the governing equations and simplified analytic solutions for three

cases of jet-propelled systems, sketched in figure 1, which we will call ‘rockets’ since
they expel mass to produce a propulsive force:

(a) a rocket in vacuo and without external forcing;
(b) a rigid rocket submerged in a dense fluid; and
(c) a deformable rocket, which deflates as it propels itself within a dense fluid.

Radically different results are obtained for each case, highlighting the effects of the
fluid on rocket propulsion and non-obvious advantages of deflation.
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FIGURE 1. (Colour online) Sketches of the three rocket systems considered in § 2: (a) rocket
without forcing; (b) rigid rocket in fluid; (c) shrinking rocket in fluid. In all cases the mass
m (dark grey, blue online) is ejected as propellant at rate ṁ and velocity Uj relative to the
body speed u. In a fluid (light grey), the rocket experiences fluid forcing f , which strongly
influences the dynamics. The rigid rocket (b) reduces its average density as it empties of
propellant but maintains constant volume, while the shrinking rocket (c) maintains constant
density as its shape shrinks.

2.1. Rocket without external forcing
Consider a body of initial mass mo which expels its mass at a rate ṁ forming a jet
with velocity Uj, relative to a system fixed on the body, to produce the force that
drives the motion. The velocity of the body u is obtained by the equation of motion:

mu̇=−ṁUj + f , (2.1)

where f is an external force, ṁ is negative (loss of body mass), and Uj is positive.
If the rocket is operating in a light fluid relative to its density, or in vacuo as in

figure 1(a), the external forces may be neglected. If we further assume the jet velocity
is kept constant, then the increment of velocity of the body, 1u, is obtained simply as:

1u

Uj
=− ln

(
mf

mo

)
, (2.2)

where mf is the final mass of the rocket, after expelling the propellant. Hence, the
speed increase simply depends on the ratio of the initial to the final mass, reaching
arbitrarily large values as mf /mo→ 0. If the jet speed is variable, it can be shown that
it is advantageous to ramp up the speed with time, because as the mass diminishes
near the end of the manoeuvre, the resulting higher thrust provides much higher
acceleration and hence final speed. It is clear, however, that the size and shape of this
simple rocket do not have an impact on its effectiveness in a vacuum.

2.2. Rocket in a fluid
If the body is travelling through a fluid with density ρ, which is comparable to the
density of the body, then the external fluid forcing f on the body cannot be neglected.
The equation of motion now includes a reactive force from the fluid, in the form of a
term that involves the fluid added mass ma, and a resistive (drag) force fd:

mu̇+ ∂

∂t
(mau)=−ṁUj − fd. (2.3)

Unlike the previous case, the size and shape of the body are now important in
determining the propulsive performance, because they influence the added-mass force
and the drag force. In this section and the next we will focus on the inviscid (added
mass) effects and assume the drag force to be negligible.
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To demonstrate the basic properties of (2.3), we consider the case of figure 1(b): a
rigid spherical body with initial density ρ, whose diameter D and added mass

ma = 1
12πρD3 (2.4)

are fixed. As with the previous section, this rocket propels itself by expelling mass
down to a final mass mf , and as a result the final average density of the rocket is less
than that of the fluid.

If we use a constant jet speed as before, we find:

1u

Uj
=− ln

(
2mf /mo + 1

3

)
. (2.5)

Comparing (2.5) and (2.2), we find that even when neglecting fluid resistance, the
performance of a rigid rocket in a fluid is tightly constrained. As mf /mo → 0 the
increase in velocity cannot exceed ≈ 1.1Uj. The fluid adds inertia to the system, and
acts as an additional payload, greatly reducing the rocket performance relative to the
vacuum case.

2.3. Fast shrinking rocket

Next we consider a body which shrinks as it expels the fluid propellant, as in the
case of the cephalopods. Again, as sketched in figure 1(c), we assume a spherical
shape, with initial diameter Do, but as the diameter reduces so does the added mass.
Assuming a constant jet velocity as before, the velocity increment for the shrinking
rocket is:

1u

Uj
= 2

(
Do

Df
− 1
)
= 2

([
mf

mo

]−1/3

− 1

)
, (2.6)

where Df is the final diameter of the sphere.
We note that allowing the body to shrink has re-enabled the rocket to achieve

arbitrarily large velocity as mf /mo→ 0, as in the case of a rocket in vacuum. More
surprisingly, the performance of a shrinking rocket in an inviscid fluid is better than
in a vacuum for mf /mo < 0.1. For example, for mf /mo = 0.05 there is a 16 % increase
in speed relative to motion in a vacuum, while for mf /mo = 0.01 the speed increase is
close to 60 %.

