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Abstract
Bovine immunodeficiency virus (BIV) was first isolated in 1969 from a cow, R-29, with a
wasting syndrome. The virus isolated induced the formation of syncytia in cell cultures and
was structurally similar to maedi-visna virus. Twenty years later, it was demonstrated that the
bovine R-29 isolate was indeed a lentivirus with striking similarity to the human immunodefi-
ciency virus. Like other lentiviruses, BIV has a complex genomic structure characterized by
the presence of several regulatory/accessory genes that encode proteins, some of which are
involved in the regulation of virus gene expression. This manuscript aims to review biologi-
cal and, more particularly, molecular aspects of BIV, with emphasis on regulatory/accessory
viral genes/proteins, in comparison with those of other lentiviruses.
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Introduction

Retroviruses represent viruses which infect or can be
found in animal species covering a large taxonomic
range. All retroviruses have the common property of a
requirement for synthesizing a DNA copy of their RNA
genome by reverse transcriptase during their replicative
life cycle (Goff, 2001). Lentiviruses belong to a unique
genus of retroviruses which share structural, genetic,
biological and/or pathological properties. Lentiviruses
include maedi-visna virus (MVV) in sheep, caprine
arthritis-encephalitis virus (CAEV), equine infectious
anemia virus (EIAV), Jembrana disease virus (JDV) in
cattle, bovine immunodeficiency virus (BIV), feline
immunodeficiency virus (FIV), simian immunodeficiency
virus (SIV) and human immunodeficiency virus (HIV)
(Table 1). Lentiviruses, which are not oncogenic, induce
slow, chronic and degenerative pathological changes in
infected hosts, often associated with the development of
immune-mediated lesions (Desrosiers, 2001). All

lentiviruses infect monocyte/macrophage cells.
Moreover, FIV, SIV and HIV infect T cells and, conse-
quently, are mainly associated with clinical signs of
immunodeficiency in the infected hosts (Gonda et al.,
1987; Chen et al., 1999b; Lechner et al., 1997; Turelli et
al., 1997; Agnarsdóttir et al., 2000). In contrast to the
other retroviruses, lentiviruses may replicate in non-
dividing cells. In addition, the lentivirus genome offers a
complex structure including several regulatory/accessory
genes that encode proteins, some of which are involved
in the regulation of virus gene expression.

HIV, the causative agent of the human acquired
immune deficiency syndrome (AIDS), is the most stud-
ied lentivirus. Although the macaque appears to be the
gold standard for AIDS as an animal model, no single
virus–animal model is sufficient for all aspects of HIV
and AIDS research. Therefore, other lentiviruses, includ-
ing BIV, may constitute alternative surrogate animal
models for certain aspects of HIV research. In addition,
conducting basic research on new aspects of lentiviruses
is important not only for the virus itself, but also for the
entire lentivirus/retrovirus field. This review focuses on
the biological and molecular properties of BIV, with
emphasis on regulatory/accessory viral genes/proteins,
in comparison with those of other lentiviruses.
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Historical perspectives on bovine lentiviruses

In 1969, Dr Cameron Seger, a veterinary practitioner in
the state of Louisiana, observed progressive deteriora-
tion in the physical condition of an 8-year-old pregnant
dairy cow called R-29. The clinical signs observed in that
animal included elevated white blood cell counts, lym-
phoadenopathy, evidence of central nervous system
lesions, progressive weakness and emaciation suggest-
ing bovine leukosis (Malmquist et al., 1969). When the
virus was inoculated into colostrum-deprived young
calves, these animals developed lymphoadenopathic
lesions and leukocytosis which persisted for several
months (Van Der Maaten et al., 1972). Histopathological
studies revealed follicular hyperplasia in the lymph
nodes and the presence of infiltrating mononuclear cells
within the brain tissues of these calves (Van Der Maaten
et al., 1972). The virus was first designated ‘bovine
visna-like virus’ and remained unstudied until HIV was
discovered in 1983 (Barre-Sinoussi et al., 1983). Then,
Gonda et al. (1987) demonstrated by molecular and
immunological techniques that the bovine R-29 isolate
was indeed a lentivirus with striking similarity to HIV.
Consequently, the designations of ‘bovine immunodefi-
ciency-like virus’ and, thereafter, ‘bovine
immunodeficiency virus’ were used.

Most information on the molecular biology of BIV
derived from the work of Braun et al. (1988) and Garvey
et al. (1990), who generated and characterized two
infectious cDNA clones, called BIV 106 and BIV 127,
from the R-29 isolate of BIV. Thereafter, Suarez et al.
(1993) isolated two additional BIV field strains, termed
FL491 and FL112, associated with the development of
leukocytosis. Nevertheless, most pathological, serologi-
cal and molecular biology information has been
obtained from studies with the original BIV R-29 isolate.
Another viral isolate, JDV, has been described. JDV is a

bovine lentivirus genetically and antigenically related to
BIV. It causes an unusual clinical disease in Balinese cat-
tle (Bos javanicus) characterized by signs of fever,
lethargy, anorexia and enlargement of the lymph nodes,
and death of a significant number of infected animals
within 1–2 weeks after infection (Chadwick et al., 1995;
Wilcox et al., 1995; Wareing et al., 1999).

Seroprevalence and clinical/pathological 
features of BIV

BIV is distributed world-wide, as it has been serologi-
cally detected in Europe, Asia, Australia, New Zealand
and North America (Cockerell et al., 1992; Muluneh,
1994; StCyr Coats et al., 1994; Hirai et al., 1996b; Polack
et al., 1996; Cavirani et al., 1998; Meas et al., 1998,
2000a, b; Cho et al., 1999; Burkala et al., 1999; Scobie et
al., 2001). BIV is pathologically more related to
lentiviruses associated with chronic inflammatory dis-
eases (CAEV and EIAV) rather than those associated with
severe immunodeficiency (HIV, FIV and SIV). As most
infections occur with no evidence of clinical disease, the
scope of BIV infection in cattle has never been clearly
established. However, BIV does replicate in
monocyte/macrophage cells, with a possible dysfunction
of the immune system (Carpenter et al., 1992; Onuma et
al., 1992; Zhang et al., 1997a). Hence, several secondary
conditions, including mastitis, pododermatitis and other
bacterial diseases, are associated with BIV infection, thus
suggesting a possible impact on dairy herd productivity
and general health (McNab et al., 1994; Jacobs et al.,
1995). In addition, an association between BIV infection
and the development of the bovine paraplegic syn-
drome was suggested (Walder et al., 1995).

