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SUMMARY
In this paper, the kinematic accuracy problem caused by geometric errors of a 2(3HUS+S) parallel
manipulator is described. The kinematic equation of the manipulator is obtained by establishing
a D–H (Denavit–Hartenberg) coordinate system. A D–H transformation matrix is used as the
error-modeling tool, and the kinematic error model of the manipulator integrating manufacturing and
assembly errors is established based on the perturbation theory. The iterative Levenberg–Marquardt
algorithm is used to identify the geometric errors in the error model. According to the experimentally
measured attitudes, the kinematic calibration process is simulated using MATLAB software. The
simulation and experiment results show that the attitude errors of the moving platforms after
calibration are reduced compared with before the calibration, and the kinematic accuracy of the
manipulator is significantly improved. The correctness and effectiveness of the error model and the
kinematic calibration method of the 2(3HUS+S) parallel manipulator for simulation of hip joint
motion are verified.

KEYWORDS: 2(3HUS+S) parallel manipulator, Kinematic accuracy, Error model, Kinematic
calibration.

1. Introduction
At present, hip joint replacement surgery accounts for a large proportion of artificial joint replacement
surgeries conducted around the world. Winiarski et al. conducted a functional and biomechanical
assessment of gait in a patient after bilateral Total Hip Arthroplasty (THA) due to severe degenerative
changes in the hip.1 Any new type of artificial hip joint material must undergo large amounts of
material tribology testing before use. Di Puccio et al. definited the materials and geometrical properties
of artificial hip joints and discussed their friction, lubrication and wear characteristics.2 The test
equipment chosen affects the test accuracy to a large extent. Affatato et al. reviewed state-of-the-
art hip joint simulators that are currently being applied around the world.3 Parallel manipulators
are used for the simulation of hip joint motion based on its advantages of high stiffness, high
accuracy, high speed, strong bearing capacity and complex trajectory capability, and makes up for
defects in which the motion simulation and force loading of traditional serial hip joint simulators
differ from the actual hip joint motion.4 Zhao presented a kinematic performance evaluation of a
three translational degrees-of-freedom parallel robot from the viewpoint of singularity, isotropy and
velocity transmission.5 Ruiz et al. proposed a procedure for the kinematic design of a 3-Prismatic-
Revolute-Spherical (PRS) compliant parallel manipulator of three degrees of freedom.6 Sanchez-
Alonso et al. conducted a kinematic analysis of a novel 6-DOF parallel manipulator using the non-
planar geometry and screw theory.7 Lu et al. proposed a novel 5-DOF parallel manipulator with
two composite rotational/linear active legs and introduced its kinematics and statics systematically.8

Kinematic accuracy is an important performance index in a quality evaluation of a parallel manipulator.
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Briot et al. proposed a simpler method for an accuracy evaluation based on a detailed error analysis
of 3-DOF planar parallel robots.9 Cui et al. obtained three error sensitivity indexes to evaluate the
kinematic accuracy of a 3-DOF parallel robot manipulator.10 The demand for high accuracy tasks of
parallel manipulators is continuously growing, to the point that designing manipulators granting the
prescribed accuracy is becoming a critical issue.

Owing to the effects of manufacturing errors, assembly errors and other factors, there is a deviation
between the actual and theoretical structural parameters of parallel manipulators, which results in
errors between the actual and theoretical poses (position and orientation) of a parallel manipulator. This
makes the kinematic model of a parallel manipulator uncertain, thereby affecting the work accuracy.
Fu et al. researched a kinematic accuracy problem of a new parallel robot with three legs due to the
location of the U joint errors, clearance and driving errors.11 Chen et al. proposed an error modeling
methodology to establish an error model of parallel robots with parallelogram structures.12 Therefore,
it is necessary and important to develop an effective and accurate approach to predict the influence of
pose errors and improve the kinematic accuracy of a parallel manipulator. At present, there are two
main methods for this: one is to improve the manufacturing and assembly accuracy, and the other is
to identify and compensate the geometric parameters of parallel manipulators through a kinematic
calibration. The former requires high manufacturing and assembly accuracy, which greatly increases
the cost of manufacturing, whereas the latter only requires manufacturing machinery components with
a certain level accuracy; however, to meet the demand for actual accuracy, a kinematic calibration
is used to obtain structural parameters close to reality after the installation is completed. From the
standpoint of application, the latter is frequently used in engineering.

A kinematic analysis of parallel manipulators is a necessary procedure prior to establishing an error
model. Dumlu et al. conducted a kinematic analysis of a 6-DOF RSS parallel manipulator using the D–
H method.13 The pose error calculation model is the foundation of the accuracy analysis and kinematic
calibration of a parallel manipulator. Vector and matrix methods are being increasingly used for pose
error modeling of parallel manipulators. Bai et al. proposed an error source classification method based
on a closed loop vector method, which divides geometric errors into two types, namely, compensation
and non-compensation errors, and helps with error calibration and compensation.14 However, with a
vector method, it is difficult to describe the relative pose between the rods of compound joints, such as
a hook or spherical joint. Therefore, such joints are regarded as ideal joints in modeling, and only the
position errors of the joints and the errors of the joint lever lengths are incorporated into the geometric
error model, whereas manufacturing errors of the joints are ignored. The matrix method is used to
establish an error model that contains more comprehensive error sources based on the D–H matrix.
Therefore, the D–H method is commonly used for parallel manipulators, which require high accuracy.
Chanal et al. studied the influence of an inverse kinematic model on the machining performance of
a parallel machine tool, and conducted a quantitative analysis on the manufacturing and assembly
errors of the mechanical parts.15 Chibbi et al. analyzed the clearance of the joints and established an
error model based on the principle of virtual work; in addition, they analyzed the manipulator errors
caused by the clearance of the joints. However, the angle errors of the joints were not involved in their
research.16