This ultra-fast performance in a fluid cannot be explained simply by the vanishing
added-mass force. Instead the speed-up is achieved because there is energy ‘stored’
in the fluid at the early phase of the motion through the added-mass term, which is
then recovered at the final stage of the manoeuvre. This is beneficial because near
the end of the manoeuvre the body has shed a major part of its mass, increasing the
effectiveness of the applied thrust.

However, in a viscous fluid the drag force will substantially reduce the final value of
the velocity, particularly for the case of a spherical body, where flow separation can be
significant and the resulting drag forces large. Hence, it makes a significant difference
whether the drag force is caused by skin friction alone, when the resistive force is
small, versus the case when flow separation takes place, when the drag coefficient can
increase very substantially. As a result, a sphere is expected to develop substantial drag
force and hence will be in general inferior to a streamlined ellipsoid. We study these
cases next through numerical simulation of the viscous fluid equations.
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3. Numerical methodology
To obtain detailed quantitative results for a flexible body in a viscous fluid, a set

of three-dimensional viscous simulations of translating and shrinking spheroids were
preformed. These simulations use the boundary data immersion method (BDIM), a
robust immersed boundary method suitable for dynamically deforming bodies with
prescribed kinematics.

The numerical details of the simulation method follow those described in Weymouth
et al. (2006) and Weymouth & Yue (2011). The full Navier–Stokes equations and the
solid-body dynamic equations are integrated over the solid and fluid domains with a
kernel of finite support ε. This has the effect of blending the equations smoothly over
the solid/fluid interface. The integrated equations are valid over the complete domain
and allow general solid-body dynamics and solid/fluid interfacial conditions to be
applied. Previous problems examined with the method include ship flows and flexible
wavemaker flows (Weymouth et al. 2006), solid-body free-surface impact and cavity
formation (Weymouth & Yue 2011), as well as shedding of vorticity from a rapidly
displaced foil (Wibawa et al. 2012) and a melting and collapsing circular cylinder
(Weymouth & Triantafyllou 2012).

The analytic BDIM equations are discretized using a second-order finite-volume
method in space and Heun’s explicit second-order method in time. A body-centred
computational domain is used which is 8Do on each side, where Do is the initial
diameter of the body. All cases use the no-slip tangential boundary conditions on
the solid/fluid interface. The no-penetration condition is used for the body’s normal
velocity, except for the melting body which is discussed separately in § 4.1, and across
the jet exit which is given a uniform velocity profile with magnitude Uj, relative to the
rocket. Pressure conditions are applied on the sidewalls and a convection exit condition
is used to allow fluid to enter and leave the domain freely, reducing the impact of
these numerical boundaries. The computational grid has more than 300 × 106 grid
points with spacing 1x/Do = 1/125 near the body surface and geometric expansion
of the spacing in the far field. The implicit large-eddy simulation method of Margolin,
Rider & Grinstein (2006) is used to model the subgrid-scale effects. Convergence
studies on the results in §§ 4.1, 4.3 and 5 run using grids with 1x/Do = 1/100
and 1x/Do = 1/80 showed no qualitative difference and the quantitative differences
between the two finest grids were less than 2 % for all cases. As such, we have high
confidence in the accuracy of these viscous three-dimensional simulations.

4. Simulation results for a towed deformable body
Next we address through simulation the problem of a deformable body undergoing

rapid size reduction within a viscous fluid. First, we conducted simulations on a
‘towed’ rather than a self-propelled flexible body; hence the body is forced to move at
a prescribed speed. This allows us to isolate the effect of body shrinking, particularly
in preventing flow separation, from other effects such as the interaction of the flow
around the body with the propelling jet.

4.1. Study of collapsing and melting spheres
An initial set of tests was performed to investigate the nature and balance of forcing
described in (2.3) with the simplification that the body is towed at prescribed speed
instead of being self-propelled.

In Weymouth & Triantafyllou (2012) we studied the effects of rapid shrinking in
two-dimensional cylinders moving within a viscous fluid, showing that a collapsing
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cylinder can recover, to a great extent, the potential-flow-like energy, while the initial
vorticity in the boundary layer is annihilated by opposite-sign vorticity generated
during the shrinking; as a result, no vorticity is shed to form a wake. In contrast, a
body which undergoes rapid but orderly ‘melting’ of the outer layers of the cylinder,
in the sense of a simple (non-thermodynamic) phase change from solid to fluid, allows
no such recovery, and large-scale vortices are shed entraining the original added-mass
energy. While the focus in Weymouth & Triantafyllou (2012) was on the latter case,
since it allows the rapid development of forces through this global vorticity shedding,
the focus here is on the first case, of a collapsing cylinder, with particular attention
paid to the elimination of separation.