Although BIV infection occurs generally in the
absence of clinical signs of disease, several factors may
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Table 1 Clinical manifestations of known lentiviruses

Lentivirus Host Cell tropism Clinical disorders

Maedi-visna virus (MVV) Sheep Macrophages Encephalitis, pneumonia, lymphadenopathy,
paralysis, opportunistic infections

Caprine arthritis-encephalitis virus (CAEV) Goat Macrophages Arthritis, encephalitis, paralysis
Equine infectious anemia virus (EIAV) Horse Macrophages Hemolytic anemia, lymphoproliferation,

glomerulonephritis, encephalopathy
Bovine immune deficiency virus (BIV) Cattle Macrophages Lymphocytosis, lymphadenopathy, central

nervous system lesions, weakness, emaciation
Jembrana disease virus (JDV) Balinese cattle Macrophages Fever, lethargy, anorexia and enlargement of

the lymph nodes
Feline immunodeficiency virus (FIV) Cat T lymphocytes Immunodeficiency, lymphadenopathy,

leucopenia, anemia, opportunistic infections
Simian immunodeficiency (SIV) Primates T lymphocytes Immunodeficiency, neuropathology,

opportunistic infections in rhesus macaque
Human immunodeficiency virus (HIV) Human T lymphocytes Immunodeficiency, lymphadenopathy,

opportunistic infections, encephalopathy,
Kaposi’s sarcoma
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influence the development of apparent clinical infection.
They include stress stimuli such as exposure to extreme
temperatures, parturition and lactation (Snider et al.,
1997). Genetic predispositions of the natural host to
respond to pathogens or infections by other viruses
might also influence the course of BIV infection. For the
latter, it is noteworthy that bovine leukemia virus (BLV),
bovine syncytial virus (BSV), and bovine herpes virus
(BHV) can activate BIV gene expression in vitro (Geng
et al., 1992; Pallansch et al., 1992). Whether these
viruses activate BIV gene expression in vivo has yet to
be determined. Nonetheless, reduction of in vitro lym-
phoproliferative responses to specific antigens or to
mitogens (phytohemagglutinin, concanavalin A and
pokeweed mitogen) was demonstrated with mononu-
clear cells isolated from cattle or sheep experimentally
exposed to BIV, or to both BIV and BLV (Martin et al.,
1991; Hirai et al., 1996a; Zhang et al., 1997a).

Transmission, cell tropism and host range of BIV

BIV can be transmitted vertically in utero or horizontally
by the exchange of body fluids, including blood and
colostrum (Nash et al., 1995b; Moore et al., 1996; Snider
et al., 1997; Venables et al., 1997; Munro et al., 1998;
Meas et al., 2002; Moody et al., 2002). In vivo, BIV DNA
was detected in a large variety of bovine tissues, includ-
ing brain, lungs, lymph nodes, spleen, peripheral blood
mononuclear cells (PBMC) and semen of infected ani-
mals (Gonda et al., 1990; Pifat et al., 1992; Baron et al.,
1995, 1998; Nash et al., 1995a; Zhang et al., 1997b;
Gradil et al., 1999). BIV replicated in vitro in a wide
variety of cells, such as bovine, ovine, rabbit and canine
cells (Bouillant et al., 1989; Gonda et al., 1990; Zhang et
al., 1997b), but not human cells (Kashanchi et al., 1991;
Whetstone et al., 1992). BIV induced a cytopathic effect
characterized by the formation of syncytia in permissive
cells. Moreover, virus gene expression varies widely
according to the cell type, suggesting that specific cellu-
lar factors are required for productive infection (Fong et
al., 1997; Kempster et al., 2002).

The discovery of the causative agent of human AIDS
led to the development of animal models for HIV
research. Similarly, animal models were also developed
for BIV research. For instance, goats and sheep experi-
mentally infected with BIV develop a virus-specific
humoral response without the development of clinical
disease (Whetstone et al., 1991; Smith and Jacobs, 1993;
Jacobs et al., 1994; Smith et al., 1994; Hirai et al., 1996a).
In 1992, two studies conducted independently demon-
strated that persistent infection can be established in
white New Zealand rabbits inoculated with BIV R-29
(Pifat et al., 1992; Van Der Maaten and Whetstone,
1992). In these infected rabbits, BIV was rescued from
PBMC and spleen, lymph nodes and brain by the cocul-
tivation method (Pifat et al., 1992). Moreover, a rapid

and long-lasting virus-specific humoral immune
response was observed in rabbits infected with BIV
(Abed et al., 1999; Abed and Archambault, 2000). No
clinical symptoms were observed in BIV-infected ani-
mals during all these studies. In contrast, other studies
(Kalvatchev et al., 1995, 1998, 2000; Walder et al., 2001)
showed the development of clinical signs of disease
(anorexia, weight loss, muscular wasting, diarrhea,
hypoalgesia, torticollis, recurrent T- and B-cell dysfunc-
tions, lymphadenopathy and splenomegaly) in several
rabbits infected with BIV R-29, whereas the others
remained asymptomatic.

Morphology of BIV

BIV is an enveloped virus 120–130 nm in diameter (Fig.
1). The bilayer viral envelope, which contains the viral
surface (SU) gp100 and transmembrane (TM) gp45 pro-
teins, surrounds conical-shaped capsid (CA) and
nucleocapsid (NC) structures protecting the BIV
genome. The genome is composed of a capped and
polyadenylated diploid RNA 8482 nucleotides in length
that is closely associated with viral proteins p7 and p13
(Gonda et al., 1994).

The replication life cycle of BIV

The BIV replication life cycle is similar to that of other
retroviruses (Fig. 2). Viral infection is initiated when the

Bovine immunodeficiency virus 127

Fig. 1. Schematic morphology of bovine immunodeficiency
virus (BIV). The viral envelope is composed of the surface
(SU) gp100 and transmembrane (TM) gp45 glycoprotein,
and p16 protein forms the viral matrix. The cone-shaped
structure typical of lentiviruses is composed of the capsid
protein p26 and surrounds the viral enzyme proteins inte-
grase (IN), protease (PR) and reverse transcriptase (RT) and
the genomic RNA, which is protected by the nucleocapsid
(NC).
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BIV SU protein binds to target cells. This interaction pro-
motes a conformational change that exposes the
hydrophobic domain of the viral TM protein, resulting in
fusion of the viral envelope with the membrane of the
infected cell. This fusion facilitates the entry of the virus
within the cell, and is followed by the release of the
viral capsid into the cytoplasm (Sommerfelt, 1999).
Although the cell receptor for BIV has yet to be deter-
mined, it is suggested that BIV could bind to CCR5, a
molecule of the β-chemokine receptor family (Wright et
al., 2002). CCR5 acts as a co-receptor for the infectivity
of certain strains of HIV showing a tropism for cells of
the monocyte/macrophage lineage (Alkhatib et al., 1996;
Wu et al., 1997).