A kinematic calibration is an important research area with regard to the kinematic accuracy of
parallel manipulators. Large numbers of studies on calibration have been conducted in recent decades.
Sun et al. proposed a laser tracker based on kinematic calibration of a 3-DOF rotational parallel
manipulator that would be applied in tracking and positioning fields.17 Fan et al. proposed a new
calibration approach for a parallel manipulator based on the direct kinematic model and the genetic
algorithm.18 Tian et al. presented a simple and effective approach for kinematic calibration of a 3-DOF
spindle head developed for high-speed machining.19 Wang et al. investigated a kinematic calibration
of a 3-DOF parallel manipulator based on the minimal linear combinations of error parameters.20

Calibration methods can be divided into two types: self-calibration and external calibration. A self-
calibration method is used to obtain measurement information based on internal transducers or external
constraints. Chiu et al. realized the calibration of a hexapod parallel machine tool by utilizing telescopic
rods installed between the base and moving platforms.21 The disadvantage of a self-calibration method
is that it is difficult or even impossible to install transducers on the passive joints (such as the
spherical joints) of certain manipulators. An external calibration method is used to detect the terminal
pose information through external transducers, and construct the residuals between the measured
and calculated values. In addition, geometric parameters are identified through a corresponding
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identification model based on inverse or forward kinematics. Ren et al. adjusted the pose of a moving
platform by installing a biaxial inclinometer and selecting the effective configurations measured under
the conditions of attitude constraints to realize a kinematic calibration, and the effectiveness of the
method was verified through a simulation and experiment.22 Bai et al. proposed a fuzzy difference
calibration method, which simplifies the calibration process and meets the requirement of a small
workspace of a parallel manipulator.23 Zhang et al. proposed a comprehensive compensation method
for the errors incurred using parallel manipulators. The geometric and thermal errors were assumed
to be a single virtual error source based on the theory of virtual error, and a co-existence evolution
neural network algorithm was used to realize a compensation of virtual errors.24

This paper presents a kinematic accuracy study of a 2(3HUS+S) parallel manipulator for the
simulation of hip joint motion, which can be used to test the friction and wear of two artificial hip
joints simultaneously, allowing a high test efficiency to be obtained.25 This type of parallel manipulator
is mainly used in medicine to make the artificial hip joint motion correspond to the actual hip joint
motion and meet the requirements of hip joint replacement surgery. Research on a parallel hip joint
simulator is meaningful for the development of future medical applications. The purpose of this paper
is to improve the kinematic accuracy of the manipulator. The remainder of this paper is organized
as follows. In Section 2, the prototype and topology of the 2(3HUS+S) parallel manipulator are
briefly described. In Section 3, a D–H coordinate system is established, and the kinematic equation
of the manipulator is obtained. A D-H transformation matrix is used as the error-modeling tool,
and the kinematic error model containing comprehensive manufacturing errors and assembly errors
of the manipulator is established based on the perturbation theory. In Section 4, an error equation
and an objective function are established. An iterative Levenberg–Marquardt algorithm based on
the least squares method is used to uniformly identify the geometric errors in the error model. In
addition, error compensation is completed through substituting the identified values into the kinematic
model. Based on the actual attitudes of the moving platforms measured during the experiment, the
actual kinematic calibration process is simulated through MATLAB software. The effectiveness of
the proposed calibration method is verified by comparing the attitude errors after calibration with
those before calibration. Finally, our conclusions are presented in Section 5.

2. Manipulator Description

2.1. 2(3HUS+S) parallel manipulator
The topology and prototype distribution of the 2(3HUS+S) parallel manipulator are shown in
Fig. 1(a) and (b), respectively. The parallel manipulator is mainly composed of two moving platforms,
three linear modules, a base platform and an intermediate branched chain. Each moving platform
is connected with the base platform by three identical HUS-type branched chains and an S-type
intermediate chain. Every linear module has two sliders with a constant distance between them,
which are connected with a corresponding joint lever through a hook joint (U pair). In addition, the
other end of the joint lever is connected with the corresponding moving platform through a spherical
joint (S pair). The intermediate branched chain is fixed to the base platform at one end and connected
with moving platform 2 through a thrust ball bearing at the other end. A ball spline shaft is connected
with the artificial hip joint of moving platform 2 at one end, and connected with moving platform
1 through another thrust ball bearing at the other end. The hydraulic cylinder is connected with the
artificial hip joint of moving platform 1 through a pressure transducer. The loading force of the
hydraulic cylinder acts on the artificial hip joint of moving platform 1 through a guide block and a
pressure transducer, and is transmitted to the artificial hip joint of moving platform 2 by a ball spline
shaft. The intermediate branched chain is a passive branched chain, which is mainly used for installing
artificial hip joints and balancing the loading force of a hydraulic cylinder in the vertical direction.
A spring is used to balance the gravity of moving platform 1. Although the loading forces acting on
the two artificial hip joints differ, the influence on the experiment results can be ignored. Moving
platforms 1 and 2 are driven using three linear modules simultaneously. Therefore, the two moving
platforms can obtain identical motion.

