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Abstract. An analysis of electron trajectories in a helical magnetic wiggler with a
uniform ion channel and a uniform axial magnetic field is presented. The axial
field is considered in both the conventional and reversed directions. Equations
for the transverse coordinates and velocities of a single relativistic electron in the
combined ion electrostatic field and helical and axial magnetic fields are derived.
A sixth-degree polynomial equation for the electron velocity and an equation for
the function Φ (which determines the rate of change of axial velocity with energy)
are derived. Results of some numerical calculations are presented to illustrate the
effects of the electrostatic field and the axial magnetic field in each of the two
configurations.

1. Introduction
The free-electron laser (FEL) is a high-intensity, continuously tunable source of co-
herent electromagnetic radiation for whichmany applications have been envisioned.
These include a number of possible medical, industrial, communications, radar, con-
trolled fusion, and basic scientific research applications. Freund and Antonsen [1]
have presented a detailed discussion of FEL applications as well as some existing
user facilities.
An axial magnetic guide field is often employed in the parallel-field configuration

for which the cyclotron rotation of the electron beam is in the same direction as
the rotation imposed by the helical wiggler magnetic field. It can also be employed
in the reserved-field configuration for which the cyclotron rotation of the beam is
in the direction opposite to the rotation imposed by the helical wiggler field. An
experimental study shows that the output power and efficiency of the FEL in a
reversed-field configuration can be higher than in the parallel-field configuration
[2, 3]. An alternative guiding technique consists of passing the beam through an
ion channel. Recent theoretical studies of the electron trajectories and gain in a
FEL with ion-channel guiding indicate that this technique offers some distinct
advantages [4, 5]. In the present paper electron trajectories in a FEL with helical
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wiggler, ion-channel guiding, and an axial magnetic field in both the parallel-field
and reversed-field configurations are studied.
The organization of this paper is as follows. In Sec. 2 the relativistic equation

of motion for a single electron in the combined fields is solved for the transverse
coordinates and velocities in the parallel-field configuration. A sixth-degree poly-
nominal equation for the axial velocity is obtained by using conservation of energy.
An equation is then derived for the function Φ which is used to determine the mass
regimes. In Sec. 3 the orbital stability is investigated and stability conditions are
derived. In Sec. 4 the electron trajectories and stability conditions for the reversed-
field configuration are investigated. In Sec. 5 the results of a numerical study based
on equations derived in Secs. 2, 3, and 4 are presented and discussed.

2. Electron trajectories and Φ (parallel-field configuration)
Consider a relativistic electron with rest massm, charge e, and velocity v advancing
in the positive z direction in a free-electron laser with helical wiggler field described
by

Bw = Bw(êx cos kwz + êy sin kwz), (1)

where kw = 2π/λw is the wiggler wave number. The transverse electrostatic field
generated by an ion channel can be written as

Ei = 2πeni(xêx + yêy), (2)

where ni is the density of positive ions having charge +e. The equation of motion
of the electron can be written as

dp
dt

= −e

(
Ei +

1
c
v× B

)
, (3)

where

B = Bw + B0, (4)

and B0 = B0êz is a uniform static magnetic field directed parallel to the wiggler
axis (in the positive z direction). Using (1)–(4), the scalar equations of motion can
be obtained as

d(mγvx)
dt

= −2πe2nix +
eBw

c
vz sin kwz − eB0

c
vy, (5)

d(mγvy)
dt

= −2πe2niy − eBw

c
vz cos kwz +

eB0

c
vx, (6)

d(mγvz)
dt

=
eBw

c
(vy cos kwz − vx sin kwz), (7)

where γ is the relativistic factor. The steady-state transverse electron displacements
can be obtained by solving (5)–(7) (vz = v‖ = costant, z = v‖t) in the form

x =
Ω̄wβ‖

kwc
(
ω̄2
i − β2

‖ + Ω̄0β‖
) sin kwz, (8)

y = −
Ω̄wβ‖

kwc
(
ω̄2
i − β2

‖ + Ω̄0β‖
) cos kwz, (9)
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where Ω̄w ≡ Ωw/ckw, Ωw ≡ eBw/γmc, β‖ ≡ v‖/c, ω̄i ≡ ωi/ckw, ω2
i ≡ 2πe2ni/γm,

