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Investigation of the imbibition/drainage of two
immiscible fluids in capillaries with arbitrary
axisymmetric cross-sections: a generalized model
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In this work, we investigate the problem of imbibition/drainage of a fluid in capillaries
of arbitrary axisymmetric cross-sections filled initially with another immiscible one. The
model predicts the location of the meniscus and its speed along the tube length with time.
The two immiscible fluids may assume any density and viscosity contrasts. In addition, the
axisymmetric profile of the tube maintains a relatively small angle of tangency to warrant
that the axial velocity distribution assumes, approximately, a parabolic profile. The driving
forces that may be encountered in this system include the capillary force, pressure force,
gravitational force and an opposing viscous force. The orientation of the capillary force can
be in the direction of the flow (e.g. during imbibition) or opposite to the flow (e.g. during
drainage). Likewise, the gravitational force can be in the direction of the flow or opposite
to it. In this work we account for all these possibilities. A differential equation is developed
that defines the location of the meniscus with time. A fourth-order-accurate Runge–Kutta
scheme has been developed to provide solutions for the different scenarios associated with
this system. It is shown that the developed model reduces to those appropriate for straight
tubes, which builds confidence in the modelling approach. The effects of changing the
tangent along the profile of the tube, which influences the calculation of the radius of
curvature of the meniscus, is also considered. Unlike the cases of straight capillary tubes,
in tubes with arbitrary symmetric profiles, the friction force depends on the variations of
the tube profile. Examples of converging/diverging capillary tubes that follow straight and
power law profiles are investigated. In addition, the case of sinusoidal profiles has also
been considered.

Key words: capillary flows, contact lines

† Email address for correspondence: amgad.salama@uregina.ca

© The Author(s), 2022. Published by Cambridge University Press 947 A12-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

64
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:amgad.salama@uregina.ca
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2022.642&domain=pdf
https://doi.org/10.1017/jfm.2022.642
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1. Introduction

Two main types of quantitative analysis methods are at our disposal when studying
a physical phenomenon. These are, namely, microscopic and macroscopic methods of
analysis, which depend on the scale of the phenomenon under investigation (i.e. length
and/or time scales). While microscale descriptions focus on small size domains,
macroscale analysis is usually adapted to larger size domains. Since microscale analyses
look for the details, they handle a larger number of degrees of freedom and generate a
larger volume of data. Macroscale analysis, on the other hand, integrates and homogenizes
these details and generates comparatively less data. The choice between any of these two
approaches is, in fact, determined by the scale of analysis. It must, however, be stated
that these two methods are not entirely independent. In fact, there are situations in which
one may need to focus on the behaviour of a system at some small scale in order to gain
understanding of its behaviour at a larger scale. In some other situations, some parameters
(properties) at the large scale may be determined by upscaling small-scale variables.
A direct example of such cases may be found on studying flows of multiphase systems
in porous media. At the scale of porous media (i.e. a macroscopic scale) the continuum
hypothesis may be adapted and the porous medium is replaced by a fictitious one in which
the internal structure of the medium is homogenized and is replaced by a continuous one
(e.g. Whittaker 1999; de Boer 2006; Salama & Van Geel 2008; Das & Hassanizadeh 2010).
At the pore scale (i.e. a microscopic scale), however, the story is different and one needs
to account for the complex internal structure of a real porous medium (e.g. Ovaysi & Piri
2011; Raeini, Blunt & Bijeljic 2012; Golparvar et al. 2018; Gueto-Felgueroso et al. 2018).
The large-scale description of the flow of multiphase systems in porous media is described
using a smaller number of macroscopic parameters (e.g. relative permeability), whereas at
pore scale, no such parameters exist. Instead, the details of the interface movements, the
affinity characteristics of the phases against each other, along with the detailed description
of the complex internal structure of even a small-scale domain, become important and need
to be resolved. The problem with this approach is that the geometrical reconstruction of
a real, small-scale domain is cumbersome and involves the use of computer tomography
and sophisticated tools to build such a realization. There are, however, other simplified
techniques that can handle these systems and significantly alleviate many of the difficulties
associated with the need to reconstruct a realization of a real porous medium domain. This
is done via pore network models in which the pore space is replaced by some known
geometrical shapes (e.g. spheres) and the pore throats are replaced by some other shapes
(e.g. cylinders) (e.g. Joekar-Niasar et al. 2010; Bultreys, Van Hoorebeke & Cnudde 2015;
Bashtani, Irani & Kantzas 2021; Guo et al. 2021). The advantages of this approach are
that it is far simpler than the other one and in the same time it can benefit from the ample
analytical techniques related to both imbibition and drainage processes in capillaries.

Flow of a two-phase system in capillaries is linked to the dynamic behaviour of the
interface that separates the two phases. Such an interface can be convex or concave
according to the affinity of the two-phase system to the wall of the tube. Such a feature
divides the fluids into three categories; namely, (i) wetting (i.e. the fluid spreads over the
surface), (ii) non-wetting (i.e. the fluid contracts) and (iii) neutral. This introduces forces
along the contact line called interfacial tension forces, which can be in the direction of
the flow or opposite to it (e.g. de Gennes, Brochard-Wyart & Quere 2004; Clift, Grace &
Weber 2005). In fact, in cases when such an interfacial force dominates the other forces, the
system can undergo capillary-induced flows (if the invading fluid is wetting) or otherwise
no flow is induced (if the fluid is non-wetting). Capillary-induced flows are sometimes
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referred to as imbibition, in which the flow is caused solely by interfacial tension forces,
which drag the wetting fluid along the tube (e.g. Lucas 1918; Washburn 1921; Hammecker
et al. 1993; Bijeljic, Markicevic & Navaz 2011). On the other hand, if the fluid is
non-wetting, it cannot move along the tube unless external boosting is applied (e.g. via an
applied pressure). It is interesting to compare the different applied forces that are involved
in the flow of a two-phase system in capillaries. Such comparison is facilitated via the
dimensionless numbers r�p/γ , μv/γ and ρgr2/γ , where r is some length scale (e.g. the
radius of the tube), �p is a global pressure difference, γ is the interfacial tension, μ is the
viscosity, v is some reference velocity, g is the gravity and ρ is the density. The first number
describes the influence of the driving pressure force to the capillary force, the second is the
capillary number, which measures the ratio between viscous and capillary forces and the
last one is the Bond number, which measures the ratio between gravitational and capillary
forces. These four forces (namely, pressure, capillary, friction and gravity) are important
in typical two-phase flows in capillaries. Previous studies on flows in capillary tubes have
considered combinations of these forces to different extents. Most of the studied scenarios
have focused on imbibition scenarios in which a wetting liquid displaces a non-wetting
gaseous fluid (e.g. air) because of its ubiquitous applications. In imbibition scenarios, the
three forces that play key roles are the capillary, friction and gravity forces. Imbibition has
been studied extensively in the context of estimating the rate at which the meniscus moves
under different conditions (e.g. Lucas 1918; Washburn 1921; Hammecker et al. 1993;
Bijeljic et al. 2011). An analytical expression has been developed that links the location
of the meniscus and the time (� ∝ √