The uncoating event releases the genomic RNA into
the cytoplasm of the infected cell, where it is reverse-
transcribed by the viral reverse transcriptase encoded by
the pol gene into double-stranded DNA (also known as
the provirus DNA). Thereafter, the provirus DNA inte-
grates into the host cell genome through the action of
the viral integrase. The provirus DNA can remain silent,
or, upon appropriate stimuli, serves as a DNA template
for the synthesis of new viral RNAs.

BIV gene expression is characterized by five viral
mRNAs that are 8.5, 4.1, 3.8, 1.7 and 1.4 kb in length
(Oberste et al., 1991). In early events, non-structural reg-
ulatory tat and rev genes are translated from the small
multiply spliced viral transcripts of 1.7 and 1.4 kb,
respectively. Thereafter, the Tat protein migrates to the
nucleus to enhance expression of all genes of BIV,

whereas the Rev protein is involved in the transport
from the nucleus to the cytoplasm of the late singly
spliced or unspliced viral RNAs. The capsid protein
(derived from the Gag precursor) and the Gag-Pol
enzyme precursor (see below) are translated from the
full-length transcript of 8.5 kb. Translation of the singly
spliced transcript of 3.8 kb results in the production of
the envelope (Env) protein, whereas the singly spliced
transcript of 4.1 kb would produce a putative protein,
termed viral infectivity factor (Vif). The Env protein, as
for the Gag and Gag-Pol precursors, migrates to the cell
plasma membrane, where the genomic RNA is packaged
during the budding of morphologically immature virions
through the plasma membrane of infected cells. The
cone-shaped morphology, typical of mature lentiviruses,
arises after Gag and Gag-Pol precursor cleavage by the
viral protease. Then, the newly produced viral particles
can initiate a novel infectious cycle by infecting sur-
rounding non-infected cells.

BIV provirus genomic organization and regulation of
viral gene expression

BIV has the most complex genome of the non-primate
lentiviruses (Fig. 3). The BIV proviral DNA is 8960
nucleotides long and resembles other retroviruses with
the typical 5�–3� gag, pol and env gene arrangement.
These genes encode viral structural proteins, namely the
gag-encoded capsid p26 protein (p26) and the above-
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Fig. 2. The replication life cycle of bovine immunodeficiency virus (BIV).
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mentioned env-encoded SU and TM proteins, which are
highly immunogenic (Abed et al., 1999; Abed and
Archambault, 2000), and enzymes such as the reverse
transcriptase, integrase and protease necessary for the
synthesis and integration of the provirus DNA into the
host cell genome, and for viral polyprotein processing,
respectively (Gonda et al., 1994). The proviral genome
has two flanking sequences, called long terminal repeats
(LTRs), used in the regulation of viral replication and
gene expression (Gonda et al., 1994). The LTRs derive,
through reverse transcription, from the redundant R
regions and the unique 5� (U5) and 3� (U3) present at
the termini of the genomic RNA. The BIV genome also
contains six non-structural regulatory/accessory protein-

encoding genes between or overlapping the pol and env
open reading frames (ORFs). The non-structural ORFs
are designated vif, tat (transactivator factor of transcrip-
tion), rev (regulator of virus expression), vpw, vpy and
tmx. The vpw, vpy and tmx genes are unique to the
bovine lentivirus. Although tat, rev and tmx messages
were detected in BIV-infected cells, only the Tat and Rev
proteins were shown to have regulatory functions in
virus expression in BIV (Gonda et al., 1994). It is note-
worthy that the mRNA transcript of tat, as for the tmx
transcript, is detected by reverse transcription–poly-
merase chain reaction from PBMC of BIV-infected cattle
(Baron et al., 1995).

Lentiviruses use a variety of cis-acting signals and viral
regulatory/accessory proteins to modulate various
aspects of their replication and infectivity. BIV gene
expression is highly dependent on interactions of host
cell transcriptional factors with various cis-regulatory
elements located within the LTRs. The BIV LTRs, 587 to
589 nucleotides in length, contain nucleic acid motifs
necessary for the initiation, enhancement and termina-
tion of viral transcription. The cis-acting elements
located within the U3 region of the LTR include nucleic
acid binding sites for the NF-κB, GRE, AP-4, AP-1, CAAT,
ATF/CRE and Sp1 transcription factors, and for the core
enhancer. All these elements are essential for BIV LTR
functional activity (Fong et al., 1995). The BIV U3 region
contains only a single nucleic acid motif for most of the
transcription factor binding sites as compared to virulent
lentiviruses such as HIV but also three nucleic acid
motifs associated with the Sp1 transcription factor bind-
ing site. All BIV transcripts are initiated at the +1
position of the 5� LTR R region. The R region is also
responsible for the synthesis of the transactivation
responsive (TAR) element, a hairpin RNA sequence
located at the 5� termini of all viral RNA transcripts.
Finally, all viral RNAs contain an untranslated common
leader sequence at their respective 5� terminal and a
polyadenylated tail at the 3� terminal which is tran-
scribed from the 3� LTR.