As shown in Fig. 1(a), a ji and b ji (i = 1, 2, 3; j = 1, 2) are the installation positions of the
spherical joint on the moving platform and the hook joint on the slider, respectively. In addition, Ai

is the installation position of the linear module on the base platform; ci is the projection point of b1i
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Fig. 1. 2(3HUS+S) parallel manipulator for simulation of hip joint motion. (a) Topology of the manipulator. (b)
Prototype of the manipulator.

and b2i on OAi; and o1, o2, and O are the centers of the triangles a11a12a13, a21a22a23, and A1A2A3,
respectively. The absolute coordinate system O-XYZ is set up on the base platform. The coordinate
system takes point O as the origin, the negative direction of the X -axis passes through point A3,
the Z-axis is perpendicular to the base platform and points to the moving platform, and the Y -axis
is determined based on the right-hand rule. The relative coordinate system o j-x jy jz j is set up on
the moving platform. The coordinate system takes point o j as the origin, the y j-axis passes through
point a j3, and the z j-axis is perpendicular to the moving platform and points toward the outside. The
orientations of the x j-axis, y j-axis and z j-axis follow the right-hand rule. The spherical joints are
installed symmetrically on the moving platforms around the origin of the corresponding coordinate
system o j-x jy jz j . The linear modules are installed symmetrically on base platform B around the origin
of the coordinate system O-XYZ. The spatial attitudes of the two moving platforms are determined
based on the displacement of the sliders.

2.2. Degrees of freedom
According to the revised Kutzbach–Grubler formula, the degrees of freedom of the manipulator can
be given by

M = d (n − g − 1) +
g∑

i=1

fi + v − ζ (1)

where d is the order of the manipulator, d = 6; n is the number of components, n = 8; g is the number
of all motion pairs, g = 10; fi is the number of relative degrees of freedom for the ith motion pair,∑g

i=1 fi = 21 ; v is the number of redundant constraints, v = 0; and ζ is the number of the local
degrees of freedom, ζ = 0 . Substituting these parameter values into Eq. (1), M = 6 × (8-10-1) + 21
+ 0 – 0 = 3 can be obtained.

Therefore, the 2(3HUS+S) parallel manipulator has three degrees of freedom. After the
manipulator is given a certain amount of preload using the hydraulic cylinder, it has no translation in
the three directions. According to the above analysis, the three degrees of freedom of the manipulator
are all rotations. That is, the 2(3HUS+S) parallel manipulator has three rotational degrees of freedom.
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Fig. 2. D–H coordinate system and D–H parameters of 2(3HUS+S) parallel manipulator. (a) D–H coordinate
system. (b) D–H parameters of the rotation joint links.

3. Kinematic Error Modeling

3.1. Kinematic model
The kinematic model is established using the D–H method. In the kinematic analysis, each HUS-
type branched chain of the 2(3HUS+S) parallel manipulator can be transformed into an H–2R–3R
type branched chain. Assume that each branched chain of the parallel manipulator is a single-opened
chain. Because the configuration of the kinematic pair for each branched chain is identical, the D–
H coordinate system of the branched chain with moving platform 1 is established according to the
postposition of the fixed coordinate system. Schematic diagrams of the D–H coordinate system and
the D–H parameters of the rotation joint links are shown in Fig. 2(a) and (b), respectively.

The local coordinate system (k-system) fixed on the kth rod (k = 1–6) in the branched chain is
established, as shown in Fig. 2(a). The rod length, torsional angle, rod distance and rotational angle
are the D–H parameters relating to the kth rod, and are defined as ak

1i, α
k
1i, bk

1i and βk
1i (k = 1–6, i = 1,

2, 3), respectively. In each branched chain, the rod length ak
1i and torsional angle αk

1i are the geometric
parameters of the rods, and remain constant. The rod distance bk

1i or joint lever length l1i is constant,
and the rotational angle is the motion parameter of the driven joints and changes in real time. The
pose transformation matrix between adjacent rods is described as

T k−1,k
1i = Rot(Zk−1

1i , βk
1i)Trans(0, 0, bk

1i)Trans(ak
1i, 0, 0)Rot(X k

1i, α
k
1i) k = 1 − 6, i = 1, 2, 3 (2)

where Rot represents a homogeneous rotation transformation and Trans indicates a homogeneous
translation transformation.