t) neglecting fluid inertia (Lucas 1918; Washburn
1921). Other studies have included fluid inertia and reached the conclusion that inertial
effects only appear at the very early time of the imbibition process (e.g. Young 2004; Das,
Waghmare & Mitra 2012; Taroni & Vella 2012; Elizalde et al. 2014; Reyssat 2014; Gorce,
Hewitt & Vella 2016; Salama 2021a). In imbibition processes, the fact that the invading
fluid moves against a gaseous phase with negligible viscosity and density, may apply to
some particular cases involving, for example, infiltration of rain water into soil. The more
general cases in which the two fluids possess considerable viscosity and density contrasts
have been recently considered under both imbibition and drainage scenarios (e.g. Fries &
Dreyer 2008; Das & Mitra 2013; Ramakrishnan et al. 2019; Salama 2021b). Such cases
find several applications in oil production, pharmaceutical, food industries and others.
Furthermore, different scenarios with respect to the orientation of the capillary tube can
show applications in which gravity can assist or oppose the flow. The effect of inertia under
this generalized framework has also been considered and it was concluded that the inertial
effect may only appear at the very early time of the drainage or imbibition processes.
Furthermore, the case involving the movement of a wetting/non-wetting ganglion of one
fluid by another immiscible one in capillaries has also been considered under different
viscosity and density contrasts. With all these scenarios, there are still cases of practical
importance that need to be incorporated within the same generalized framework. These
are related to the case in which the cross-sectional area of the capillary tube constantly
changes along the length of the tube. This case is more relevant to porous medium
applications in which the seeping fluids experience tortious paths. Although there have
been other studies on this topic (e.g. Xiao, Yang & Pitchumani 2006, Dereyssat et al. 2008;
Liou, Peng & Parker 2009; Hultmark, Aristoff & Stone 2011; Kornev & Neimark 2011;
Maggi & Alonso-Marroquin 2012; Wang et al. 2012; Budaraju et al. 2016; Walls, Deqidt
& Bird 2016; Ashraf, Visavale & Phirani 2018, Ashraf & Phirani 2019a,b), they adhere
to the special case of imbibition in which the displaced fluid is of negligible viscosity
and density compared with the invading one or to the case in which the capillary tube
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is asymmetric. Under these conditions, it may be possible to ignore the friction loss in
the subdomain domain filled with the gas phase (e.g. Salama et al. 2021). While this
may find applications in some scenarios (e.g. flows in the vadose zone), there are ample
other applications in which the viscosity and density of the two immiscible fluids cannot
be ignored (e.g. in displacing oil by water). In this work, we provide a generalization to
our previously developed model that predicts the location and the speed of the meniscus
with time. The model considers the case of flow of a two-phase system in capillaries with
arbitrary axisymmetric cross-sections. These cases are important in the context of pore
network models in which pore bodies are connected via pore throats that are idealized, in
most cases, as constant cross-section three-dimensional objects (e.g. cylinders, prisms).
In reality, however, pore throats are more complex in structures than such simplified
cases. Cases of tapered, power law and sinusoidal pore throats have been investigated. The
model accounts for immiscible fluids over a wide range of viscosity and density contrasts
under both imbibition and drainage scenarios. Forces due to pressure, interfacial tension,
friction and gravity are considered. The model, however, does not account for the effects
of electrostatic forces that may arise upon the accumulation of charges (e.g. in the realm of
diffuse double layers, Das, Guha & Mitra 2013; Das et al. 2014). Likewise, the effects of
flow slippage at channel walls that may be relevant to nano-size tubes are not considered.
In other words, the developed model may be relevant to microscale capillaries and larger.

2. Statement of the problem

In this work we are primarily concerned with the displacement of one fluid by another
immiscible one in capillaries of arbitrary axisymmetric cross-sections. Two cases are
investigated; namely, (i) the invading fluid is wetting, and (ii) the invading fluid is
non-wetting. In the first case the interface is convex with respect to the invading fluid
and is concave for the second one. Because of the continuous change of the radius of the
tube along its length, the curvature of the interface also changes. The interfacial tension
force, likewise, changes along the tube length. The pressure at the two reservoirs between
which the tube terminals are connected are pU at the top reservoir and pD at the bottom
reservoir. Figure 1 shows a schematic of the considered set-up with the location of the
interface at a distance h(t) from the bottom reservoir and where the length of the tube is H.
We are particularly interested in determining the location and velocity of the interface with
time. Since the geometric set-up represents a symmetric system, a one-dimensional model
along the axis of symmetry employs area average quantities (e.g. the mean velocity). The
interfacial tension force along the axis of symmetry not only depends on the contact angle
and the radius of the tube, but also on the angle of the tangent to the wall, which changes
along the wall of the tube. The radius of the tube along the length is a function of the axial
location, or rp = rp(z). In previous studies (e.g. Budaraju et al. 2016), under quasi-static
conditions, the radius of curvature R = R(ϑ, z) has been assumed to only depend on the
contact angle and the radius of the tube, which may not be quite accurate except under
very restrictive scenarios (|drp/dz| � 1).