Hence, we first conducted a set of simulations similar to those in Weymouth &
Triantafyllou (2012), but extending them to the case of a three-dimensional body. In
these towed tests, the body is first accelerated to full speed U over a very short
distance, equal to 0.05Do, and then the speed is kept constant throughout the run. In
this way, we can isolate the effects and forces caused by the body deformation so
as to compare them to constant-shape results. The Reynolds number for these tests
is Re = 1000, based on U and Do, again chosen to match the previous study. We
considered three different configurations:

(i) towing of a rigid sphere, first with diameter Do and then with diameter 0.8Do;
(ii) a ‘melting’ sphere whose diameter is reduced from Do to 0.8Do over a short

period of time, 0.1Do/U, starting when the sphere has travelled 0.25Do, i.e. well
before the onset of flow separation;

(iii) a collapsing sphere made to shrink at a prescribed rate by applying an appropriate
forcing at its surface so as to reduce its diameter over the same time period and
rate as the melting case.

Figure 2 shows the resulting changes to the drag and kinetic energy for each of
the three configurations we studied. We find similar results and effects as in the
two-dimensional study of Weymouth & Triantafyllou (2012). We show here only the
integrated results of force and kinetic energy, but the processes are nearly identical to
those in the two-dimensional case.
(a) Starting with the collapsing sphere, we found, as for the two-dimensional cylinder,

that opposite-sign vorticity is generated on the upper and lower half of the
body surface, relative to the originally developed vorticity. As this occurs before
significant flow separation develops, and hence no vorticity has shed, this new
vorticity partially annihilates the opposite-sign vorticity that had developed in the
boundary layer during the acceleration phase, and ‘resets’ the drag and kinetic
energy of the flow to that corresponding to a smaller sphere of diameter 0.8Do.
This is discussed further for a prolate spheroid in the next section. During collapse
we note a rapid decrease of the drag force, which changes sign to become a
large thrust force, lying outside the frame of figure 2(a). Also, the differential in
kinetic energy of the fluid, due to the reduction in body diameter, is recovered
through the forces at the surface of the sphere, as shown in figure 2(b), where
the kinetic energy follows initially the curve of the constant-diameter larger sphere,
until collapse starts, when the sink-like flow introduces an apparent large kinetic
energy; once collapse ends, the kinetic energy returns to the value corresponding
to the constant-diameter smaller sphere, in complete analogy with the results for a
cylinder (Weymouth & Triantafyllou 2012).

(b) The ‘melting’ sphere results are not central to this paper but are shown here to
contrast them with the collapsing sphere results, and for completeness, in order
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FIGURE 2. (a) Pressure force coefficient based on Do, Cp = fp/(ρD2
oU3/2); and (b) total

kinetic energy T scaled by the solid-body kinetic energy Ts = πρD3
oU2/12, as a function of

the distance travelled by the rear stagnation point of the body, xr/Do. Results are for four
towed cases: —, constant-diameter sphere cases, run first with diameter Do and then 0.8Do;

, rapidly melting sphere, changing diameter from Do to 0.8Do; , rapidly collapsing
sphere with the same size change from Do to 0.8Do. The collapsing sphere ultimately recovers
the kinetic energy initially imparted to the fluid and resets to the smaller-body drag response.

to establish the close similarity of the three-dimensional with the two-dimensional
results. As shown in figure 2, the drag force shows a decrease during the period of
melting and then a rapid increase as the shed vorticity forms organized structures
entraining the kinetic energy differential, which is lost to the body.

While these results confirm and extend for three-dimensional bodies the earlier
results of Weymouth & Triantafyllou (2012), and provide critical insight into the
mechanisms of flow control in deformable bodies, they were derived for a bluff body,
a sphere. This requires that all transitions be very rapid, namely the manoeuvre must
be completed before the body traverses a distance equal to one diameter, beyond
which large-scale separation is unavoidable. The question is whether changing from
spherical to a streamlined shape will provide the same mechanisms without the
limitations of a sphere. This is what we show in the next section.

4.2. Study of deformation kinematics on a prolate spheroid
Next we proceed to study the development of thrust and recovery of fluid kinetic
energy in the case of a deflating non-spherical body, which is the focus of this paper.
We take the body geometry to be that of a prolate spheroid, to more closely match
the streamlined form of engineering structures, as well as that of animals, such as the
cephalopods.