The BIV gag, pol and env gene-encoded products

The major structural genes of BIV (gag, pol and env)
encode polyprotein precursors to generate structural
(Gag and Env) and viral enzyme (reverse transcriptase,
integrase and protease) proteins. The gag (for group
antigen-associated gene) gene, located downstream
from the 5’ LTR, encodes the Gag (Gag Pr53) precursor
protein. It also encodes a portion of the Gag-Pol (Pr170)
precursor. Gag Pr53 (with a molecular mass of 53 kDa)
is processed, during viral maturation, by the viral pro-
tease into matrix (MA) p16, capsid (CA) p26,
nucleocapsid (NC) p13, and three small proteins p2L, p3
and p2 (Rasmussen et al., 1990; Battles et al., 1992;
Tobin et al., 1994). The order of cleavage products in
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Fig. 3. The proviral genome of various lentiviruses, includ-
ing bovine immunodeficiency virus (BIV), caprine
arthritis–encephalitis virus (CAEV), equine infectious anemia
virus (EIAV), feline immunodeficiency virus (FIV), human
immunodeficiency virus type 1 (HIV-1), Jembrana disease
virus (JDV), simian immunodeficiency virus (SIV) and
maedi-visna virus (MMV) with the typical retroviral gag, pol
and env gene organization, and the presence of long termi-
nal repeats (LTRs) and regulatory/accessory genes identified
in BIV as vif, tat, rev, vpy (y), vpw (w) and tmx.
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BIV Gag Pr53 is as follows: NH2-MA-p2L-CA-p3-NC-p2-
COOH (Tobin et al., 1994). In addition, Gag Pr53
contains, between the CA and NC regions, a short
spacer sequence shown to be essential for BIV assembly
(Guo et al., 2004). Following virus maturation, MA pro-
tein remains associated with the inner side of the viral
envelope, whereas CA forms a conical shell surrounding
the viral RNA-NC complex (Tobin et al., 1994). In con-
trast to other retroviruses, BIV MA is not myristylated
(Tobin et al., 1994). Also, BIV CA protein contains major
epitopes for the host’s virus-specific antibody response
(Whetstone et al., 1991; Atkinson et al., 1992). In addi-
tion, antisera specific to BIV CA and NC proteins show
cross-reactivity to analogous HIV-1 and JDV proteins
(Gonda et al., 1987; Lu et al., 2002). Finally, an epitope
located in a region of Gag Pr53 overlapping MA and p2L
is used to distinguish BIV from JDV infection (Lu et al.,
2002). The roles of p2L, p3 and p2 in the BIV replication
life cycle have yet to be determined.

The pol gene partially overlaps the Gag-encoding
sequence. During gag translation, a –1 frameshift event
occurs near the 3� terminus of the gag gene by a mecha-
nism that is poorly understood (Battles et al., 1992). The
resulting translation product is a polyprotein of 170 kDa,
called Pr170 precursor (with a molecular mass of 170
kDa). Pr170 is then processed by cellular proteases into
the protease (PR), reverse transcriptase (RT) and inte-
grase (IN). RT with both polymerase and RNase activity
with Mg2+ cofactor is responsible for the proviral DNA
synthesis from the viral genomic RNA. PR function is to
cleave Gag Pr53, whereas IN promotes the integration of
the provirus DNA into the host cell DNA (Clements and
Zink, 1996; Hindmarsh and Leis, 1999).

The env gene, located in the 3� region of the BIV
genome, encodes the highly glycosylated Env precursor
gPr145 (Gonda et al., 1994). gPr145 (with a molecular
mass of 145 kDa) is further processed by cellular pro-
teases into the SU and TM proteins (Rasmussen et al.,
1992). The SU protein is associated with the extracellular
domain of TM through electrostatic binding in the virion,
whereas TM spans the viral envelope through a highly
hydrophobic domain required to anchor the SU–TM
complex to the viral envelope. As for the other
lentiviruses, the SU protein determines cell tropism of the
virus through its attachment to cell receptors, whereas
TM promotes the fusion of viral and cellular membranes.
TM is also responsible for the formation of syncytia in
BIV-infected cells in vitro (Chirmule and Pahwa, 1996).

A key feature of BIV infection is the induced antibody
immune response. Similar to that reported with HIV p24
capsid protein in the course of HIV infection in the
human (Gaines et al., 1987), immune reactivity associ-
ated with the BIV major capsid protein p26 appears
early in animals experimentally exposed to BIV
(Whetstone et al., 1990, 1991). However, this immune
reactivity has been shown to decrease to undetectable
levels by 1.5–2.5 years after experimental BIV infection

in cattle (Isaacson et al., 1995; Suarez et al., 1995), even
though virus was recovered or demonstrated by PCR
from PBMC of each BIV-infected animal before and after
the loss of p26-specific antibodies. In contrast, immune
reactivity to the envelope TM protein of BIV, which
appears later in the course of BIV infection, was still
detectable at the end of the experiment period (up to
3.5 or 4 years after infection). These results are in accor-
dance with our own data, in which immune reactivity to
the BIV TM was detected in cattle whose sera failed to
recognize the p26 protein (Abed et al., 1999; Abed and
Archambault, 2000). Whether these changes in antibody
production reflect differences in the apparently differen-
tial expression of the gag and env gene products in vivo
late in infection is at present unknown.

The BIV regulatory Tat protein and TAR element in
comparison with those of other lentiviruses

Regulatory/accessory genes/proteins are important fea-
tures that differentiate lentiviruses from other retroviruses.
One of the most studied regulatory proteins is the Tat
protein, which increases the levels of viral gene expres-
sion. Although all lentiviruses code for Tat, the Tat
proteins can be classified into two functional groups. The
first group of Tat proteins is found in BIV, JDV, HIV-1 and
HIV-2, SIV and EIAV. These viruses transactivate their
respective LTRs through interactions between Tat, cyclin
T1 (cycT1) cellular factor, and the TAR element present at
the 5� end of all viral RNA transcripts (Gunnery et al.,
1992; Southgate and Green 1995; Mhashilkar et al., 1997;
Willbold et al., 1998; Barboric et al., 2000). Tat exerts its
role by enhancing the rates of elongation in these viruses
rather than initiating the transcription by using the cellular
RNA polymerase II (RNA polII). The second group of Tat
proteins is found in MVV, CAEV and FIV, which weakly
transactivate their homologous LTRs in a TAR-independ-
ent manner (Harmache et al., 1995). The TAR element is
absent from the viral transcripts in these viruses and the
Tat proteins act through transcription factor binding sites
located in the U3 region of the LTR.

BIV Tat is a nuclear and nucleolar phosphoprotein of
14 kDa that is encoded by a multiply spliced mRNA com-
posed of one untranslated leader sequence (exon 1) and
two encoding exons (exons 2 and 3) (Carpenter et al.,
1992; Liu et al., 1992; Pallansch et al., 1992; Fong et al.,
1995, 1997). Exon 2 only codes for a tat product of 103
amino acids (Tat103), sufficient to transactivate the BIV
LTR (Fong et al., 1997). In addition to Tat103, a Tat protein
of 108 amino acids (Tat108) was described (Fong et al.,
1997). BIV Tat108 is generated by using different donor
and acceptor sites, and comprises the first 98 amino acids
of exon 2 and 10 amino acids from exon 3. Similarly, two
forms of Tat protein (Tat86 and Tat101) were found in
HIV-1 by using alternate splicing (Jeang et al., 1999).