The coordinate system (m-system) of point ci in Fig. 1(a) is fixed on the base platform, and the
relative pose between the m-system and base platform coordinate system (O-system) is determined
through the following transformation. Initially, the m-system coincides with the O-system. First, the
m-system translates along the X - and Y -axes, and the distances of the translation are rbcosβOi and
rbsinβOi, respectively. Then, the m-system rotates (βOi − π /2) around the Zm

1i-axis, and the origin of
the m-system reaches point ci. The transformation matrix from the O-system to the m-system can be
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expressed as

T Om
1i = Trans(rbcosβOi, rbsinβOi, 0)Rot(Zm

1i, βOi − π/2) (i = 1, 2, 3) (3)

where rb is the distance from the center of the hook joints to the Z-axis, and βOi is the distribution
angle of the linear modules on the base platform.

The relative pose between the coordinate system (h-system) of the slider and the m-system is
determined through the following transformation. Initially, the h-system coincides with the m-system.
Then, the m-system translates along the Zm

1i-axis, the distance of the translation is L1i and the origin
of the h-system reaches point b1i. The transformation matrix from the O-system to the m-system is
obtained as

T mh
1i = Trans(0, 0, L1i) (i = 1, 2, 3) (4)

where L1i is the displacement of the sliders.
The relative pose between the coordinate system (0−system) of the hook joint bearing and the

h-system is determined through the following transformation. Initially, the 0−system coincides with
the h-system. Then, the 0−system rotates π /2, π /2 and −π /6 around the X 0

1i-axis, Z0
1i-axis andY 0

1i-axis,
respectively. The position at the moment is the location of the 0-system. The transformation matrix
from the h-system to the 0-system is obtained as

T h0
1i = Rot

(
X 0

1i,
π

2

)
Rot

(
Z0

1i,
π

2

)
Rot

(
Y 0

1i, −
π

6

)
(i = 1, 2, 3) (5)

The coordinate system (6−system) of the spherical joint is fixed on the moving platform, and
the relative pose between the 6−system and the moving platform coordinate system (o1-system)
is determined through the following transformation. Initially, the o1-system coincides with the
6−system. First, the o1-system rotates π and (π /2−αoi) around the y1-axis and z1-axis, respectively.
Then, the o1-system translates along the x1-axis and y1-axis, the distances of the translation are
−racosαoi and −rasinαoi, respectively, and the origin of the o1−system reaches point o1. The
transformation matrix from the 6-system to the o1-system is written as

T 6o1
1i

′ = Rot(y1, π )Rot(z1, π/2 − αoi)Trans(−ra cos αoi, −ra sin αoi, 0) (i = 1, 2, 3) (6)

where ra is the installation radius of the spherical joints on the moving platform and αoi is the
distribution angle of the spherical joints.

According to the above analysis, the kinematic equation of branch 1i is given by

T Oo1
1i = T Om

1i T mh
1i T h0

1i T 01
1i T 12

1i T 23
1i T 34

1i T 45
1i T 56

1i T 6o1
1i (i = 1, 2, 3) (7)

where T Oo1
1i is the pose transformation matrix of moving platform 1 relative to the base platform.

3.2. Error model
The error model established through a vector method only includes the position errors of the joints
and the sliders and the errors of the joint lever lengths, whereas the motion of the joints cannot
be reflected in the model. However, the error model established using the D–H method can include
manufacturing errors of the joints, which can reflect the error sources affecting the kinematic accuracy
of the manipulator in a comprehensive manner. Therefore, the error model is established using the
D–H method based on the perturbation theory. First, the error parameters are introduced. Obviously,
in addition to the motion parameters of the driven joints, the D–H parameters of the rods are the
structural parameters of the branched chains. These parameters are collectively referred to as the
geometric parameters. The errors in the geometric parameters caused by the manufacturing and
assembly are known as geometric errors. Assume that the influence of non-geometric errors on an
error in attitude is much smaller than that of geometric errors, and can therefore be ignored owing to
the high stiffness of a parallel manipulator. The actual D–H parameters of the 2(3HUS+S) parallel
manipulator are shown in Table I.
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Table I. Actual D–H parameters of 2(3HUS+S) parallel manipulator.

Numbers ak
1i

′ (mm) αk
1i

′ (◦) bk
1i

′ (mm) βk
1i

′ (◦)

1 δa1
1i −π /2+δα1

1i 0 β1
1i

2 δa2
1i −π /2+δα2

1i 0 β2
1i

3 δa3
1i δα3

1i l1i+δl1i 0
4 δa4

1i π /2+δα4
1i 0 β4

1i
5 δa5

1i π /2+δα5
1i 0 β5

1i
6 0 −7π /18 0 β6

1i

In Table I, ak
1i

′, αk
1i

′, bk
1i

′, and βk
1i

′ (k = 1–6; i = 1, 2, 3) represent the actual rod length, torsional
angle, rod distance and rotational angle of the manipulator during motion, respectively. In addition,
δak

1i and δαk
1i are the offset error and angle error between the adjacent rotation axes, respectively.