In this work, we slightly relax this restriction and consider the general case in which
the radius of curvature of the interface depends, in addition, on the slope of the profile
of the tube, that is R = R(ϑ, rp, drp/dz). Another restriction with respect to the profile of
the capillary tube that is relevant to this study should also be mentioned. It is stipulated
that the axial velocity distribution does not significantly deviate from the parabolic profile
usually encountered in laminar flows in straight tubes. In order to highlight the variations
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z

μ2
ρ2

μ1 ρ1

pD

pU

rp(z)

H

h

Figure 1. A non-wetting fluid (orange in colour) displaces a wetting one (blue in colour). In this case the
pressure of the bottom reservoir must exceed the critical entry pressure for the interface to advance. The
radius of the tube changes along its axis i.e. rp = rp(z) in a manner that generates a converging, diverging
or a combination of them along the tube.

z

drp/dz

rp

ϑ – α

ϑ

α

R

z

drp/dz

rp

ϑ + α

ϑ

α

α

R

(a) (b)

Figure 2. The radius of curvature of the interface depends not only on the contact angle and the radius of the
tube but also on the slope of the profile of the tube. Two cases are to be distinguished with respect to whether the
interface is at a converging or diverging portion of the tube and also with respect to whether it is an imbibition
or drainage scenario. (a) The interface is at a diverging section. (b) The interface is at a converging section.

of the radius of curvature of the interface with the slope of the tube profile and its radius,
consider the scenarios shown in figure 2(a,b).

The interface in this figure represents a non-wetting fluid (orange in colour) displacing
a wetting one (blue in colour). At the moment when the interface is located in the
diverging portion of the tube (figure 2a) the radius of curvature is R = rp/cos(ϑ − α)

and if the interface is at the converging portion (figure 2b), R = rp/cos(ϑ + α), where
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α = tan−1(drp/dz). As shown in figure 2, the contact angle ϑ is defined with reference
to the invading liquid and the tangent of the profile of the tube. Furthermore, and for the
sake of simplicity of the analysis, the dynamic nature of the meniscus is neglected and it
is assumed that the contact angle ϑ remains unchanged throughout the invasion process,
which may only be valid under quasi-static conditions.

3. Quasi-one-dimensional modelling approach

The control volume over which the force balance is studied spans the whole length of the
capillary tube, as depicted in figure 14. It defines a capillary tube of arbitrary cross-section
and a length of H connected from the top and the bottom to two reservoirs.

To simplify the analysis, we consider the upstream and downstream pressures defined
right at the entrance and at the exit of the tube. In other words, the predefined pressures at
the inlet and the exit of the tube account for the local losses. Although these pressures may
change slightly as the pressure field evolves it is expected, over the period of simulation,
that predefined volume average pressures may not vary significantly. Compared with the
pressure loss along the capillary tube length, the local pressure drop at the entrance is
expected to comprise only a small fraction (Budaraju et al. 2016). Furthermore, previous
computational fluid dynamics (CFD) investigation shows a slight variation of the axial
pressure profiles along the centreline in the reservoir (Salama et al. 2022). More discussion
on local entrance losses in such set-ups can be found in several previous works, a good list
of which may be found in the work of Waghmare & Mittra (2010). It is to also be mentioned
that the model considers quasi-static analysis in which the contact angle is assumed
fixed. The effect of the dynamic behaviour of the contact angle can be captured in a
CFD study.

The conservation of linear momentum equation in integral form over a control volume
may be written in a vector form as

∂

∂t

∫
V
ρu dV +

∫
A
(ρu · n)u dA = −

∫
A

pn dA +
∫

A
τn dA +

∫
V
ρg dV +

∫
CL
γ t d�,

(3.1)

where γ is the interfacial tension, n is the normal to the boundary unit vector, t is the
unit vector normal to the contact line (CL) in the plane tangent to the interface, u is the
velocity vector of the fluid crossing the boundary, τ is the viscous stress tensor and p is
the pressure. In the above equation, it is assumed that the interface intersects the boundary
of the control volume. The left-hand side of the above equation represents inertia of the
fluid. As mentioned earlier, the inertial effects are usually limited to the very short time
period at the start of the invasion process, (e.g. Salama 2021a). It has been estimated
elsewhere (e.g. Budaraju et al. 2016; Gorce et al. 2016) that, for the case in which the
two fluids are of comparable density and viscosity, inertial effects may be important for
t � ρr2/μ, which is indeed small compared with the time of typical imbibition process.
Therefore, it may be possible to ignore the left-hand side of (3.1). For the sake of generality,
however, we drive the governing equation including the left-hand side terms. Figure 3
shows a typical capillary tube of arbitrary cross-section along with the two-phase system
under both drainage (figure 3a) and imbibition (figure 3b) scenarios. If one applies the
conservation of momentum law over the particular control volume shown in figure 3, the
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right-hand side of (3.1) in the axial direction simplifies to∑
F = [pDA(0)− pUA(H)] −

∫
A1

τ1 dA −
∫

A2

τ2 dA ±
∫

V1

ρ1g dV

±
∫

V2

ρ2g dV ± πDγ cos[ϑ + α(h)], (3.2)

where pD and pU are the external pressure at the inlet and exit of the tube, A(0) and A(H)
are the cross-sectional areas at the inlet and the exit, respectively, τ1 and τ2 are the shear
stresses at the wall of the two portions of the control volume filled with both fluids, A1
and A2 are the surface areas of the control volume associated with the two fluid regions,
V1 and V2 are the volumes of the respective two fluid regions, ρ1 and ρ2 are the densities
of the fluids in the two parts, ϑ is the contact angle and α is the angle of the tangent to
the tube profile as shown in figure 2. Note that the component of the pressure force in the
direction of the flow exerted by the tube wall on the two-phase system is ignored due to the
small angle of tangency of the tube profile. Expansion and simplifications of (3.2), yield

∑
F = [pDA(0)− pUA(H)] − 2π

∫ H

h
τ rp(z) dz − 2π

∫ h

0
τ rp(z) dz ± πρ1g

∫ H

h
r2

p(z) dz ± πρ2g
∫ h

o
r2

p(z) dz ± 2πrp(h)γ cos[ϑ − α(h)] = 0. (3.3)

The shear stress at the wall may be written a τ(z) = −μ∂u(z)/∂r|r=rp(z). Under laminar
flow conditions, which may be valid in capillaries, the velocity distribution assumes a
parabolic profile and may be represented as u(r, z) = Umax[1 − r2/r2

p(z)], where Umax

is the centreline velocity. As indicated earlier, this study considers flows that are
approximately uniaxial. Because of the irregular pattern of the tube profile, a cross-flow
may be induced. Therefore, this analysis is valid for profiles in which the generated
cross-flow is insignificant, which may be achieved when |drp/dz| � 1. In terms of the
average velocity, the above equation may be written as u(r, z) = 2Ū[1 − r2/r2

p(z)], where
Ū is the average velocity. Figure 4 shows a schematic of the parabolic profile.