BIV Tat contains the five structural domains common

130 M.-C. St-Louis, M. Cojocariu and D. Archambault

https://doi.org/10.1079/AHR200496 Published online by Cambridge University Press

https://doi.org/10.1079/AHR200496


to primate lentiviral Tat proteins e.g. acidic amino termi-
nal, cysteine-rich, highly conserved core, basic and
carboxy-terminal regions (Fig. 4) (Ruben et al., 1989; Liu
et al., 1992; Carpenter et al., 1993; Gonda et al., 1994;
Willbold et al., 1994; Fong et al., 1997; Taube et al.,
1999). The functional domains of BIV Tat include an
activation domain and an RNA-binding domain. The
activation domain is composed of the N-terminal, cys-
teine-rich and central core structural domains that are
essential for the interaction of Tat with the cycT1 cell
protein (Bieniasz et al., 1998; Bogerd et al., 2000). The
RNA-binding domain contains a basic sequence rich in
arginine residues (GPRPRGTRGKGRRIRR), which
includes the nuclear localization signal (NLS) (Bieniasz et
al., 1998; Efthymiadis et al., 1998). Tat protein residues,
directly interacting with the RNA, include Arg70, Gly71,
Thr72, Arg73, Arg77 and Ile79, whereas the Gly74 and
Gly76 residues appear to play a conformational role
(Chen and Frankel, 1995; Puglisi et al., 1995;
Greenbaum, 1996; Moras and Poterszman, 1996). The
BIV Tat protein adopts a β-sheet conformation as
opposed to other lentivirus Tat proteins adopting a heli-
cal structure (Willbold et al., 1993; Chen and Frankel,
1994, 1995; Puglisi et al., 1995).

Lentivirus gene expression associated with Tat func-
tion is dependent on the phosphorylation of cell factors.
Initiation of transcription starts in the 5� LTR by the
recruitment of usual cellular transcription factors (Fig. 5).
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Fig. 4. Schematic representation of the structural domains of
the bovine immunodeficiency virus (BIV) Tat and Rev pro-
teins. The Tat proteins (Tat103 and Tat108) are composed of
an acidic amino-terminal, a cysteine-rich, a central core,
an arginine-rich and a carboxy-terminal domain. The major
domains of Rev protein consist of an arginine-rich and a
leucine-rich domain, which contains the nuclear export sig-
nal. The arginine-rich domains of Tat and Rev contains the
nuclear import signal (NLS) and are involved in the binding
of RNA to the transactivation-responsive element (TAR) and
the Rev-responsive element (RRE), respectively.

ProvirusLTR

5’RNA

Complete transcription Incomplete transcription

CTD

Pol IIa
TFIIH

Pol IIo
P

P
P

P

TFIIH

Pol IIo
P

P
P

P

Pol IIo*
P

P
P
P

PP

P
P

TAR

tat
CDK9

AB

RNA

cT1

Fig. 5. Model of TAR-dependent Tat transactivation. The pre-initiation complex formed by RNA polIIa and TFIIH binds to the
LTR. Viral transcription is initiated when the CDK7 subunit of TFIIH phosphorylates the carboxy-terminal domain (CTD) of
RNA polIIa to generate RNA polIIo. In the absence of Tat, the transcription event is not highly processive, resulting in the pro-
duction of abortive transcripts (A). In the presence of Tat (B), the pTEFb factor (composed of cyclin T1 and CDK9) is recruited
by Tat to the TAR RNA element. Once bound to TAR RNA, CDK9 phosphorylates the CTD of RNA polIIo to generate the
hyperphosphorylated(*) form of RNA polIIo. This leads to highly processive elongation, resulting in increased production of
full-length transcripts. Circles with the letter P indicate phosphorylation events.
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The hypophosphorylated form of cellular RNA poly-
merase IIa (RNA polIIa) is recruited to the viral
promoter by the transcription factor II D (TFIID) in asso-
ciation with the cyclin-dependent kinase 7 (CDK7)
which is a subunit of the transcription factor II H
(TFIIH) (Garcia-Martinez et al., 1997; Karn, 1999). CDK7
phosphorylates the serine residues present in the car-
boxy-terminal domain (CTD) of RNA polIIa (Okamoto et
al., 1996; Garber et al., 2000). This phosphorylation
process allows the RNA polIIo, the phosphorylated form
of RNA polII, to initiate transcription at the junction of
U3 and R (Ping and Rana, 1999), resulting in the synthe-
sis of the TAR element (Feng and Holland, 1988; Cullen,
1998; Yankulov and Bentley, 1998). It is noteworthy that
the transcription complex becomes unstable and ineffi-
cient in ensuring complete transcription in absence of
Tat, resulting in the accumulation of short RNA strands
into the nucleus that ultimately will be degraded by cel-
lular RNases (Greenbaum, 1996).

Tat binds to the newly synthesized TAR element in
TAR-dependent transactivation, and then interacts with
the positive transcription elongation factor b (pTEFb),
directly acting on the RNA polIIo  (Fig. 5) (Cujec et al.,
1997b; Mancebo et al., 1997; Zhou et al., 1998; Zhang et
al., 2000). The pTEFb factor is composed of two mole-
cules, cyclin-dependent kinase 9 (CDK9) and cycT1.
CycT1, to which CDK9 is complexed, binds to the cys-
teine-rich domain of Tat (Chen and Frankel, 1994; Cujec
et al., 1997a; Fujinaga et al., 1998; Barboric et al., 2000;
Bogerd et al., 2000). Then, CDK9 acts on the CTD of
RNA polIIo, which becomes hyperphosphorylated (RNA
polIIo*) (Herrman and Rice, 1995; Gold et al., 1998; Isel
and Karn, 1999; Okamoto et al., 1999; Ping and Rana,
1999). This phosphorylation step consolidates the RNA
polIIo* binding on the provirus DNA in order to
achieve efficient and complete elongation of viral tran-
scripts.