The actual pose matrix between the adjacent rods in the rod coordinate systems is

T k−1,k
1i = Rot(Zk−1

1i , βk
1i

′)Trans(0, 0, bk
1i

′)Trans(ak
1i

′, 0, 0)Rot(X k
1i, α

k
1i

′) k = 1 − 6, i = 1, 2, 3
(8)

The position errors of the sliders, δL11, δL12 and δL13; the errors of the joint lever lengths, δl11, δl12

and δl13; the installation position errors of the spherical joints, δra1ix, δra1iy and δra1iz (i = 1, 2, 3);
the installation position errors of the hook joints, δrb1ix, δrb1iy and δrb1iz (i = 1, 2, 3); the installation
position errors of moving platform 1, δXo1, δYo1 and δZo1; the distribution angle errors of the spherical
joints on moving platform 1, δb1i (i = 1, 2, 3) and the distribution angle errors of the linear modules
on the base platform, δdi (i = 1, 2, 3) are taken into account in the error model, in addition to the errors
of the D–H parameters. According to the actual transformation matrix between the rod coordinate
systems, the errors transformation matrix from the absolute coordinate system O-XYZ to the relative
coordinate system o1-x1y1z1 can be obtained based on the perturbation theory.

T Oo1
1i

′ = T Om
1i

′T mh
1i

′T h0
1i

′T 01
1i

′T 12
1i

′T 23
1i

′T 34
1i

′T 45
1i

′T 56
1i

′T 6o1
1i

′ =
[

ROo1
1i

′ POo1
1i

′
0 1

]
(i = 1, 2, 3) (9)

where

TOm
1i

′ = Trans(rbcos(βOi + δdi) + δrb1ix, rbsin(βOi + δdi) + δrb1iy, δrb1iz )

× Rot(Zm
1i, βOi + δdi − π/2) (i = 1, 2, 3) (10)

T mh
1i

′ = Trans(0, 0, L1i + δL1i) (i = 1, 2, 3) (11)

T h0
1i = Rot

(
X 0

1i,
π

2

)
Rot

(
Z0

1i,
π

2

)
Rot

(
Y 0

1i, −
π

6

)
(i = 1, 2, 3) (12)

T 6o1
1i

′ = Rot(y1, π )Rot(z1, π/2 − αoi − δbi)Trans(−ra1 cos(αoi + δbi) − δra1ix,

− ra1 sin(αoi + δbi) − δra1iy, −δra1iz ) (i = 1, 2, 3)
(13)

The actual pose matrix of moving platform 1 can be obtained by utilizing the pose transformation
directly.

T ′
1 =

[
R′

1 P′
1

0 1

]
= Trans (δXo1 + δXo2, δYo1 + δYo2, h1 + δZo1 + δZo2)

× Rot(Z, γ ′)Rot(Y, β ′)Rot(X, α′) (i = 1, 2, 3) (14)

where R1’is the actual attitude matrix of moving platform 1, P1’ is the position vector of the o1-
system origin in the O-system and h1 is the theoretical installation height. The position vector of
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moving platform 1 is affected by the installation position errors of moving platform 2, δXo2, δYo2 and
δZo2, which is due to moving platform 1 being fixed over the rotation center of moving platform 2 in
series through a ball spline shaft. In addition, δXo1 + δXo2, δYo1 + δYo2, h1 + δZo1 + δZo2, α’, β’ and
γ ’ are the actual pose parameters of the manipulator.

The relationship between the geometric errors of branch 1i and the actual pose parameters of
moving platform 1 can be established according to the above analysis.

T Oo1
1i

′ = T ′
1 (i = 1, 2, 3) (15)

Similarly, the relationship between the geometric errors of other branches and the actual pose
parameters of the moving platform can be obtained. The actual pose of the moving platform can
be solved by substituting the displacement values of the sliders under the theoretical pose and all
error values into Eq. (15), and the pose error can then be obtained. Therefore, the establishment
of the error model is completed. The error model reflects the error sources affecting the kinematic
accuracy of the parallel manipulator more comprehensively, which provides the theoretical basis for the
identification of the geometric errors and facilitates the realization of the accurate error compensation
in the kinematic calibration of the manipulator.

4. Kinematic Calibration

4.1. Calibration method
Here, ROo1

1i
′ = R′

1 and POo1
1i

′ = P′
1 can be obtained owing to T Oo1

1i
′ = T ′

1 . A total of 12 equations
can be established for each branched chain, and therefore six branches can result in 72 equations, and
72 unknowns can be solved. These 72 equations can be expressed through the following functional
form:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

f1 = T Oo1
11

′(1, 1) − T ′
1(1, 1)

f2 = T Oo1
11

′(1, 2) − T ′
1(1, 2)

...

f36 = T Oo1
13

′(3, 4) − T ′
1(3, 4)

...

f72 = T Oo1
23

′(3, 4) − T ′
2(3, 4)

(16)

There are 123 unknowns in the above equations, which include the geometric errors related to
moving platform 2: the offset errors between the rotation axes, δak

2i (i = 1, 2, 3, k = 1–5); the angle
errors between the rotation axes, δαk

2i (i = 1, 2, 3, k = 1–5); the position errors of the sliders, δL21,
δL22 and δL23; the errors of the joint lever lengths, δl21, δl22 and δl23; the installation position errors
of the spherical joints, δra2ix, δra2iy and δra2iz (i = 1, 2, 3); the installation position errors of the
hook joints, δrb2ix, δrb2iy and δrb2iz (i = 1, 2, 3) and the distribution angle errors of the spherical
joints on moving platform 2, δb2i (i = 1, 2, 3). Thirty-six equations can be obtained through each
measured attitude of the moving platform; therefore, at least four groups of suitable attitudes need
to be measured. The errors can be solved using the least squares method after a sufficient number of
attitudes are measured. Assume that 20 groups of moving platform attitudes and slider displacement
are measured, the objective function can be established as