Ω̄0 ≡ Ω0/ckw, and Ω0 ≡ eB0/γmc. Hence, the electron trajectory is a perfect helix
with its axis coincident with the free-electron laser axis. Using (8) and (9), the
normalized transverse electron velocities can be written as

βx =
Ω̄wβ2

‖

ω̄2
i − β2

‖ + Ω̄0β‖
cos kwz, (10)

βy =
Ω̄wβ2

‖

ω̄2
i − β2

‖ + Ω̄0β‖
sin kwz, (11)

where βx ≡ vx/c and βy ≡ vy/c. These orbits show a resonant enhancement in the
magnitude of the transverse velocities when

ω̄2
i − β2

‖ + Ω̄0β‖ � 0. (12)

The foregoing analysis contains two important cases: if Ω̄0 is set equal to zero
(eliminating the axial magnetic field) the transverse velocities become [1]

βx =
Ω̄wβ2

‖

ω̄2
i − β2

‖
cos kwz, (13)

βy =
Ω̄wβ2

‖

ω̄2
i − β2

‖
sin kwz, (14)

and the resonant condition becomes

ω̄i � β‖, (15)

for a helical wiggler with ion-channel guiding only. If ω̄i is set equal to zero (elimi-
nating the ion channel), the transverse velocities become

βx =
Ω̄wβ‖

Ω̄0 − β‖
cos kwz, (16)

βy =
Ω̄wβ‖

Ω̄0 − β‖
sin kwz, (17)

and the resonant condition becomes

Ω̄0 � β‖, (18)

for a helical wiggler with axial magnetic field only.
The normalized axial velocity β‖ can be obtained from the conservation of energy

using (10) and (11). A sixth-degree polynomial equation,

β2
‖


1 +

Ω̄2
wβ2

‖(
ω̄2
i − β2

‖ + Ω̄0β‖
)2


 = 1 − γ−2, (19)

is thereby obtained. There are in general six solutions for β‖ for each set of para-
meters; of these only the three for which β‖ > 0 (corresponding to advance of the
electron in the positive z direction) will be employed. Implicit differentiation of

https://doi.org/10.1017/S0022377803002459 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377803002459


12 M. Esmaeilzadeh, H. Mehdian and J. E. Willett

(19) yields
dβ‖

dγ
=

1
γγ2

‖ β‖
Φ, (20)

where

Φ = 1 −
Ω̄2
wβ2

‖
[(

Ω̄0β‖ + ω̄2
i

)
γ2

‖ + ω̄2
i

]
(
ω̄2
i − β2

‖ + Ω̄0β‖
)3 + Ω̄2

wβ2
‖
(
Ω̄0β‖ + 2ω̄2

i

) (21)

and γ‖ = (1 − β2
‖ )−1/2. Equation (21) determines the rate of variation of the axial

velocity with electron energy. If Ω̄0 is set equal to zero (eliminating the axial
magnetic field), (21) becomes

Φ = 1 −
(1 + γ2

‖ )Ω̄2
wω̄2

i β
2
‖(

ω̄2
i − β2

‖
)3 + 2Ω̄2

wω̄2
i β

2
‖

, (22)

for a helical wiggler with ion-channel guiding only. If ω̄i is set equal to zero (elim-
inating the ion channel), (21) becomes

Φ = 1 −
γ2

‖ Ω̄0Ω̄2
w

(Ω̄0 − β‖)3 + Ω̄0Ω̄2
w

, (23)

for a helical wiggler with axial magnetic field guiding only. The analysis in the
absence of an ion channel was first carried out by Friedland [6] using the wiggler
frame and has been discussed in detail by Freund and Antonsen [1]. Equations (16),
(18), and (23) can be shown to be equivalent to the corresponding equations derived
in the wiggler frame.