When cephalopods hyperinflate their shape in order to escape, their form changes
initially to a much more bluff shape than under ordinary swimming conditions. We
replicate this herein by assuming that the initial geometry is that of a sphere with
diameter Do; subsequently, the body is collapsed only in the cross-stream (radial)
direction, maintaining its in-line length L= Do constant, as the octopus is also reported
to do. Hence, the shape changes smoothly from a sphere to an elongated prolate
spheroid.
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(a) (c)(b)

FIGURE 3. Impact of kinematics on the vorticity field (ω) for a deforming prolate spheroid:
(a) abrupt 20 % reduction in diameter over 1tU/L = 0.1, shown at tU/L = 0.3; (b,c) gradual
80 % reduction in diameter over 1tU/L = 25, shown at tU/L = 3 in (b) and tU/L = 11 in
(c). Abrupt size change does not cause separation, while a very gradual size change results
in separation and formation of a wide wake. Body motion is right-to-left at constant velocity
U. Contours of vorticity are shown on a plane passing through the body’s longitudinal axis of
symmetry. (a,b) show the two cases for the same 10:9 aspect ratio. (c) shows the symmetry
breaking in the wake for tU/L> 6.
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FIGURE 4. Pressure force coefficient acting on the prolate spheroid as function of distance
travelled for the two cases shown in figure 3: (a) abrupt 20 % size change; (b) gradual 80 %
size change. Simulation results ( ) are compared to the theoretical estimate of (4.1) (—).
The force is scaled by the initial projected cross-stream area Ao = (π/4)L2. The negative
values in (a) indicate thrust instead of drag:

We find that the ability of the body to recover the energy initially imparted to the
fluid, and use it to augment thrust, depends highly on the prescribed kinematics. First,
the kinematics are set to match those of the collapsing sphere of § 4.1: the collapse
starts and completes before the spheroid has been towed half a body length, so that
its boundary layer has not separated, and the vorticity has not shed to form a reversed
flow, as shown in figure 3(a); in fact, opposite-sign vorticity annihilates the extra
vorticity for the reduced-size body.

In figure 4 the resulting pressure drag forces on the body are compared to a simple
analytic model:

fpd = U
dma

dt
+ 1

2
cpdρU2π

(
D

2

)2

, (4.1)
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with cpd ∝ (D/L)3/2, which combines the added-mass forcing with a simple drag force
model, using a drag coefficient based on the aspect ratio. Equation (2.4) defines the
instantaneous added mass for a general prolate spheroid where D is the cross-stream
diameter. The measured forces in figure 4(a) show excellent agreement with this
simple model, with nearly 95 % of the added-mass energy recovered by the body in
viscous flow.

This energy recovery can be achieved only within certain parametric limits: if we
use a shrinking velocity much slower than the towing speed, the response changes
entirely, as shown in figures 3(b,c) and 4(b). Because the bluff body is shrinking
slowly, the boundary layer has time to separate and the vorticity is shed, forming a
wake. As a result, the flow does not resemble a potential flow and the predictions
of (2.3) are not quantitatively accurate, and are qualitatively reasonable only after the
shed vorticity has moved well downstream.

4.3. Study of deformation rate on an accelerating prolate spheroid
Next we conducted a series of tests to establish the direct connection between the
rapid shrinking of a deformable body and the ability to inhibit separation – and thus
reduce drag substantially. In this series of tests the body (initially a sphere at rest) is
subjected to a constant forward acceleration a as its cross-flow dimension is reduced
at constant rate V = dD/dt. Thus the body shape deforms to that of a prolate spheroid
with constant axial dimension as it accelerates and the balance of these two parameters
(body acceleration versus body shrinking rate) will determine the fluid response. Note
that while this test is closely related to the self-propelled scenario, this is still a towed
test, involving no propulsive jet.

Using the fact that Do = L, and that the acceleration a and velocity of shrinking V
are constant, we obtain the following expression for the added-mass term:

d
dt
(mau)= f0[(1− t∗)3−3t∗ (1− t∗)2], (4.2)

where t∗ = t|V|/L = 1 − D(t)/L, and f0 = (π/12)ρD3
oa. This equation is plotted in

figure 5 along with the instantaneous added-mass force, maa, that would act on
a similar body with constant shape (i.e. which has the same dimensions as the
instantaneous dimensions of the shrinking body), without accounting for the term
attributable to the change in added mass – we will call this the ‘frozen’ added-mass
term. Note that the energy required to accelerate the body up to a certain speed u= at
is equal to the area under the total, rather than the frozen-added-mass term. As t∗→ 1
this energy goes to zero; hence, the net energy spent in the fluid to accelerate a
shrinking object in a potential flow goes to zero when the final shape has zero radial
dimension.