F = min
20∑

m=1

36∑
n=1

( fn)2 (17)

Assume that

ε = [δLji, δl ji, δra jix, δra jiy, δra jiz, δrb jix, δrb jiy, δrb jiz, δXoj, δYoj, δZoj, δb ji, δdi, δa ji
1, δa ji

2, δa ji
3,

× δa ji
4, δa ji

5, δα ji
1, δα ji

2, δα ji
3, δα ji

4, δα ji
5]T ( j = 1, 2; i = 1, 2, 3) , f = [

f1, f2, . . . , f720
]T
.
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Table II. Geometric parameters of 2(3HUS+S) parallel manipulator.

Geometric parameters Values Geometric parameters Values

Length of the joint levers l ji (mm) 328 Installation height of moving platform 1 h1 (mm) 899
Installation radius of the spherical 144 Installation height of moving platform 2 h2 (mm) 490

joints ra (mm)
Distance from the center of the hook 265 Allowable rotation angle of the spherical joints (◦) 30

joints to the Z-axis rb (mm)

The error equation can be written as

f (ε) = 0 (18)

Equation (18) is a non-linear equation and is difficult to solve. Therefore, a linear equation is
obtained through a linearization method. A Taylor series expansion is used for Eq. (18), where the
high-order remainder is omitted, and Eq. (19) can be obtained by regarding ε0 = 0 as the approximation
vector of the errors.

f (ε0) + ∂ f (ε)

∂ε
|ε=ε0 · 
ε = 0 (19)

To avoid singular matrix, the iterative Levenberg–Marquardt algorithm based on the least squares is
used to solve Eq. (19).

Assume that E = ∂ f (ε)
∂ε

, then


ε = −[(ET E + λI)−1ET ] f (ε) (20)

where λ is the modifying factor of the Levenberg–Marquardt algorithm.

εs+1 = εs + 
ε (21)

Equation (21) is a modifying equation of a geometric error vector in the calibration, and ε is
modified through a continuous iteration. The iteration is completed once the geometric errors make
the objective function sufficiently small, and the optimal solution of the geometric errors can be
obtained.

A calibration algorithm flow chart of the 2(3HUS+S) parallel manipulator is shown in Fig. 3.
The identification values of the geometric errors are substituted into the kinematic model in the

control software to realize the error compensation. The theoretical attitudes after compensation can
be obtained through forward kinematics. The attitude errors of the moving platforms can be obtained
by comparing the measured values with the theoretical values. Therefore, the kinematic calibration
of the manipulator is completed.

4.2. Results of calibration and simulation
A 2(3HUS+S) parallel manipulator is shown in Fig. 1, the geometric parameters of which are shown
in Table II.

According to ISO14242-1:2002(E) artificial hip joint prosthesis test standard, the operation
frequency of a friction and wear test for a hip joint prosthesis is 1 HZ ± 0.1 HZ, and the range
of motion angle for flexion/extension (FE), abduction/adduction (AA) and internal/external rotation
(IER) are −18–25◦, −4–7◦ and −10–2◦, respectively. The Z-, X - andY -axes are defined as the rotation
axes of the FE, AA and IER, respectively. According to the actual motion trajectory of an artificial
hip joint, the motion law of the moving platforms for the 2(3HUS+S) parallel manipulator is shown
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Start

Recording the displacement values of the 
sliders in different theoretical attitudes

Measuring the actual attitude 
angles of the moving platforms

Substituting into the error model

Initializing ε0, λ and eps(setting accuracy)

Calculating E and f(ε)

Δε= (ETE+λI)-1ETf(ε)

Modifying the parameters εs+1=εs+Δε

F(εs+1)<F(εs)

λ=λ/10 λ=λ·10

||Δε||<eps ||Δε||<eps

Algorithm convergence ε=εs+1 Algorithm convergence ε=εs

Modifying the parameters of kinematic model in controller

End

No

Yes

Yes Yes

No

No

Fig. 3. Calibration algorithm flow chart of 2(3HUS+S) parallel manipulator.

Fig. 4. Test parameters of 2(3HUS+S) parallel manipulator. (a) Motion trajectory of the moving platforms. (b)
Displacement of the sliders.

in Fig. 4(a), and the mathematics equation is

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

α = 5.5π

180
cos[2π (t − 0.21)] + 1.5π

180

β = 6π

180
cos(2πt + π ) − 4π

180

γ = 21.5π

180
cos(2πt ) + 3.5π

180

(22)
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Fig. 5. Experiment diagram of 2(3HUS+S) parallel manipulator.

where t is the driving time, and α, β and γ are the rotation angles of the moving platforms around
the X -, Y - and Z-axes, respectively.