3. Stability of electron orbits
The wiggler frame (a coordinate frame which rotates with the wiggler field) is
defined by basis vectors:

ê1 = êx cos kwz + êy sin kwz, (24)

ê2 = −êx sin kwz + êy cos kwz, (25)

ê3 = êz. (26)

In this frame, the scalar equations of motion can be written as

dv1

dt
= −ω2

i x1 − (Ω0 − kwv3)v2, (27)

dv2

dt
= −ω2

i x2 + (Ω0 − kwv3)v1 − Ωwv3, (28)

dv3

dt
= Ωwv2. (29)

Using (24)–(26), the velocities v1, v2, and v3 in the wiggler frame can be obtained
as

v1 = ẋ1 − kwv3x2, (30)

v2 = ẋ2 + kwv3x1, (31)

v3 = ẋ3, (32)
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where dots indicate differentiation with respect to time. The steady-state solution
of (27)–(29) can be obtained by setting the derivatives of these equations equal to
zero. Then by using (30)–(32) we have

v10 =
cΩ̄wβ2

‖

ω̄2
i − β2

‖ + Ω̄0β‖
, (33)

v20 = 0, (34)

v30 = v‖ = cβ‖ = constant, (35)

for electron velocity and

x10 = 0, (36)

x20 = −
Ω̄wβ‖

kw
(
ω̄2
i − β2

‖ + Ω̄0β‖
) , (37)

x30 = v30t = cβ‖t, (38)

for electron position, where subscript 0 indicates steady state.
The stability of these steady-state solutions can be examined by considering

small perturbations x1 = δx1, x2 = x20 + δx2, ẋ1 = δẋ1, ẋ2 = δẋ2, and ẋ3 = v‖ + δẋ3.
Eliminating v1, v2, and v3 in the orbital equations (27)–(29) by using (30)–(32) and
their time derivatives, and then expanding to first order in the perturbed position
and its time derivative, we obtain

δẍ1 = c1δx1 + c2δẋ2 + c3δẍ3, (39)

δẍ2 = c1δx2 − c2δẋ1 + c4δẍ3, (40)

δẍ3 = c5δẋ2 + c6δx1, (41)

where

c1 = −
(
ω̄2
i − β2

‖ + Ω̄0β‖
)
c2k2

w,

c2 = −(Ω̄0 − 2β‖)ckw,

c3 = x20k
2
w,

(42)
c4 = −[Ω̄w + (Ω̄0 − 2β‖)x20kw]ckw,

c5 = Ω̄wckw,

c6 = Ω̄wβ‖c
2k2
w.

Differentiating (39) and (40) with respect to time and using (41) and its time
derivative yields

δẍ1 = (c1 + c3c6)δẋ1 + (c2 + c3c5)δẍ2, (43)

δẍ2 = (c1 + c4c5)δẋ2 − c2δẍ1 + c4c6δx1. (44)

The stability of electron orbits may be investigated as follows. All displacements
oscillate with the same frequency ω and are represented by

δxj = Aj eiωt, j = 1, 2. (45)
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Substituting (45) into (43) and (44) yields

iω(ω2 + c1 + c3c6)A1 − (ω2c2 + c3c5)A2 = 0, (46)

(ω2c2 + c4c6)A1 + iω(ω2 + c1 + c4c5)A2 = 0. (47)

The above homogeneous linear equations have a non-trivial solution only if the
determinant of the coefficients of unknowns A1, A2 vanishes; thus

ω4 + bω2 + c = 0, (48)

where

b ≡ 2c1 − c2
2 + c4c5 + c3c6 − c2c3c5 (49)

and

c ≡ (c1 + c3c6)(c1 + c4c5) − c4c6(c2 + c3c5). (50)

Equation (48) is the characteristic equation of the system and is quadratic in ω2.
Hence the system will be stable if both roots of (48) are real and positive. Therefore
the stability conditions for electron orbits can be written as

b2 − 4c > 0,

b < 0, (51)

c > 0.

4. Reversed-field configuration
In this section we study the electron trajectories in a FEL with helical wiggler, ion-
channel guiding, and axial magnetic field in the reversed-field configuration. With
axial magnetic field B0 replaced by −B0êz in (4), the scalar equations of motion
can be written as

dvx

dt
= −ω2

i x + Ωwvz sin kwz + Ω0vy, (52)

dvy

dt
= −ω2

i y + Ωwvz cos kwz − Ω0vx, (53)

dvz

dt
= Ωw(vy cos kwz − vx sin kwz). (54)

Following the procedure of the steady-state solution, the transverse velocity can
be obtained in the form

βx =
Ω̄wβ2

‖

ω̄2
i − β2

‖ − Ω̄0β‖
cos kwz, (55)

βy =
Ω̄wβ2

‖

ω̄2
i − β2

‖ − Ω̄0β‖
sin kwz. (56)