Following Salama (2021a,b), substitution of the shear stress formula into (3.3) and using
the volumetric flow rate, Q = Ū(z)A(z), to replace the average velocity, (3.3) reduces to

∑
F = π[pDr2

p(0)− pUr2
p(H)] − 8μ1Q

∫ H

h

dz
r2

p(z)
− 8μ2Q

∫ h

0

dz
r2

p(z)
± πρ1g

∫ H

h
r2

p(z) dz ± πρ2g
∫ h

o
r2

p(z) dz ± 2πrp(h)γ cos[ϑ − α(h)]. (3.4)

The volumetric flow rate Q in terms of the time derivative of the location of meniscus
can be written as Q = [πr2

p(h)]dh/dt. Substitution into (3.8), simplifications and collecting
terms, one obtains

∑
F = π[pDr2

p(0)− pUr2
p(H)] − 8πμ1r2

p(h)

[∫ H

h

dz
r2

p(z)
+ μ2

μ1

∫ h

0

dz
r2

p(z)

]
dh
dt

± πρ1g
[∫ H

h
r2

p(z) dz + ρ2

ρ1

∫ h

o
r2

p(z) dz
]

± 2πrp(h)γ cos[ϑ − α(h)]. (3.5)
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z

ϑ

(a) (b)

h

H

FγFγ

μ2
ρ2

μ1 ρ1

pD

pU

R(z)

τ2

τ1

z

ϑ

h

H

FγFγ

μ2
ρ2

μ1
ρ1

pD

pU

τ2

τ1

Figure 3. Schematic of the control volume (dashed line) over which force balance is performed. (a) Drainage
and (b) imbibition.

∂u/∂r|rp

u(r,z)

r

z

Figure 4. The axial velocity along the radius of the tube may be considered to assume a parabolic profile
under laminar flow conditions.

For simplification of notation, we define the following terms a(h) = ∫ H
h dz/r2

p(z),

b(h) = ∫ h
0 dz/r2

p(z), c(h) = ∫ H
h r2

p(z) dz and e(h) = ∫ h
o r2

p(z) dz.
Substitution into (3.5), one obtains

∑
F = [pDA(0)− pUA(H)] −

[
8μ1πr2

p(h)
(

a + b
μ2

μ1

)]
dh
dt

± πρ1g
[

c + ρ2

ρ1
e
]

± 2πrp(h)γ cos(ϑ − α). (3.6)

One may define the following two terms, λ = μ2/μ1, and ξ = ρ2/ρ1. On substitution
into (3.6), one obtains

∑
F = [pDr2

p(0)− pUr2
p(H)] − [8μ1r2

p(h)(a + bλ)]
dh
dt

± ρ1g(c + eξ)± 2rp(h)γ cos(θ − α). (3.7)
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On the other hand, the left-hand side of (3.1) may be written as

LHS = ∂

∂t
ρ(h)A(h)

∂h
∂t

+ ρ1

(
1

A(0)
− ρ2/ρ1

A(H)

)
A2(h)

(
∂h
∂t

)2

, (3.8)

where ρ(h) = ρ2h + ρ1(H − h), A(0), A(H) and A(h) are the cross-section areas at the
inlet, exit and at the location of the meniscus, respectively. The general form of the
equation may, therefore, be written as

d
dt

[
ρ(h)A(h)

dh
dt

]
+ ρ1

(
1

AU
− ρ2/ρ1

AD

)
A2(h)

(
dh
dt

)2

= [pDr2
p(0)− pUr2

p(H)] − [8μ1r2
p(h)(a + bλ)]

dh
dt

± ρ1g(c + eξ)

± 2rp(h)γ cos(θ − α). (3.9)

Equation (3.9) is a second-order, nonlinear ordinary differential equation. For the sake
of simplicity, if it is possible to ignore the left-hand side terms based on the discussion
presented earlier, the above equation reduces to

[pDr2
p(0)− pUr2

p(H)] − [8μ1r2
p(h)(a + bλ)]

dh
dt

± ρ1g(c + eξ)± 2rp(h)γ cos(θ − α) = 0. (3.10)

Which for spontaneous imbibition, simplifies to

2rp(h)γ cos(θ − α) = ρ1g[c(h)+ e(h)ξ ] + {8μ1r2
p(h)[a(h)+ b(h)λ]}dh

dt
. (3.11)

Similarly, for upward drainage scenarios, (3.10) may be reformulated as

pDr2
p(0) = pUr2

p(H)+ ρ1g[c(h)+ e(h)ξ ] + 2rp(h)γ cos[ϑ + α(h)]

+ {8μ1r2
p(h)[a(h)+ b(h)λ]}dh

dt
. (3.12)

Equation (5.2) represents a model that can handle the invasion process in capillaries
of arbitrary shape under the assumption that inertia may be neglected. As seen, (3.10) is a
first-order, nonlinear, differential equation for which it may be difficult to find an analytical
solution. Furthermore, the integral coefficients a, b, c and e may not always reduce to a
closed form. Therefore, a fourth-order Runge–Kutta scheme has been adapted in this study
to solve this system.

4. Verification and validation

The case of imbibition and drainage in straight capillaries under the same framework
has been considered in Salama (2021a,b). In this section, we show that this developed
generalized model reduces to those previously developed models in straight capillary
tubes. In this case rp(z) = const., and α = 0. The integral coefficients are as follows:
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a = (H − h)/r2
p, b = h/r2

p, c = r2
p(H − h) and e = r2

ph. Substitution yields

[pDr2
p(0)− pUr2

p(H)] − 8μ1[H − h + hλ]
dh
dt

± ρ1gr2
p[H − h + hξ ] ± 2rpγ cos(ϑ) = 0.