This implies that the energy imparted to the fluid in the early stage of
the manoeuvre is recovered in the final stage, within potential flow theory. As
demonstrated in the previous tests, however, forces in a viscous flow can differ from
this potential flow prediction because of flow separation effects. Dimensional analysis
shows that the governing parameter, the shape change number Ξ , is

Ξ = V2

aL
, (4.3)

which compares the acceleration imparted to the body with the velocity of shape
change divided by the length. Figure 5 shows the pressure force as a function of time
for a set of simulations at five different values of the shape change number Ξ . As the
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–0.5

1

FIGURE 5. (Colour online) Axial fluid force as function of non-dimensional time t∗ =
1−D(t)/L and the shape change number Ξ = V2/aL. The dashed black lines are the potential
flow predictions and the solid lines are the pressure results in a viscous fluid for the prolate
ellipsoids.

value of Ξ is decreased, the plot of the force as function of time moves further away
from the potential flow line, implying significant drag effects.

As a reference condition, in the case of a constant-shape body when x/L ≈ 1
significant flow separation commences; the non-dimensional time for a shrinking body,
corresponding to this point in its trajectory, is:

t∗|x=L = |V|
√

2
aL
=√2Ξ. (4.4)

For the lowest value of Ξ = 1/32 (slow deflation), there is a clear bump in the
force starting at t∗ ≈ 0.25 = √2Ξ , in agreement with the prediction of (4.4), due to
significant flow separation. Still, even for this case, it is clear that the shrinking of
the body reduces drag, as shown by the decreased fluid force compared to the ‘frozen’
added-mass force.

Figure 6 shows the normal stress on the surface of the ellipsoid as it shrinks and
accelerates for Ξ = 1/4 and Ξ = 1/16. As seen in figure 6(a,b), the stress magnitude
has been scaled by Ξ such that the initial values are the same for each case.

In figure 6(c–h) both cases show that shrinking results in a suction on the top
of the spheroid, causing the low-pressure zone to move forward. For Ξ = 1/4, the
low-pressure zone moves forward as function of time and is eventually located, almost
entirely, on the front half of the body, hence resulting in significant thrust that cancels
the drag induced by the high pressure around the stagnation point at the nose. For
t∗ > 0.5, this moving forward is clearly shown, while a high-pressure zone also forms
on the trailing section, providing further thrust. This distribution of pressure means
that despite experiencing forward acceleration, the flow exerts a thrust force on the
body, instead of the expected reactive and drag forces, a highly non-intuitive result.
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(a) (b)
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FIGURE 6. (Colour online) Normal stress on the surface of a simultaneously deforming and
accelerating prolate ellipsoid for two shape-change numbers, Ξ = V2/aL = 1/4 (left-hand
column) and 1/16 (right-hand column), as a function of non-dimensional time t∗ = 1−D(t)/L
(from 0 to 3/4, top to bottom). The body is accelerating right-to-left. Regions of high: ( ), and
low ( ) pressure are labelled. The stress magnitudes are scaled by Ξ to equalize the initial
force for these two cases and by r =√y2 + z2 to graphically represent the stress integral
around the axis of revolution at each point. This figure is presented in an axisymmetric style
to aid visualization; the simulations are fully three-dimensional.

For Ξ = 1/16 the favourable pressure on the trailing section is mostly lost due to the
onset of boundary layer separation, but there is still a small net thrust due to suction
on the forward half of the body, as the suction pressure also moves towards the front
as function of time.

5. Escape manoeuvre of a self-propelled deflating body
In this section we consider a self-propelled rocket, focusing on an initially spherical

body which deflates from a spherical down to a streamlined prolate-spheroid shape,
and compare this to other rocket configurations.

The results of the previous section showed that we should use the largest possible
value of the shape-change number Ξ for our shape-changing rocket. However, there
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are limits to the achievable Ξ value, and simply increasing the rate at which the
diameter is reduced does not change Ξ significantly. In fact, the primary factor
controlling the value of Ξ in a self-propelled body is the area of the jet aperture
Aj. Consider the equation of motion of the spheroid rocket when u = 0 and therefore
fd = 0. Then (2.3) can be simplified as:

(m+ ma)a=−Ujṁ. (5.1)

Since m= πρLD2/6 for a spheroid, we have:

ṁ= 1
3πρLDV =−ρUjAj. (5.2)

Using D = Do = L, (2.4) simplifies to ma = m/2 for the initially spherical neutrally
buoyant shape and we find:

Ξo = 9
16

Aj

Ao
, (5.3)

where Ao = πL2/4 is the initial cross-stream area of the rocket.
Equation (5.3) shows that there is a limiting relation of Ξ < 9/16 for a self-

propelled sphere, and that increasing Aj increases Ξo. However, a constant large
aperture would limit the final value of the lateral dimension of the spheroid (at the
end of the shrinking process) to a value larger than or equal to the opening of the
aperture. This constrains the ability to streamline the object and hence the amount
of recoverable kinetic energy. Therefore, an aperture which starts large and shrinks
with the body will enable the largest value of Ξ and allow a streamlined final
shape, optimizing the energy recovery and reducing separation to maximize the rocket
acceleration and total distance travelled.

In our tests we chose Aj = πLD/100, which allows a constant shrinking rate V
to produce a constant jet velocity Uj as shown by (5.2). The relatively small size
of the jet (Aj = Ao/25) was chosen to ensure the final form was streamlined and to
demonstrate the robust drag-reducing ability of the shrinking spheroid rocket even with
small values of Ξ .

We proceed then to study an initially spherical body at rest, which subsequently
shrinks its cross-flow dimension, while preserving its in-line length, to expel the
contained fluid and propel itself. The jet is ramped up to a constant velocity Uj after
a very short time, chosen here to be when only 4 % of the fluid propellant has been
ejected; and continues jetting until a small amount of mass remains, chosen again
to be 4 % of the initial mass which corresponds to a 5:1 prolate shape. The final
streamlined shape is chosen to be a 5:1 prolate spheroid as this is close to the optimal
value that balances the pressure and viscous drag for a given volume payload to
optimize overall drag (Hoerner 1965). This is a choice made to focus the study; results
would apply to similar shapes as well.

The body is allowed to accelerate in the thrust direction, with the other five
translational and rotational degrees of freedom fixed to zero values. Using the mass
flux of the jet and integrating the fluid contact forces on the body, the body motion
equation is integrated in time to update the body’s position and velocity. The Reynolds
number based on the jet velocity for the simulations is Rej ≡ UjL/ν = 10 000.

Figure 7 shows snapshots of the simulation results for the shrinking spheroid,
labelled in terms of the distance travelled at each time. As shown in the previous
section, the recovery of fluid kinetic energy that provides forward thrust is reduced if
the flow is separated, because then vorticity is shed in the fluid together with some
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FIGURE 7. Fast escape of a prolate-spheroid rocket shown in a body-fixed frame. Contours
of vorticity are shown on a plane passing through the body’s longitudinal axis of symmetry.
The simulations are fully three-dimensional; the body is accelerating right-to-left. Despite
travelling many body lengths with a relatively bluff shape, the flow around the rocket does
not separate noticeably, enabling both reduced drag forces and recovery of the fluid kinetic
energy, hence producing useful thrust. (a) x = 0.2L; (b) x = 1.0L; (c) x = 3.5L; (d) x = 8.0L;
(e) x= 16.0L.

entrained energy that is lost to the flow. In addition, the shed vortices would also
increase the drag on the body, as shown in figure 4(b).

It is remarkable, however, as shown in figure 7, that the self-propelled rocket
does not experience noticeable separation, despite both its initially bluff shape, and
having travelled many body lengths. This is because the rate of collapse induces a
boundary velocity which is approximately of the same magnitude as the body speed
during the initial, bluff-body phase. As the rocket comes up to speed, the shape is
made progressively more streamlined. The overall effect is that the collapse prevents
separation, hence keeping the drag force very small. This in turn enables the added-
mass energy recovery, compounding the drag reduction effect.

We next compare this cephalopod-inspired configuration to three other jet-propelled
test cases:

(a) a rigid spherical rocket;
(b) a shrinking spherical rocket; and
(c) a rigid 5:1 streamlined rocket, which is similar to a streamlined torpedo.

The size of the torpedo is set to match the initial volume of the other cases, thereby
giving it the same amount of ‘fuel’ to expel. The mass of the bodies as a function of
time and the mass expelled at each instant are identical in all cases. As in § 2.2, this
implies that the rigid rockets empty of their fluid propellant such that the final mass
is mf . For example, this is accomplished in water rockets by filling the void with a
low-density gas. By using the same mass and propulsive jet force for all cases, we
ensure that the body shape is the only discriminating factor. We did not include the
analysis of a shrinking prolate spheroid with a constant 5:1 aspect ratio, because it
does not exhibit significant separation due to its streamlined shape, while its added
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FIGURE 8. (a) Net thrust coefficient profiles as a function of the relative amount of mass
ejected ((mo − m)/mo). The four cases are: —, a rigid spherical rocket; , a collapsing
spherical rocket; . . . . , a rigid 5:1 prolate spheroid; and , a spheroid deflating radially from
a spherical shape to a 5:1 shape. The net force is the jet thrust force minus the integrated
normal and tangential stresses on the body and is scaled by the jet velocity and the initial
spherical cross-sectional area Ao = πL2/4. (b) The body velocity profiles for the same cases
as in (a), scaled by the jet velocity.

mass is small (one fifth of a sphere), and hence does not demonstrate the effects of
energy recovery either.