The displacement value of each slider can be calculated through the inverse kinematics based on
the motion trajectory of the moving platforms and the kinematic model. The displacement curves of
the sliders driven by the linear modules are obtained, as shown in Fig. 4(b).

To verify the proposed kinematic calibration method, a simulation experiment of the 2(3HUS+S)
parallel manipulator is carried out in a laboratory. The control system of the manipulator is mainly
composed of an industrial computer, a motion controller (GTS-400), three displacement transducers
(CESI-S1000P), and two attitude heading reference systems (MPU6050). An experiment diagram is
shown in Fig. 5. The attitude heading reference systems are fixed on the moving platforms, which are
used to measure the attitudes of the moving platforms. The inverse kinematic model of the manipulator
is solved using software in an industrial computer. The industrial computer is applied to send a control
signal to the motion controller and receive the information from the displacement transducers and the
attitude heading reference systems. The feedback signals of the control system are obtained through
the encoder on the servo motors. The loading force from the hydraulic cylinder is controlled using
the PLC.

The manipulator is regular in motion according to the displacement of the sliders, as shown in
Fig 4(b). In the process of motion, the actual attitudes of the moving platforms are measured based on
the attitude heading reference systems fixed on the moving platforms. To obtain accurate calibration
results, for each moving platform, 10 groups of measured attitudes in 1 s are selected. Five repeatable
experiments and measurements are carried out, and the range of repeatability of the attitude values
is 0.001–0.005◦. The mean value of the measured attitudes for each group, and each part of the
structural parameters of the moving platforms, are substituted into the calibration model. Based on
the calibration method proposed in this paper, the numerical simulation is realized using MATLAB
software. The calculation time of the calibration algorithm is about 20 min, and the number of iterations
is 7. Eventually, the 123 geometric errors identified are as shown in Fig. 6 and Table III.

To express the identification values of different geometric errors in a convenient manner and make
the identified geometric errors more intuitive and clear, the identification results are presented in
Fig. 6 and Table III, respectively. Furthermore, the position and angle errors are shown in Fig. 6(a)
and (b), respectively. It can be seen from the identification values of the geometric errors in Fig. 6(a)
and Table III that δrb j1x, δrb j2x, δrb j2y, δrb j3y, δra j2x, δa4

j2 and δa5
j2 ( j = 1, 2) are larger than the other

geometric errors. The results show that larger position errors mainly occur in the installation of the
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Fig. 6. Geometric error identification values of 2(3HUS+S) parallel manipulator. (a) Geometric errors-1. (b)
Geometric errors-2.

hook joints, the installation of spherical joint a j2 and the offset between the rotation axes of spherical
joint a j2. Combining Fig. 6(b) with Table III, we can see that δα1

j2, δα
2
j2, δα

3
j2, δα

4
j2, δα

5
j2 and δb j2

are larger than the other geometric errors. The results show that the larger angle errors mainly occur
in the angle between the rotation axes of spherical joint a j2 and hook joint b j2, and the distribution
angle of spherical joints a j2. Therefore, to reduce the influence of errors in the attitude of the moving
platforms and improve the kinematic accuracy of the manipulator, the coordinate error control of the
hook joints and spherical joint a j2 should be given more attention in the process of assembling the
parallel manipulator. In addition, the manufacturing accuracy of both the spherical joints and the hook
joints should be improved.

Error compensation is realized by substituting the identified geometric errors into the control
model, and the theoretical attitudes after compensation are obtained through forward kinematics. The
10 groups of theoretical attitudes, the actual attitudes, and the attitudes after compensation of the
moving platforms are listed in Table IV. The attitude errors of the moving platforms after calibration
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Table III. Geometric error identification values of 2(3HUS+S) parallel manipulator.

Branch11 Branch12 Branch13 Branch21 Branch22 Branch23
( j = 1, i = 1) ( j = 1, i = 2) ( j = 1, i = 3) ( j = 2, i = 1) ( j = 2, i = 2) ( j = 2, i = 3)

δdi(◦) −0.1123 −1.7557 −0.2997 / / /

δXoj(mm) 0.9112 2.1747
δYoj(mm) −0.6370 −2.2655
δZoj(mm) 0.8525 2.0218

Table IV. Attitude data of moving platforms.

Theoretical attitudes (◦) Actual attitudes (◦) After compensations (◦)

Moving platform 1 α β γ α1 β1 γ 1 α1′ β1′ γ 1′

1 3 −10 25 2.980 −9.875 24.95 3.005 −9.873 24.92
2 6.131 −8.854 20.89 6.247 −8.653 20.41 6.236 −8.627 20.40
3 7.496 −5.854 10.14 7.507 −5.585 9.354 7.507 −5.585 9.354
4 6.574 −2.146 −3.144 6.471 −1.899 −4.085 6.481 −1.902 −4.081
5 3.717 0.8541 −13.89 3.538 1.043 −14.85 3.538 1.016 −14.85

Theoretical attitudes (◦) Actual attitudes (◦) After compensations (◦)

Moving platform 2 α β γ α2 β2 γ 2 α2′ β2′ γ 2′

1 3 −10 25 2.980 −9.875 24.96 3.005 −9.873 24.93
2 6.131 −8.854 20.89 6.247 −8.653 20.45 6.236 −8.627 20.44
3 7.496 −5.854 10.14 7.507 −5.585 9.415 7.507 −5.585 9.412
4 6.574 −2.146 −3.144 6.471 −1.888 −3.987 6.481 −1.902 −3.988
5 3.717 0.8541 −13.89 3.537 1.043 −14.68 3.538 1.016 −14.69

Table V. Absolute maximum and absolute mean values of attitude errors before and after calibration.