The TAR element varies in length and structure
among lentiviruses. Then, Tat is differentiated from their
homologous TAR element (Fig. 6). The TAR RNA of BIV,
JDV and HIV-1 forms a stem–bulge–loop hairpin struc-
ture composed of 28, 27 and 59 nucleotides,
respectively (Colvin and Garcia-Blanco, 1992; Chen and
Frankel 1994, 1995; Lustig et al., 1998; Chen et al.,
1999b). The TAR RNA is a 25-nucleotide stem–loop
structure that lacks the bulge in EIAV (Derse et al., 1991;
Hoffman and White, 1995). Although EIAV transactiva-
tion was demonstrated to be dependent on the pTEFb
factor, EIAV Tat does not harbor a cysteine-rich struc-
tural domain, as do other lentiviruses (Dorn et al., 1990;
Derse and Newbold, 1993; Albrecht et al., 2000; Sune et
al., 2000). Tat interacts in BIV transactivation with
nucleotides G11-C25, G14-C23 and C15-G22 located in
the stem of TAR, and it directly binds the bulge at U10
(Chen and Frankel, 1994, 1995). Then, a triple-base RNA
structure composed of nucleotides U10–A13–U24 is
made and is consolidated by hydrogen bonds (Moras

and Poterszman, 1996; Lim and Barton, 1997). The cen-
tral loop in BIV TAR, made of the CAUU residues, is not
essential for the binding of BIV Tat as opposed to HIV
(Chen and Frankel, 1994, 1995; Puglisi et al., 1995;
Barboric et al., 2000).

Although the TAR-dependent transactivation mecha-
nism shares similarities among lentiviruses, there are
differences in the Tat-pTEFb-TAR recognition event and
complex formation that are necessary for efficient virus
gene expression. The ability of Tat to recruit pTEFb to
TAR determines the host range of Tat function (Bieniasz
et al., 1998; Chen et al., 1999a; Kwak et al., 1999;
Albrecht et al., 2000). For instance, although murine
cycT1 interacts with the HIV-1 Tat activation domain, the
HIV-1 Tat transactivation activity is obtained at a very
low level in murine cells. However, HIV Tat activity can
be rescued in these cells through the exogenous expres-
sion of the human cycT1 (Bieniasz et al., 1998; Garber et
al., 1998; Kwak et al., 1999). Similarly, the EIAV Tat pro-
tein uses equine but not human cycT1 to activate the
EIAV LTR (Albrecht et al., 2000; Taube et al., 2000). To
explain such discrepancies in lentivirus Tat activity, it
was indicated that a single amino acid difference in
cycT1 from mammalian species is sufficient to determine
distinct RNA binding properties of Tat (Garber et al.,
1998). Another explanation refers to the interaction of
Tat with cycT1, which appears to increase the affinity
and specificity of the binding between Tat and TAR in
some lentiviruses. For instance, a preformed complex,
Tat–pTEFb, binds to TAR in HIV (Barboric et al., 2000;
Bogerd et al., 2000). In contrast, BIV Tat may recognize
the BIV TAR with high affinity in the presence or
absence of cycT1 (Chen and Frankel, 1994, 1995; Puglisi
et al., 1995; Ye et al., 1995; Taube et al., 1999; Barboric
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et al., 2000). Consequently, BIV Tat–TAR interaction
takes place in most mammalian cells, including murine,
canine, rabbit and human cells, indicating flexibility for
BIV Tat to recruit cycT1 (Chen and Frankel, 1994;
Barboric et al., 2000; Bogerd et al., 2000; Das et al.,
2004).

As mentioned above, the MVV, CAEV and FIV Tat
proteins weakly transactivate their homologous LTR in a
TAR-independent manner (Harmache et al., 1995). The
MVV and CAEV Tat proteins, made of 94 and 86 amino
acids respectively, reveal similar structures, with N-ter-
minal acidic and hydrophobic, central leucine-rich and
C-terminal cysteine-rich domains (Jackson et al., 1991;
Saltarelli et al., 1993; Kalinski et al., 1994). The N-termi-
nal domain of these Tats interacts with the TATA
binding protein, whereas the leucine-rich domain inter-
acts with the cellular factors Jun and Fos, which bind to
the AP-1 transcription sites located in the U3 region of
LTR, thus resulting in efficient viral gene expression
(Gdovin and Clements, 1992; Carruth et al., 1996; Morse
et al., 1999). Unlike other lentiviruses, the FIV genome
does not have a clearly defined tat gene. Instead, it car-
ries an ORF, called ORF-A, encoding a Tat-like protein
of 79 amino acids. Conflicting data on the ability of
ORF-A to transactivate the FIV LTR were previously
reported. Indeed, upregulation of the FIV LTR promoter
activity mediated by the ORF-A gene product was
demonstrated (De Parseval and Elder, 1999; Chatterji et
al., 2002). However, a recent study indicated that ORF-
A does not affect the viral gene expression in vitro,
although it is still necessary for virus infectivity
(Gemeniano et al., 2003). By this means, the ORF-A-
encoded protein would appear to be more similar to
the accessory proteins Vpr, Vpu and Nef than to the Tat
protein of other lentiviruses. Whatever the role of ORF-
A in transactivation may be, it is noteworthy that the
FIV LTR U3 region contains recognition sequences for
the cellular transcription factors AP-1, AP-4, ATF (the
cyclic AMP response element), NF-κB and C/EBP,
which are indeed essential for LTR promoter activity.
Consequently, the ORF-A gene product would indirectly
enhance viral transcription through interactions with
these cellular transcription factors (Kawaguchi et al.,
1995; Chatterji et al., 2002).

The BIV Rev protein in comparison with that of other
lentiviruses

Beside the tat gene, lentivirus genomes, as mentioned
above, carry another important gene coding for the Rev
protein. Rev acts at the post-transcriptional level,
whereas the Tat protein regulates viral gene expression
at the transcriptional level (Mikaelian et al., 1996; Brice
et al., 1999). Rev regulates the expression of viral struc-
tural proteins in HIV, SIV and MVV by facilitating the
transport of unspliced and singly spliced transcripts from

the nucleus to the cytoplasm of infected cells (Felber et
al., 1989; Cheng et al., 1990; Tiley et al., 1990). Similar
observations were obtained in BIV, where the expres-
sion of Rev was shown to positively regulate the
appearance of gag, gag-pol and env mRNAs in the cyto-
plasm of infected cells (Oberste et al., 1993).