Figure 8 shows the thrust force and the escape velocity for the model problems as
a function of the ejected mass ratio (mo − m)/mo. The rigid spherical rocket shows
the worst performance, as expected, with a maximum achieved velocity of around
25 % of the jet velocity. The shrinking spherical case shows an increased performance,
accelerating up to around 40 % of the jet velocity. Comparing these to the potential
flow values in (2.5) and (2.6) we see that the flow separation and resulting drag
in a viscous fluid have significantly reduced the achievable speed-up of the sphere
rocket. The rigid torpedo shows improved performance because of its streamlined
shape, relative to the spherical cases. This reduces the drag and increases the net thrust
throughout the acceleration phase, enabling it to achieve a peak velocity of 106 % of
the jet velocity.

By comparison, the model case of a shrinking streamlining spheroid starts as a bluff
body, and therefore has a lower initial acceleration than the torpedo. However, the
gradual streamlining and size reduction pay off in the end through the hydrodynamic
mechanisms described above, enabling the rocket to achieve a peak velocity of 190 %
of the jet velocity. This is an 80 % increase in speed relative to the rigid streamlined
torpedo, therefore imparting 320 % of the kinetic energy to the final mass mf . This
demonstrates that the benefits of size reduction are enormous, even for this shape-
change number, which is smaller than optimal.

Figure 9 compares the net thrust force on the body (the jet thrust minus the
integrated normal and tangential stresses) to the added-mass forces. We decompose
the added-mass force as given in (2.3) into a ‘frozen’ part, maa, and a deflating-body
additional added-mass term, ṁau. Note that the latter is more than 50 % of the net
thrust in the second half of the acceleration phase. By starting the simulation with
the body having the form of a sphere, which is a non-streamlined object, and then

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

65
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2013.65


382 G. D. Weymouth and M. S. Triantafyllou

0.06

0.04

0.02

0

0 0.2 0.4 0.6 0.8 1.0

T
hr

us
t

FIGURE 9. Net thrust coefficient analysis for the deflating prolate spheroid. The dashed line
is the predicted net thrust force, while the solid lines are the unsteady added-mass term and its
frozen (maa) and dynamic (ṁau) components. Forces scaled as in figure 8.

having it collapse gradually into a streamlined shape, in a process closely resembling
that reported for the cephalopods, the spheroid rocket is able to store energy in the
fluid in the initial acceleration and then reclaim that energy as thrust when the mass
is lower, increasing its effectiveness. Therefore, while a streamlined body with reduced
cross-section is effective in reducing drag, the dynamic effect related to the added
mass is what enables the collapsing spheroid, through a late blast of acceleration, to
achieve nearly double the escape speed relative to the rigid torpedo shape.

6. Discussion and conclusions
We show through analytic arguments and numerical simulation that a deformable

body immersed in a dense fluid may recover a large portion of the fluid added mass
via size reduction and use this to achieve impressive propulsive velocities. As an initial
result, we show that the analytic equations governing a deflating spherical rocket in
potential flow result in rocket speeds faster than the same rocket in a vacuum. Hence,
the added-mass force acts overall not to hinder the rocket’s acceleration (as it does for
a rigid body) but to amplify it due to recovery of the kinetic energy conveyed initially
to the fluid as the body shrinks.

We next extend this result to a viscous fluid case, employing numerical simulation
of the Navier–Stokes equations to model a rocket that expels mass and produces
a propulsive jet by collapsing its lateral dimension, changing from a bluff to a
streamlined shape. For high ratios of expelled mass to initial mass, this shape achieves
nearly double the speed relative to an optimally streamlined, rigid-hull, jet-propelled
rocket.

We identify the basic mechanisms that allow this ultra-fast escape.

(a) The near-elimination of separation even in the early phases, when the body shape
is bluff, for appropriate values of the velocity of body shrinking, V , relative to its
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acceleration, a, as expressed by the non-dimensional quantity Ξ = V2/(aL), where
L the lateral dimension of the body.