(4.1)

Collecting terms

(pD − pU)− 8μ1

r2
p

[H + h(λ− 1)]
dh
dt

± ρ1g[H + h(ξ − 1)] ± 2γ cosϑ
rp

= 0. (4.2)

Factoring

�p ± 2γ cosϑ
rp

± ρ1gH
[

1 + h
H
(ξ − 1)

]
− 8μ1H

r2
p

[
1 + h

H
(λ− 1)

]
dh
dt

= 0. (4.3)

Rearrangement(
�p ± 2γ cosϑ

rp
± ρ1gH

)
± ρ1gh(ξ − 1)− 8μ1H

r2
p

[
1 + h

H
(λ− 1)

]
dh
dt

= 0. (4.4)

This last equation is identical to that developed in Salama (2021b), which applies to
any combination of two immiscible fluids in capillaries over a large spectrum of density
and viscosity contrasts. Furthermore, for spontaneous imbibition in horizontal capillaries
between a wetting liquid and air, we have, ρ1 ≈ 0, μ1 ≈ 0, �p = 0 and g = 0, and (4.1)
reduces to

h
dh
dt

= γ rp cosϑ
4μ2

. (4.5)

The solution of the above equation is h = √
(γ rpt cosϑ)/2μ, which is the celebrated

Washburn–Lucas equation. Note that the subscript of μ2 has been dropped for simplicity
of notation. Another verification exercise is considered for a case in which the profile
of the tube varies. We consider a converging diverging tube as depicted in figure 5(a).
The tube profile shows three straight sections connected with two necks representing a
converging and a diverging section, (Erickson, Li & Park 2002). Figure 5(b) shows a
comparison between the current model and that of Erickson et al. (2002), who considered
the special case of spontaneous imbibition in the system shown in figure 5(a), and as seen,
a good match is obtained. The developed model, however, can handle the general case of
a two-phase system with arbitrary viscosity and density contrasts with/without gravity.

Now, having established the generalized model, it is time to consider some special
cases. Three special geometries are considered in the next sections; namely, (i) straight
converging/diverging capillaries, (ii) power law capillary profiles and (iii) a sinusoidal
profile. In all the considered scenarios, drp/dz � 1. Conditions and assumptions of each
of the considered scenarios are summarized in table 1 below.

5. Quasi-one-dimensional model for capillary flow in a converging/diverging straight
tube

Consider the case in which the capillary tube is of a cross-section that changes linearly
along the tube length. Two scenarios are possible; namely a converging profile in which the
diameter decreases along the length, and a diverging profile when the diameter increases
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H1

R1

R2

H2 H3 H4 H5

20 40 60

Current model

Erickson et al. (2002)

Time (s)

h 
(m

)

80 1000

0.02

0.04

0.06

0.08

0.10

(a)

(b)

Figure 5. Schematic of the tube profile (a) as given in Erickson et al. (2002) that is been used for the
comparison and (b) comparison of the location of the meniscus with time. The dimensions are H1 = 20 mm,
H2 = 2.8647 mm, H3 = 40 mm, H4 = 2.8647 mm, H5 = 35 mm, Rmax = 50 μm and Rmin = 25 μm, and the
properties of the imbibing fluid are ρ = 1000 kg m−3, γ = 0.03 N m−1 and ϑ = 30◦.

A converging linear profile Imbibition scenario, fluid inertia is ignored, no gravity, no
electrostatic effects are considered

A diverging linear profile Imbibition scenario, local and convective inertia are ignored, no
gravity, no electrostatic effects are considered

A converging quadratic profile Imbibition scenario1, local and convective inertia are ignored, no
gravity, no electrostatic effects are considered
Imbibition scenario2, local and convective inertia are ignored, with
gravity, no electrostatic effects are considered

A diverging quadratic profile Imbibition scenario1, local and convective inertia are ignored, no
gravity, no electrostatic effects
Imbibition scenario2, local and convective inertia are ignored, with
gravity, no electrostatic effects

A sinusoidal profile Imbibition scenario1, local and convective inertia are ignored, no
gravity, no electrostatic effects
Imbibition scenario2, local and convective inertia are ignored, with
gravity, no electrostatic effects

Table 1. Scenarios considered in this work.
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α
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μ2
ρ2

μ1 ρ1

τ2

τ1

ϑ

Figure 6. Tapered straight capillary tube in the drainage scenario. The orange-coloured region is filled with
the non-wetting fluid while the blue-coloured region is the wetting fluid.

(b)(a) (c) (d )

rp

R

z

α

ϑ + α

ϑ + α

ϑ

rp

rp rpR

R
R

z z z

α

α

α

ϑ – α

ϑ – α

ϑ

ϑ

ϑ

Figure 7. Interface in tapered straight tube under imbibition and drainage scenarios. The angle between the
direction of the interfacial tension force and the axial direction (z-direction) is given by ϑ ± α, where α is the
angle between the tangent to the tube profile and the z-direction. (a) Drainage (converging profile), (b) drainage
(diverging profile), (c) imbibition (converging profile) and (d) imbibition (diverging profile).

along the length. A generalized linear equation may be written as

rp(z) = rp(0)+ rp(H)− rp(0)
H

z. (5.1)

Which in standard form may be written as , where the slope m = [rp(H)−
rp(0)]/H can be positive or negative and intercepts , . Figure 6 shows a
schematic of one such scenario (the converging profile) in a drainage process. Figure 7, on
the other hand, shows the interface as it intersects with the tube wall for both imbibition
and drainage scenarios. It is worth mentioning that the angle which the interfacial tension
force makes with the axial direction in the drainage scenario is opposite to that in the
imbibition scenario, as depicted in figure 7. That is, for example in a converging capillary
straight tube, under the drainage scenario, the angle is (ϑ + α), and for imbibition scenario
it is (ϑ − α). The solution of (3.10) requires the determination of the four parameters a,
b, c and e. Luckily, for this scenario, analytical expressions for these parameters may be
obtained by evaluating the integrations, as listed in table 1.
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It is interesting to highlight some key features of this system by comparing the speed of
the meniscus at the beginning (i.e. when it is at the entrance) and at the exit of the tube.
For simplicity, we consider a spontaneous imbibition scenario in horizontal capillaries. In
this case (4.4) reduces to

dh
dt

= 2γ cos(θ + α)/rp(h)
{8μ1[a(h)+ b(h)λ]} . (5.2)

Table 1 Analytical expressions for the parameters a, b, c and e for the cases of imbibition
and drainage in converging/diverging straight capillaries.