The above equations show a resonant enhancement in the magnitude of the trans-
verse velocity for the reversed-field configuration when

ω̄2
i − β2

‖ − Ω̄0β‖ � 0. (57)
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If ω̄i is set equal to zero, the components of transverse velocity become

βx = −
Ω̄wβ‖

Ω̄ + β‖
cos kwz, (58)

βy = −
Ω̄wβ‖

ω̄0 + β‖
sin kwz. (59)

In contradistinction to (16) and (17) for the parallel-field configuration, (58) and (59)
do not predict any resonance condition for the reversed-field configuration in this
case (ω̄i = 0).
The axial velocity for the reversed-field configuration can be obtained from con-

servation of energy. Equations (55) and (56) yield

β2
‖


1 +

Ω̄2
wβ2

‖(
ω̄2
i + β2

‖ − Ω̄0β‖
)2


 = 1 − γ−2. (60)

The function Φ in the reversed-field configuration is then obtained in the form

Φ = 1 −
Ω̄2
wβ2

‖
[(

ω̄2
i − Ω̄‖β0

)
γ2

‖ + ω̄2
‖
]

(
ω̄2
i − β2

‖ − Ω̄0β‖
)3 + Ω̄2

wβ2
‖
(
2ω̄2

i − Ω̄0β‖
) . (61)

As we see in (59)–(61), these equation are the same as those of the parallel-field
configuration with Ω̄0 replaced by −Ω̄0. If we replace β‖ by −β‖ in those equations
in Sec. 2, we obtain the same results as replacing Ω̄0 by −Ω̄0. Therefore, a backward
electron beam propagating (β‖ < 0) in a free-electron laser (parallel-field configura-
tion) with and without ion-channel guiding can be considered as a forward electron
beam propagating with a reversed-axial magnetic field configuration.
The stability condition for electron orbits in the reversed-field configuration can

be obtained as in Sec. 3 and the results are the same as (51) with Ω̄0 replaced by−Ω̄0

in cj (j = 1, 2, . . . , 6).

5. Numerical results and discussion
A numerical study of steady-state relativistic electron trajectories in a FEL with
a helical wiggler magnetic field in the presence of an axial magnetic field and ion
channel has been made. The normalized (bulk) axial velocity β‖ and the function
Φ (which is used to determine the rate of change of β‖ with electron energy and
to determine the mass regimes) have been computed by using (19) and (21) for
the conventional parallel-field configuration and (60) and (61) for the reversed-field
configuration. The electron energy was taken to be 1 MeV (γ = 2.957) and the
normalized wiggler magnetic field Ω̄w was taken to be 0.05 except in one case for
the reversed field when it was taken to be 0.45.

5.1. Conventional parallel-field configuration

In Figs 1–3, β‖ is shown as a function of the normalized frequency of the beam-
guiding device for the parallel-field configuration. Figure 1 shows β‖ as a function
of the normalized ion-channel frequency ω̄i in the presence of an axial magnetic
field when it is held constant with Ω̄0 = 0.5. As this figure shows there are two
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Figure 1. Normalized axial velocity versus normalized ion-channel frequency with no axial
magnetic field.

Figure 2. Normalized axial velocity versus normalized conventional axial magnetic field
with ion channel.

groups of orbits. Group I (GI) and Group II (GII) orbits are determined by

ω̄2
i < β‖(β‖ − Ω̄0) (62)

and

ω̄2
i > β‖(β‖ − Ω̄0) (63)

respectively. The dashed line indicates an unstable branch of Group I orbits for
which the stability condition (51) is not satisfied. From (62) we see that for stable
and unstable branches of Group I orbits, β‖ must be greater than Ω̄0 (=0.5), which
agrees with Fig. 1. Figure 2 shows β‖ as a function of the normalized axial magnetic
field Ω̄0 in the presence of an ion channel when it is held constant with ω̄i = 0.5. In
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Figure 3. Normalized axial velocity versus normalized conventional axial magnetic field
with no ion channel.