Absolute maximum values Absolute mean values

Moving Moving Moving Moving
platform 1 platform 2 platform 1 platform 2

Attitude errors Before After Before After Before After Before After

δα(◦) 0.1805 0.0331 0.1804 0.0320 0.1020 0.0141 0.1022 0.0143
δβ(◦) 0.2690 0.0269 0.2690 0.0268 0.1330 0.0142 0.1341 0.0154
δγ (◦) 1.1700 0.0556 0.8430 0.0616 0.5907 0.0210 0.5322 0.0254

can be obtained by comparing the theoretical attitudes after compensation with the measured attitudes.
The attitude errors of the moving platforms before and after calibration are shown in Fig. 7.

To make the reduction and comparison of the attitude errors before and after calibration more
apparent, the scales on the vertical axes of Fig. 7(e) and (f) are made the same as in Fig. 7(a) and (b).
As can be seen from the figures, the attitude errors of the moving platforms after calibration are greatly
reduced compared with before the calibration. For the attitudes of group 1 of the moving platforms, a
phenomenon in which α slightly worsens can be occasionally seen, whereas the attitudes of all other
groups significantly improve. The attitude errors of groups 3 and 7 of moving platform 1 appear to
disappear altogether, which indicates that the two groups of attitude errors obtain the best calibration
effect. In addition, the error value of γ is much larger than that of α and β before calibration, and
the error values of the three attitudes are close after calibration. The results show that the calibration
method is robust to the initial errors of the manipulator.

To further verify that the kinematic accuracy can be improved through a kinematic calibration,
the absolute maximum and absolute mean values of the attitude errors for the two moving platforms
before and after calibration are listed in Table V. As observed in the table, the two attitude errors
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Fig. 7. Attitude errors of moving platforms before and after calibration. (a) Attitude errors of moving platform
1 before calibration (δα1, δβ1, δγ 1). (b) Attitude errors of moving platform 2 before calibration (δα2, δβ2,
δγ 2). (c) Attitude errors of moving platform 1 after calibration (δα1’, δβ1’, δγ 1’). (d) Attitude errors of moving
platform 2 after calibration (δα2’, δβ2’, δγ 2’). (e) Attitude errors of moving platform 1 after calibration (δα1’,
δβ1’, δγ 1’). (f) Attitude errors of moving platform 2 after calibration (δα2’, δβ2’, δγ 2’).

after calibration are significantly less than those before the calibration. For moving platform 1, the
absolute maximum value of the attitude errors is reduced from (0.1805, 0.2609, 1.1700)◦ to (0.0331,
0.0269, 0.0556)◦, and the absolute mean value is reduced from (0.1020, 0.1330, 0.5907)◦ to (0.0141,
0.0142, 0.0210)◦. For moving platform 2, the absolute maximum value of the attitude errors is reduced
from (0.1804, 0.2690, 0.8430)◦ to (0.0320, 0.0268, 0.0616)◦, and the absolute mean value is reduced
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from (0.1022, 0.1341, 0.5322)◦ to (0.0143, 0.0154, 0.0254)◦. It can be seen that, after the kinematic
calibration is completed, δα and δβ decrease to about 1/10 before calibration, and δγ decreases to about
1/20. The results indicate that the kinematic accuracy of the manipulator is improved significantly,
and the calibration method is therefore effective.

5. Conclusion
The kinematic accuracy of a 2(3HUS+S) parallel manipulator for the simulation of hip joint motions
was described in this paper. A D–H coordinate system was established, and a kinematic equation was
obtained. A D–H transformation matrix was used as the error-modeling tool and a kinematic error
model of the parallel manipulator integrating manufacturing and assembly errors was established
based on the perturbation theory. In the modeling, the installation position errors of the moving
platforms, errors in the distribution angle of the joints and linear modules and the axis offset and
angle errors of the joints were considered, along with errors in the joint lever lengths and position
errors of the joints and sliders.

An iterative Levenberg–Marquardt algorithm based on the least squares method was used to identify
the geometric errors in the error model according to the error equation and the objective function.
To verify the effectiveness of the proposed method, a calibration experiment was carried out. Based
on the actual attitudes of the experimentally measured moving platforms, a simulation was realized
using MATLAB software, and the identification values of the geometric errors were obtained. Error
compensation was completed by regarding the identification values as error compensation values and
substituting them into the control software of the manipulator as a means to modify the kinematic
model. The experiment and simulation results show that the attitude errors of the moving platforms
after calibration are greatly reduced compared with those before calibration, and the kinematic
accuracy of the manipulator is significantly improved. The analyses described herein validate the
correctness and effectiveness of the error model and kinematic calibration method of the 2(3HUS+S)
parallel manipulator.
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