(ℎ) ( + )

3
−
( ℎ + )

3
 (5.5)

(ℎ) ( ℎ + )

3
−
3

 (5.6) 

(ℎ) tan ( ) (5.7) 

Substitution of the parameters a(h) and b(h) as given in (5.3) and (5.4), yields

(5.8)

With simplifications and rearrangements, one finds

(5.9)

Therefore, at the beginning of the imbibition process (i.e. h = 0), (5.9) simplifies to

u(0) = dh
dt

∣∣∣∣
h=0

= γ cos(θ + α)rp(H)
4μ1H

. (5.10)

Furthermore, when h = H one obtains

u(H) = dh
dt

∣∣∣∣
h=H

= γ cos(θ + α)rp(0)
4μ1λH

. (5.11)

Now, the ratio between the velocities of the meniscus at the exit and at the inlet is
u(H)
u(0)

= rp(0)/rp(H)
λ

. (5.12)

For the special case in which rp(0)/rp(H) = λ, the velocity ratio is one, which implies
that the meniscus moves at a constant speed. Furthermore, if rp(0)/rp(H) > λ, the speed of
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the meniscus increases and decreases otherwise. It is interesting to notice that, if rp(0) =
rp(H), which corresponds to the case of a straight uniform tube, the velocity ratio is 1/λ.
For the case of a diverging tube in which rp(0)/rp(H) < 1, u(H) is always smaller than
u(0). One can also investigate the ratio of the velocities of the meniscus at the exit of the
tube for different converging or diverging scenarios for the same fluids. For two profiles of
different angles α but the samerp(0), the ratio of the velocities is u1(H)/u2(H) = cos(θ +
α1)/cos(θ + α2). For longer tubes, α is usually small, which leads tou1(H) ≈ u2(H). This
is interesting and is a manifestation of the fact that when the meniscus reaches the exit, the
tube becomes filled with only the invading fluid. In this case the friction force will only
depend on the size of the tube, and both the friction and the capillary forces are oppositely
correlated with the size of the pore. Therefore, for the smaller size pore opening at the exit,
the capillary force increases and likewise the friction force and this seems to cancel out
their effect. Likewise, for the same rp(0), the ratio between the velocities of the meniscus
at the beginning of its movement is

u1(0)
u2(0)

= cos(θ + α1)[rp(H)]1
cos(θ + α2)[rp(H)]2

. (5.13)

Which, again for longer tubes, simplifies to u1(0)/u2(0) ≈ [rp(H)]1/[rp(H)]2. This may
be read as follows: for the same fluids and rp(0), the inlet velocity is larger the larger the
size of the opening at the exit. This conclusion, in fact, should come as no surprise on
account of the fact that the larger size pore opening implies less overall resistance, hence
the above observation. An analytical expression can be derived that depicts the dynamics
of the meniscus along the tube length. A derivation can be found in Appendix A. It takes
the form

(λ− β)

2Hψ
h2 + β

ψ
h = t, (5.14)

where β = rp(0)/rp(H), and ψ = γ rp(0) cos(θ + α)/4μ1H. These conclusions are
manifested on applying the developed model on the two cases of imbibition in converging
and diverging straight capillaries. In all the considered scenarios, the viscosity ratio
between the invading fluid and the displaced one is set to 100, the surface tension to
0.072 N m−1 and the contact angle is 45°. Starting with the case of imbibition in
converging straight pipes in which the radius of the tube at the inlet, rp(0), for all the
scenarios is set to 0.0005 m. At the exit, the tube assumes radii of 5 × 10−4, 5 × 10−5,
2.5 × 10−5, 1.25 × 10−5, 5 × 10−6 and 1.25 × 10−6 m. This corresponds to radius ratios,
i.e. rp(H)/rp(0), of 1.0, 0.1, 0.05, 0.025, 0.01 and 0.0025, respectively, with the case in
which the radius ratio is 1 representing a straight tube. Figure 8 shows the location of the
meniscus along the tube with time for the different scenarios. It is more appropriate to
scale the time by T = 2μH2/γ rp(0) cosϑ , which represents the total time at which the
meniscus would reach the exit of the straight tube. As has been stated earlier, the scenario
in which the radius ratio equals the viscosity ratio defines the boundary between the two
cases. In the first case, in which rp(H)/rp(0) > 1/λ, after the initial period, the velocity
of the meniscus decelerates with time. This implies that the friction force dominates
the capillary force in these cases. In the second case, i.e. when rp(H)/rp(0) < 1/λ,
the opposite occurs and the meniscus accelerates, which indicates that the capillary
forces dominate the viscous force. When rp(H)/rp(0) = 1/λ, the meniscus moves at a
constant speed. These conclusions, which have been deduced from analysing the model,
are confirmed as depicted in figure 8.
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Figure 8. The normalized location of the meniscus along the tube for the different converging scenarios. When
the radius ratio equals the viscosity ratio, the speed of the meniscus is constant and, in this case, the capillary
force and viscous force balance each other (h∗ = h/H, t∗ = t/T).

Furthermore, the exit speed of the meniscus is approximately the same for the different
scenarios, which is also seen in figure 8. That is, the slopes at the end of these curves
(which represents the velocity) are indeed approximately the same. This is also manifested
in figure 9, which shows the profiles of the speed of the meniscus with time for the different
scenarios. At the exit, the speed of the meniscus, for all the scenarios, converges to almost
the same speed. This has been highlighted in the earlier discussion and indicates the fact
that the interplay between viscous and capillary forces is such that they both increase along
the tube length. At the start of the imbibition process, the initial velocity is dictated by the
initial overall resistance of the tube, which is larger the narrower the tube at the exit. In
other words, when the meniscus is at the inlet of the tube, for all the scenarios, the capillary
force, which is approximately identical at the start, is opposed by larger viscous resistance
when the size of the pore at the exit is smaller. This leads the meniscus to acquire a larger
initial speed when the size of the tube at the exit is larger and vice versa. This behaviour is
manifested in figure 9, which shows the velocity profiles of the meniscus for the different
scenarios.

When the meniscus is at the exit, on the other hand, the larger overall viscous resistance
when the exit of the tube is smaller is counteracted by a larger capillary force. In other
words, the capillary force at the exit of the tube is not the same for all the scenarios and
this explains the noticed behaviour.

The case of a diverging straight tube is also considered in this work. The radius of
the tube at the inlet for all the scenarios has been set to 0.00005 m and at the exit, it
follows radius ratios, rp(H)/rp(0), of 1, 5, 10, 25 and 50. Unlike the converging scenario,
the location of the meniscus for all the scenarios of a diverging tube follows a relatively
similar profile as depicted in figure 10. The fact that there is no significant difference in
the profiles that depict the location of meniscus in all the scenarios is interesting and is
a reflection of the interplay between viscous and capillary forces, with both decreasing
along the tube length. When the meniscus is at the inlet of the tube, the capillary force for
all the scenarios is approximately similar. However, the overall friction force is different
for the different scenarios with it being larger the smaller the size of the tube at the exit.
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Figure 9. Velocity profiles for the case of a converging straight tube. The ratio of the radius of the tube between
the exit and the inlet, i.e. rp(H)/rp(0), changes between 1 (for straight tube) and 0.0025. The speed of the
meniscus drops initially at a faster pace then at a lower rate towards the end until the meniscus reaches the exit.
(Note the time is normalized by T = 2μH2/γ rp(0) cosϑ .)
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Analytical
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Figure 10. Profiles of the location of the meniscus with time (normalized by T = 2μH2/γ rp(0) cosϑ) for the
different diverging profile cases. The radius at the exit of the tube changes between 1 (for straight tube) and
50 times of that at the inlet. As seen, the profiles look similar for all the cases.