BIV Rev is a 23 kDa phosphoprotein localized in the
nucleus and nucleolus of infected cells (Oberste et al.,
1991, 1993). It is encoded from a multiply spliced mRNA
that contains the untranslated leader (exon 1) and two
encoding exons (exons 2 and 3) (Oberste et al., 1991,
1993). Exon 2 is in the same reading frame as the Env-
encoding region since the first 42 amino acids of Rev are
common to those of Env protein (Oberste et al., 1991;
Rasmussen et al., 1992). The regulatory activity of Rev is
mediated through its binding to the Rev-responsive ele-
ment (RRE) derived from a sequence of env encoding
the extracellular domain of TM (Oberste et al., 1993;
Gonda et al., 1994). The RRE is located only at the 3�
end of unspliced and singly spliced viral transcripts
(Phillips et al., 1992; Oberste et al., 1993; Schoborg et al.,
1994; Abelson and Schoborg, 2003). The RRE forms an
RNA stem–loop which varies in length among
lentiviruses (for instance, 312 bp in BIV and 204 bp in
CAEV) in these transcripts (Schoborg and Clements,
1996; Molina et al., 2002).

Two forms of BIV Rev, 159 and 186 amino acids in
length, due to alternate splicing, were observed
(Oberste et al., 1993). BIV Rev is predicted to be struc-
turally analogous to HIV Rev with the presence of
amino-terminal, arginine-rich, multimerization, leucine-
rich and carboxy-terminal domains (Fig. 4). Rev adopts a
helical structure typical of nucleic acid binding proteins
(Dillon et al., 1991; Carpenter et al., 1997; Hope, 1999).
The arginine-rich domain contains the NLS and interacts
with the RRE. The leucine-rich domain constitutes the
Rev nuclear export signal (NES).

The mechanism of nuclear export of viral RNAs medi-
ated by Rev has been studied mainly in HIV. The
functional activity of Rev is regulated by both NLS and
NES elements which stimulate a continuous Rev shuttle
between the nucleus and the cytoplasm (Zapp et al.,
1991; Love et al., 1998; Thomas et al., 1998; Jeong et al.,
2000). Following translation, the Rev NLS element binds
to an importin-β with Ran-GDP (Fig. 7). This binding
allows Rev to cross the nuclear pores. Then, the argi-
nine-rich domain of Rev binds in the nucleus to the RRE
element included in the incompletely spliced viral RNAs
(Cook et al., 1991; Tiley et al., 1991; Ippolito and Steitz,
2000). Several Rev proteins bind the same RRE through
a multimerization event, which is indeed necessary for
efficient nuclear export of viral RNAs (Tiley et al., 1992;
Cullen, 1998; Thomas et al., 1998). Following binding,
the NLS is hidden, and only the NES element of Rev is
exposed to cellular factors. The exportin CRM-1 (chro-
mosome region maintenance-1) interacts specifically and
directly with Ran-GTP and the NES element of Rev to
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mediate the transport of the Rev/RRE RNA complexes
from the nucleus to the cytoplasm (Fritz and Green,
1996; Nam et al., 2001). There, the CRM-1/Rev/RRE RNA
complexes dissociate upon conversion of Ran-GTP into
Ran-GDP by an RanGTPase with RanBP1 as a cofactor
(Henderson and Percipalle, 1997; Emerman and Malim,
1998), resulting in free Rev that is available for another
nuclear export pathway.

The lentivirus accessory proteins

In addition to structural and regulatory proteins, some
lentiviruses encode small accessory proteins that are
involved in provirus integration, and the assembly or
release of new virions (Subbramanian and Cohen, 1994).
The negative factor (Nef) protein of human and primate
lentiviruses is necessary for the development and main-
tenance of active infection. Nef plays a particular role in
the assembly and release of virus particles by down-reg-
ulating expression of the CD4 receptor at the cell
surface (Guy et al., 1987; Garcia and Miller, 1991;
Anderson et al., 1993; Foster et al., 1994; Sanfridson et
al., 1994; Aldrovandi et al., 1998). The BIV genome does
not harbor a nef sequence, but contains a tmx (trans-
membrane x in reference to its localization in the
genome) gene located in a region encompassing the 3�
end of the env gene coding for TM and overlapping the
3� LTR (Garvey et al., 1990). The Tmx protein, with a
molecular mass of 19 kDa, was detected in the cyto-
plasm of infected cells and in the BIV virion (Gonda et

al., 1994). Tmx, as Tat and Rev, derives from an early
mRNA devoid of the RRE element, and, thus, is Rev-
independent for its expression. Although BIV tmx and
human and primate lentivirus nef are similarly located
within their respective genomes, the possibility that Tmx
exerts Nef functions has yet to be determined. However,
the vif gene, located downstream from the pol gene, was
identified in all lentiviruses except EIAV (Rabson et al.,
1985; Kan et al., 1986; Lee et al., 1986; Sodroski et al.,
1986; Gonda et al., 1994; Kristbjornsdottir et al., 2004).
In HIV-1, Vif is a basic protein of 23 kDa which is pack-
aged into virions. Vif, whose expression in BIV has yet
to be confirmed, acts late in the lentiviral life cycle and
is required for optimal production of new virions (Fisher
et al., 1987; Strebel et al., 1987; Borman et al., 1995). In
fact, HIV-1 Vif enhances viral infectivity by 10- to 1000-
fold (Gabuzda et al., 1992; Von Schwedler et al., 1993;
Kao et al., 2003).

Other small proteins are observed in only some
lentiviruses. For instance, the HIV-1 and SIV viral protein
r (Vpr) and the HIV-2 and SIV viral protein x (Vpx) both
promote the transport of the DNA pre-integration com-
plex into the nuclei of non-dividing cells (Lu et al., 1993;
Paxton et al., 1993; Lavallee et al., 1994; Pancio et al.,
2000). Also, the viral protein u (Vpu) is observed only in
HIV-1. Vpu enhances the release of virus particles from
infected cells and decreases the formation of cell syncy-
tia due to the degradation of newly synthesized CD4
receptor molecules (Willey et al., 1992; Geleziunas et al.,
1994; Chen et al., 1996; Piguet and Trono, 1999).
Moreover, two distinct ORFs (vpw and vpy), unique in
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BIV, are located in the vif gene and are predicted to
encode proteins W (Vpw) and Y (Vpy), respectively
(Gonda et al., 1990). Based on their genomic location,
the role of Vpw (with a predicted mass of 7 kDa) and
Vpy (with a predicted mass of 10 kDa), whose expres-
sion, as for Vif, has yet to be determined, would exert
functions similar to those of the Vpr and Vpu of HIV,
respectively.