this figure Group I and Group II orbits are determined by

Ω̄0 <
(
β‖ − ω̄2

i

/
β‖

)
(64)

and

Ω̄0 >
(
β‖ − ω̄2

i

/
β‖

)
(65)

respectively. The dashed line indicates the unstable branch of Group I orbits for
which the stability condition (51) is not satisfied. Figures 1 and 2 are similar but are
not identical. Figure 3 shows β‖ as a function of Ω̄0 in the absence of an ion channel.
Group I and Group II are determined by Ω̄0 < β‖ and Ω̄0 > β‖, respectively. The
dashed line indicates the unstable branch of Group I orbits for which the stability
condition (51) is not satisfied. The results of this simplified case (ω̄i = 0) agree with
the results of previously published papers [1, 6, 7]. As is shown in Figs 1–3 for stable
Group I orbits, β‖ decreases gradually with increasing guiding frequency until the
curve terminates at the point of orbit instability. For Group II orbits, β‖ increases
monotonically approaching a limit as the guiding frequency approaches infinity
and the transverse velocity approaches zero. As Figs 1 and 2 show, for combined
beam-guiding devices, β‖ for unstable Group I orbits and Group II orbits never
approaches zero even when the guiding frequency approaches zero.
In Figs 4–6, Φ is shown as a function of the normalized frequency of the beam-

guiding device. Figure 4 shows Φ as a function of ω̄i in the presence of an axial
magnetic field when it is held constant with Ω̄0 = 0.5. For stable Group I orbits,
Φ increases monotonically and exhibits a singularity at the transition to orbit
instability. Since the axial velocity increases with increasing energy, these orbits
correspond to a positive-mass regime. For Group II orbits there are two mass
regimes, i.e. a negative-mass regime where Φ < 0 and a positive-mass regime where
Φ > 0. The existence of the negative-mass regime is interesting because the axial
velocity will increase with decreasing electron-beam energy. Figure 5 shows Φ as a
function of Ω̄0 for stable Group I orbits and Group II orbits in the presence of an
ion channel when it is held constant with ω̄i = 0.5. Figure 6 shows Φ as a function
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Figure 4. Function Φ versus normalized ion-channel frequency with conventional axial
magnetic field.

Figure 5. Function Φ versus normalized conventional axial magnetic field with ion channel.

of Ω̄0 for stable Group I orbits and Group II orbits in the absence of an ion channel.
Figures 1, 2, and 3 are similar but are not identical.

5.2. Reversed-field configuration

In Figs 5–7, β‖ is shown as a function of the normalized frequency of the beam-
guiding device for the reversed-axial magnetic field configuration. Figure 7 shows
β‖ as a function of ω̄i in the presence of a constant reversed field with Ω̄0 = 0.5.
Group I and Group II orbits are determined by

ω̄2
i < β‖(β‖ + Ω̄0) (66)

and

ω̄2
i > β‖(β‖ + Ω̄0) (67)
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Figure 6. Function Φ versus normalized conventional axial magnetic field with no
ion channel.

Figure 7. Normalized axial velocity versus normalized ion-channel frequency with reversed
axial magnetic field.

respectively. As Figs 1 and 7 show, the main difference between parallel and reversed
fields is that for unstable Group I and Group II orbits, β‖ starts increasing from
around 0.5 with increasing ω̄i (and constant Ω̄0) for the parallel field and starts
increasing from zero for the reversed field. Therefore, conservation of energy re-
quires that for small ω̄i, the transverse velocity is greater for a reversed field than
a parallel field. Figures 8 and 9 show β‖ as a function of Ω̄0 in the presence of an
ion channel held constant with ω̄i = 0.5 for the reversed field. As shown in Fig. 8
for stable Group I orbits, β‖ is relatively constant over the entire indicated range
of Ω̄0. For unstable Group I orbits and Group II orbits, β‖ decreases monotonically
approaching zero as Ω̄0 approaches infinity and the transverse velocity approaches
its maximum value. Figure 9 is the same as Fig. 8, but we have set the normalized
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Figure 8. Normalized axial velocity versus normalized reversed axial magnetic field with
ion channel.

Figure 9. Normalized axial velocity versus normalized reversed axial magnetic field with
ion channel.

wiggler magnetic field Ω̄w = 0.45 to show complete stable and unstable branches of
Group I orbits. Group I and Group II orbits for Figs 8 and 9 are determined by

Ω̄0 >
ω̄2
i

β‖
− β‖ (68)

and

Ω̄0 <
ω̄2
i

β‖
− β‖ (69)
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Figure 10. Normalized axial velocity versus normalized reversed axial magnetic field with
no ion channel.