Therefore, we would expect there are variations of the speed of the menisci at the inlet,
which is indeed depicted in figure 11. At the exit, the story is opposite to that of the
converging tube scenario. That is, the capillary force at the exit becomes smaller compared
with its value at the inlet. The lowest capillary force would occur when the meniscus
reaches the exit of the tube (i.e. at the larger cross-section) and likewise the friction force.
This simply leads the speed of the meniscus at the exit to be almost the same, which
conforms to the discussion outlined earlier. A more detailed discussion about the effects
of the different geometrical factors (i.e. the parameters a, b, rp(h)) on both the friction
and capillary forces is given in Appendix B. It highlights how the friction and capillary
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Figure 11. Velocity profiles for the diverging scenarios on a logarithmic scale. The velocities at the start are
different and they converge at the end.

forces change along the tube length, and how this explains the different behaviour of the
meniscus along the tube.

6. Quasi-one-dimensional model for power-law-shaped converging/diverging
capillaries

This is another interesting case in which the tube assumes a nonlinear profile. Both
converging and diverging profiles are considered. The interesting thing in this case is the
fact that the angle of tangency along the tube length (i.e. α) changes continuously and
should be incorporated as a variable rather than just a constant. Moreover, the influence of
the angle of tangency is expected to show an influence on the profiles of the speed of the
meniscus. In this scenario, the profile of the tube takes the general form as given below

rp(z) = rp(0)εzn, n > 1, (6.1)

where ε is a parameter with its sign defines whether the profile is converging (i.e. when ε <
0) or diverging (i.e. when ε > 0). If rp(H) is known a priori, then ε = [rp(H)− rp(0)]/Hn.

We define r∗
p=rp(z)/rp(0), z∗ = z/H and ω = εHn/rp(0), (6.1) may, therefore, be

written in a dimensionless form as

r∗
p=1 + ω(n)z∗n. (6.2)

Figure 12(a) shows a diverging profile for the case when n = 2, and ω = 1.0. Similarly,
figure 12(b) shows a converging one when n = 2, and ω = −0.5. For the sake of
illustration, we consider imbibition scenarios over quadratic profiles (i.e. the exponent
n is 2). For this profile, the analytical expressions for the parameters a, b are long and
complex, however, they are relatively simple for the other two parameters c, and e, which
are expressed as

c(h) = 3H5ε2 + 10H3rp(0)ε + 15Hr2
p(0)

15
− 3h5ε2 + 10h3rp(0)ε + 15hr2

p(0)

15
, (6.3)

e(h) = 3h5ε2 + 10h3rp(0)ε + 15hr2
p(0)

15
. (6.4)
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Figure 12. Two normalized quadratic profiles as an example of a power law capillary tube. (a) A diverging
profile and (b) a converging profile.

Furthermore, the slope of the tube profile changes along the tube length. The slope will
be negative for the converging profile and positive otherwise. It may be given as

α(h) = drp

dz
= 2εh. (6.5)

We first investigate the case of a converging quadratic profile. In this case, the radius of
the tube at the inlet is considered as 0.005 m and at the exit it takes a value corresponding
to the radius ratios of 1.0, 0.1, 0.05, 0.01 and 0.005, respectively. Figure 13 shows the
profiles of the location of the meniscus with time for the different scenarios. Apart from
the straight tube profile, which shows that the profile steadily progresses with a decreasing
slope, for the case of a quadratic converging profile the slope changes in a different manner,
as depicted in figure 13. The slope of the profile of the location of the meniscus decreases
at early times, implying a decrease in the velocity of the meniscus, it then increases again,
implying an increase in the velocity of the meniscus. This can be explained in light of
the relationship between capillary and friction forces. During the early time, the friction
force dominates and this leads to a decrease in the velocity of the meniscus. Later on, the
capillary force takes over and this results in an increase in the velocity of the meniscus.
More insight into this can be found in Appendix B in the context of converging straight
tubes. Furthermore, the profiles show that the meniscus takes longer to reach the end of
the tube when the radius ratio is smaller, which is a manifestation of the increased friction.

This behaviour is also depicted in figure 14, which shows the profile of the speed of
the meniscus for the different scenarios. It is clear that the speed of the meniscus drops
at the start at a faster pace, plateaus, then increases again. This is interesting and implies,
as mentioned before, that at the beginning the friction force grows quickly (faster than
the capillary force), reducing thereby the speed of the meniscus. The two forces then
approximately balance each other and the speed of the meniscus plateaus. Towards the
end, the capillary force takes over and the speed of the meniscus increases. To highlight
the initial speed of the meniscus for the different scenarios at the start of the imbibition
process, figure 15 is a reproduction of figure 14 on a logarithmic scale. It shows the speeds
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Figure 13. Profiles of the location of the meniscus along the tube for different radius ratios for quadratic
converging tube profiles.
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Figure 14. Velocity profile of the meniscus with time for the quadratic converging tube profile. Three time
periods can be identified, namely, (i) a period at the start where the speed drops, (ii) a period in the middle
where the speed plateaus and (iii) a period at the end where the speed increases.

of the meniscus at the start of the imbibition process (they are different) and likewise at
the end (they are approximately the same).

For the case of a diverging quadratic profile, the radius of the tube at the entrance for
all the scenarios is considered as 0.00005 m. At the exit, the radius of the diverging tube
varies according to radius ratios of 1, 5, 10, 25 and 50. Figure 16 shows the profiles of the
location of the meniscus along the tube and, as depicted, the time spans until the meniscus
reaches the end of the tube are different (being longer when the tube radius at the exit
is larger). This is unlike the case when the diverging tube follows a linear pattern, which
shows relatively similar profiles as shown in figure 10. This may be explained in light of the
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Figure 15. Velocity profile of the meniscus over a logarithmic scale for the converging, quadratic tube profile.
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Figure 16. The profile of the location of the meniscus (normalized by the length of the tube) with
time normalized by the total time the meniscus needs to reach the exit of a straight tube (i.e. T =
2μH2/γ rp(0) cosϑ).

behaviour of the friction and capillary forces along the tube. It is evident that the friction
force increases with the nonlinear increase in the tube diameter along its length more than
the increase in capillary force. This results in the speed of the meniscus decreases as the
diameter ratio increases and explains the longer time it takes for the meniscus to reach
the end of the tube as the diameter ratio increases. More insight can be inferred from the
discussion presented in Appendix B.