(b) The recovery of added-mass energy as the body deflates. This, however, depends
critically on the lack of flow separation, ensured by the first mechanism.

(c) Employing an optimal energy utilization, whereby the body transfers energy to the
fluid at the onset of the manoeuvre and then recovers it in the form of thrust force,
through the combination of the two previous mechanisms, at the later stages of the
motion, when its mass is reduced and the effects of the thrust on acceleration are
maximized.

All mechanisms are critically important and must be combined to achieve high
performance: the energy recovery, for which an upper estimate can be obtained using
potential flow, can lead to considerable thrust augmentation, adding a component
equal to more than 90 % of the jet-generated thrust near the end of the manoeuvre.
The elimination of separation, especially when the body is in the first half of the
manoeuvre and its shape is basically bluff, is critical to achieving fluid energy
recovery. Finally, ‘storing’ kinetic energy in the fluid in the early part of the
manoeuvre allows its recovery at the later part of the trajectory when it is most
efficiently used.

The inspiration for the present work came from the reported swimming abilities of
cephalopods, which achieve high performance despite their lack of a skeleton. This led
to the present investigation, but we have simplified the problem considerably, focusing
basically on a model of the mantle of a squid or octopus, omitting the influence
of other parts of the body of the animal, such as the legs and fins, as well as the
mechanics of actuation. The total expelled mass of an animal is limited, and hence
it cannot achieve the very high speeds that are achievable only when the expelled
mass is practically equal to the initial mass. Also, we possibly exaggerated the initial
hyperinflation employed by animals, modelling the resulting shape as a sphere. As a
result, one cannot draw conclusions on the details of the animal performance; however,
the mechanisms we identified can clearly be in use by the animals and can fully
explain the use of such manoeuvres for fast escapes.

The final, length-based Reynolds number for the prolate shrinking rocket is around
20 000. While this falls nicely within the values of cephalopod jetting described in
the introduction, those values range from 103–105. We found that tests run at a
lower Reynolds number of Rej = 1000 showed a decrease in performance due to
the increased role of viscous drag on the streamlined prolate shape, but that this
also affects all the other cases, including the torpedo test case; hence, qualitatively,
the result holds true. At higher Re, we might expect slightly improved performance,
though this would depend on the continued successful inhibition of separation at the
higher speed.

In this work we focused on the external flow, and have avoided specifying the
details and energetics of the shrinking mechanism. This is a lengthy and somewhat
separate topic which will feature large in forthcoming work. Our model for the
propelling jet flow was also greatly simplified, prescribing a constant-magnitude
uniform-profile jet and not solving for the internal cavity flow. Hence no attention
was paid to optimizing the jet flow, an important problem in itself (Linden & Turner
2004; Anderson & Grosenbaugh 2005; Bartol et al. 2009; Moslemi & Krueger 2011).
Also, there is a connection of the present work to the hydrodynamics of medusae
(Dabiri, Colin & Costello 2006), particularly when the mode of ‘umbrella’ deflation
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is assumed; for this problem, the interaction of the flow around the body with the jet
flow is significant, and could provide further, potentially beneficial, effects.

Finally, there are some parallels that can be drawn between mechanisms studied in
this paper and the mechanisms employed by fast-starting fish, which bend their bodies
to a C- or S-shape at the onset of the manoeuvre, creating large curvatures of their
backbone, and then straighten it to generate the forces that power the manoeuvre
(Domenici & Blake 1997). As shown in Gazzola et al. (2012), the initial large
curvature of the C-shape manoeuvre serves to impart kinetic energy to as large
a mass of water around the body as possible; this kinetic energy, combined with
body-shed vorticity, is entrained and forms the large vortical patterns that propel the
body to achieve impressive acceleration. This is conceptually similar to the mechanism
of imparting kinetic energy to a large mass of the fluid in the early phase of the
manoeuvre, and then recovering it in the later phase, as we showed in the fast-start
manoeuvre of a cephalopod-like body. In the case of the fish, this energy ends up in
the propulsive pair of vortices which serve to accelerate the body forward. Finally, the
unsteady motion of the fast-starting fish is tightly monitored so that no uncontrolled
vorticity is shed to generate undesirable drag forces (Gazzola et al. 2012), also in
analogy to the separation elimination that we show herein.

Overall this work demonstrates that a cephalopod-like deformable body can vastly
outperform the fast-start escape of a rigid jet-propelled vehicle, despite the fact that the
latter is better streamlined. The study therefore serves as another example of viscous
flow control under highly unsteady conditions to optimize locomotion.
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