Figure 11. Function Φ versus normalized ion-channel frequency with reversed axial
magnetic field.

respectively. Figure 10 shows β‖ as a function of Ω̄0 in the absence of an ion channel.
This figure shows that there is one class of orbits for this reversed configuration
and it is stable. As mentioned in Sec. 4 for this case of a reversed field there is no
resonant enhancement in the wiggler-induced transverse velocity (cf. (58) and (59)).
As shown in this figure, β‖ is relatively constant over the entire indicated range
of Ω̄0.
In Figs 11–14 the functionΦ is shown as a function of the normalized beam-device

frequency for the reversed-field configuration. Figure 11 shows Φ as a function of ω̄i
in the presence of a constant axial magnetic field with Ω̄0 = 0.5 for stable Group I
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Figure 12. Function Φ versus normalized reversed axial magnetic field with ion channel.

Figure 13. Function Φ versus normalized reversed axial magnetic field with ion channel
and stronger wiggler field.

orbits and Group II orbits. As shown in this figure, there is a positive-mass regime
for Group I orbits and there are negative- and positive-mass regimes for Group II
orbits. Figures 12 and 13 showΦ as a function of Ω̄0 in the presence of an ion channel
when it is held constant with ω̄i = 0.5 for stable Group I and Group II orbits. As
shown in Fig. 12 for stable Group I orbits Φ is relatively constant and equal to 1; for
Group II orbits Φ is relatively constant and approximately equal to zero. Therefore,
for Group II orbits, with a good approximation there is a zero-mass regime in which
only the transverse electron velocity increases with increasing energy. In Fig. 13
we have set Ω̄w = 0.45, and as shown in this figure for Group II orbits there is
an approximately zero-mass regime; for Group I orbits Φ decreases monotonically
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Figure 14. Function Φ versus normalized reversed axial magnetic field with no ion channel.

from infinity (singularity at the transition to orbit instability) and approaches a
limit near 1 as Ω̄0 approaches infinity. Figure 14 shows Φ as a function of Ω̄0 is the
absence of an ion channel for the reversed configuration. As shown in this figure Φ
is nearly constant (�1) over the entire indicated range of Ω̄0. Therefore, for this
simplified case (ω̄i = 0) there is only one class of mass regime and it is positive.
It is important to note that the electric fields due to the ion channel and the beam

electrons may give rise to a kinetic energy spread across the beam. The relativistic
factor γ must satisfy the equation

d

dt

[
γ − πe2r2

c2m
(nb − ni)

]
= 0, (70)

where r is the distance from the axis. Thus, the change in γ from the centre (r = 0)
to the edge (r = Rb) of the beam is given by

∆γ = πe2R2
b(nb − ni)

/
mc2. (71)

This implies that when the ion density ni is much less than the beam electron
density ne, the fractional variation of γ for ne = 1012 cm−3 is

∆γ/γ = 0.885R2
b

/
γ (72)

with Rb in cm. The deleterious effects of energy spread may be reduced with
sufficiently small Rb and/or large γ, e.g. ∆γ/γ = 1.2 × 10−2 if Rb = 0.2 cm and
γ = 2.957. The restriction on R2

b/γ decreases as ni is increased and vanished when
ni = nb. This suggests that another advantage of the ion core is in reducing the
energy spread. The electron trajectories remain helical when ∆γ is negligible and
the present analysis remains valid. It should also be noted that the self-electric
and self-magnetic fields tend to cancel each other at sufficiently large γ. At small
γ their effects may be approximated by appropriately chosen effective ion density
and wiggler field [8].
The use of ion-channel guiding in a FEL offers a number of possible advantages.

It has been suggested that this technique would be more economical, would permit
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higher beam currents and enhanced growth rate, and would tend to suppress
instabilities, emittance growth, and energy spread across the beam (see [5] and
references cited therein). Caporasa et al. reported in 1986 the first successful use
of ion-channel guiding [9]. It was employed to transport a 10-kA electron beam
through an advanced test accelerator. Ozaki et al. carried out FEL experiments us-
ing an ion channel in 1989 with only modest success. Their subsequent experiments,
carried out after extending the wiggler and reconfiguring the rf input, showed a vast
improvement in FEL performance [10]. A definitive test of the feasibility of using
ion-channel guiding in a FEL remains a challenging experimental task which is yet
to be performed.
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