Hybrid regulatory proteins in lentiviruses

Hybrid Tat, Env and Rev proteins, termed Tnv and Tev,
are known in HIV-1 (Salfeld et al., 1990; Benko et al.,
1990). They were found in African green monkey kid-
ney cells (Cos-7) or human T-lymphoid cells (H9),
respectively, infected with a molecular clone of HIV-1.
They are produced by the first encoding exon of tat, a
part of the env gene, and the second encoding exon of
rev through alternate splicing. Although HIV-1 Tnv and
Tev have the functional domains of Tat and Rev, they
display transactivation activity that is lower than that of
the original HIV-1 Tat.

As mentioned above, alternate splicing may result in
more than one form of tat and rev mRNAs. A new BIV
Tat protein, called Tat236, was recently found in our lab-
oratory (M.-C. St-Louis, Y. Abed and D. Archambault,
submitted for publication). Tat236 derives from a cDNA
clone obtained from a new transcript found in BIV-
infected cells. We showed that the BIV Tat236 contains
most of the first encoding exon of tat and a sequence
encoded by rev. Reporter gene assays indicated that
transactivation of BIV LTR by Tat236 is higher than that
of the original BIV Tat proteins in several cell lines.
Therefore, Tat236 is the first hybrid Tat protein from BIV
or any other lentivirus that shows higher transactivation
than the original transactivator Tat proteins.

Genetic diversity in lentiviruses and its impact in
pathogenesis

Genetically variant retroviruses (associated with the so-
called quasispecies) are a result of reverse
transcriptase-induced errors, recombinational events,
mutations and selective forces that act on the viral popu-
lation (Boyer et al., 1992; Truyen et al., 1995; Burke,
1997; Mansky, 1998). Genomic variation allows retro-
viruses to evade the host immune response, alter cell
tropism and syncytium induction, acquire drug resist-
ance, and/or inhibit efforts to construct effective
vaccines (Fouchier et al., 1992; Milich et al., 1993; Wolfs
et al., 1993; Najera et al., 1995). Genetic variability is
mostly confined to regions of the genome encoding the
SU envelope proteins due to immune pressures
(Chirmule and Pahwa, 1996). However, genetic variation
in other regions of the genome may occur, including

those encoding the regulatory/accessory proteins or
nucleic acid sequences involved in viral gene expression
or biogenesis.

Variations in the pol and env genes are associated in
HIV with resistance to anti-retroviral drugs and the abil-
ity of the virus to evade the immune system,
respectively (Rubio et al., 1997; Pieniazek et al., 2000;
Vergne et al., 2000; Hsiou et al., 2001). Similarly, genetic
variation within the BIV pol and env sequences was
reported (Suarez and Whetstone, 1995, 97; Cooper et al.,
1999; Meas et al., 2001). Sequence analysis of the two
BIV 106- and BIV 127-developed molecular infectious-
cDNA clones shows an overall genomic variability of
1.7%, with 75% of the substitutions occurring in the SU-
coding region of the env gene (Garvey et al., 1990).
DNA sequence analysis of American BIV field isolates,
different from the R-29 isolate, indicated substantial
genetic variations among different strains (up to 10%
divergence in the conserved pol gene) (Suarez et al.,
1993, 1995). Genetic variation was also shown by in-
depth analysis of these isolates as well as size variation
by an apparent recombinational event within the second
hypervariable region of the SU-coding gene in naturally
and experimentally BIV-infected cattle (Suarez and
Whetstone, 1995, 1997). The biological significance of
this finding was not discussed further. Nevertheless, the
overall results of these genomic comparisons, indicating
diversity in both product size and sequence, may also
suggest a quasispecies phenomenon for BIV. This is
consistent with the results of other observations that
genomic comparisons of a portion (183 bp) of the pol
gene from various BIV isolates show non-conservative
amino acid changes (Cooper et al., 1999). Moreover, an
intra- and inter-individual env variation is observed in
BIV R-29-infected rabbits (Kalvatchev et al., 2000), indi-
cating further that the potential may exist for the
development of BIV pol and env quasispecies. However,
this interpretation needs to be taken with caution since
weak viral replication rates in the presence of neutraliz-
ing antibodies were accompanied by an absence of
antigenic variation in infected cattle (Carpenter et al.,
2000).

Similarly to that of the lentivirus structural proteins,
variation may occur in regulatory/accessory genes or
sequences involved in virus gene expression. Indeed,
genetic variation was reported in HIV LTR as well as in
the HIV tat and rev genes in individuals infected with
the virus, and the resulting mutated sequences were
shown to have an impact on the regulation of virus
gene expression or suggested a role in virus virulence
(Golub et al., 1990; Martins et al., 1991;
Nagashunmugam et al., 1992; Hua et al., 1996; Krebs et
al., 1998; Zhang and Dayton, 1998; Peloponese et al.,
1999; Hiebenthal-Millow et al., 2003). Moreover, varia-
tion in HIV Rev affects the RNA nuclear export and,
consequently, the levels of structural protein production
(Belshan et al., 1998). Finally, Belshan et al. (2001) were

Bovine immunodeficiency virus 135

https://doi.org/10.1079/AHR200496 Published online by Cambridge University Press

https://doi.org/10.1079/AHR200496


able to correlate, in EIAV-infected ponies, Rev variation
and the stage of disease over time. However, the impact
of these variations in the virus gene expression or
pathogenesis of other lentiviruses remains poorly stud-
ied.

Concluding remarks

Substantial progress has been made on BIV in the last
15 years following the demonstration that it was indeed
a lentivirus. In this regard, a novel form of BIV Tat pro-
tein, termed Tat236, has been found in BIV-infected
cells. The significance of Tat236 in the life replication
cycle of BIV or its impact in BIV biogenesis is at present
unclear. Finally, although BIV induces lifelong persistent
infection in cattle, the attribution of clinical disease to
BIV is still controversial and there is no overt immuno-
deficiency state associated with BIV infection. This may
be due partly to the fact that most studies have been
conducted with the R-29 isolate of BIV. Therefore, there
is a need to find new BIV isolates in order to unequivo-
cally establish the pathogenic impact of BIV infection in
cattle.
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