Velocity profiles, likewise, drop at a faster rate at the start and then at a slower rate,
as depicted in figure 17. To capture the variations of the velocity of the meniscus at the
start and at the end, figure 17 is reproduced over a logarithmic scale, which is illustrated
in figure 18.

As depicted, the initial velocity is larger the larger the diameter ratio. At the end,
however, it is interesting to note that, unlike the case of a diverging straight tube where
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Figure 17. Velocity profile for a diverging quadratic tube profile on a linear scale.
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Figure 18. Velocity profile for a diverging quadratic tube profile on a logarithmic scale.

the velocity at the exit is similar for all the scenarios, this is not the case when the tube
profile is nonlinear. This may be explained as previously mentioned in relation to the
ratio u1(H)/u2(H) = cos(θ + α1)/cos(θ + α2). When the tube is nonlinearly diverging,
the angles α1, and α2 may not be ignored and this explains the noticed behaviour.

7. Quasi-one-dimensional model for sinusoidal-shaped capillaries

This is an interesting scenario because it involves both converging and diverging parts in
one profile. A general sinusoidal profile takes the form

rp = rp,max − rp,min

2
sin

(
2π

z
ε

)
+ rp,max + rp,min

2
, (7.1)
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 H

 ε

Figure 19. Schematic of a capillary tube with sinusoidal profile.

where ε is the wavelength and is chosen such that ε/H ∼ O(1), as depicted in figure 19. Let
A = (rp,max − rp,min)/2, and B = (rp,max + rp,min)/2, then the above equation simplifies to

rp = A sin(Bz)+ C. (7.2)

In accordance with lubrication theory (Budaraju et al. 2016), it may be required that
A � 1, which may also be translated as drp/dz � 1. This implies that the transverse length
scale of the flow is small compared with the length scale in the flow direction, which
is indeed the case in capillaries. Again, the coefficients a and b are quite complex and
lengthy, however, the coefficients c and e may be found by evaluating the integrations.
They take the forms

c = A2 sin(2Bh)+ 8AC cos(Bh)− (4BC2 + 2A2B)h
4B

−A2 sin(2BH)+ 8AC cos(BH)− (4BC2 + 2A2B)H
4B

,

(7.3)

e = 2AC
B

− A2 sin(2Bh)+ 8AC cos(Bh)− (4BC2 + 2A2B)h
4B

. (7.4)

The interesting thing about this scenario stems from the fact that it mimics, to some
extent, a tortious path, which fluids usually encounter in porous medium flows. Therefore,
it would be interesting to explore this scenario in order to investigate how the meniscus
will behave in such cases. In all the considered scenarios, the following parameters are set
constant

rp,min, m 5 × 10−5 rp,max, m 1 × 10−4 μ1 (Pa s) 1 × 10−5 μ2 (Pa s) 1 × 10−3

H (m) 1.0 ϑ 45° γ (N m−1) 0.072 λ 100

The parameter that is set free is the wavenumber, κ = H/ε, which determines the
number of full cycles along the tube length. In this work, the values of κ that are considered
include 0, 3, 4 and 5, with the value of 0 representing the case of a straight tube. The angle
of tangency (α) of the tube profile is α = tan−1(drp/dz), with drp/dz = AB cos(Bz).

The normalized location of the meniscus is plotted against normalized time for the
different scenarios and is shown in figure 20 for different wavenumbers. In addition, two
cases of straight tubes with radii equal to rp,min and rp,max, are also considered. It is clear
that the profiles of the location of the meniscus of all the considered scenarios are set
between the two straight cases. Furthermore, they feature a wavy nature as a consequence
of the sinusoidal profile of the tube with number of cycles in accordance with that of the
tube.
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Figure 20. The normalized location of the meniscus with normalized times for different wavenumbers. In
addition, two scenarios of straight tubes with the same maximum and minimum radii are also shown.
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Figure 21. Velocity profile for the case of a sinusoidal tube profile with different cycles along the length of
the tube on a linear scale.

Such a wavy nature of the location of the meniscus implies a similar wavy pattern for
the speed of the meniscus as depicted in figure 21 (on a linear scale) and figure 22 (on
logarithmic scale). From figure 21, it is clear that the speed of the meniscus generally
decreases along the tube length. Furthermore, the period of change of the speed along the
tube also changes with time (being longer at later time), which is a manifestation of the
decrease in the average speed with time.

8. Imbibition against gravity

When gravity is involved, which corresponds to the case of a vertically, upward-oriented
capillary tube, if the tube is long, an interesting possibility arises. This is when the
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Figure 22. Velocity profiles for different wavenumbers in cycles/m over a logarithmic scale.

capillary force is balanced by the gravitational force and the interface ceases to climb
upwards at a particular height, called the equilibrium height. While it is relatively simple
to estimate this height in straight capillaries, it is not that straightforward when the radius
of the tube changes along its length. In this case, the radius of curvature of the interface is
a function of the profile of the tube, i.e. rp = rp(h). When gravity is present, a nonlinear
equation may be developed for the equilibrium height, the roots of which determine such
a height. The equation that governs imbibition in which gravity exists may be written as

−[8μ1r2
p(h)(a + bλ)]

dh
dt

− ρ1g(c + eξ)+ 2rp(h)γ cos(θ − α) = 0. (8.1)

When the meniscus has reached its terminal location, it is obvious that its speed becomes
zero, or dh/dt = 0. Substitution into the above equation yields

ρ1g[c(h)+ ξe(h)] = 2rp(h)γ cos[θ − α(h)]. (8.2)

On rearrangement, one obtains

rp(h) = ρ1g[c(h)+ ξe(h)]
2γ cos[θ + α(h)]

. (8.3)

The integral parameters c and e are geometrical factors that depend on the profile
of the tube and are, therefore, functions of h. For the case of a linearly varying
converging/diverging capillary tube, we have rp(h) = rp(0)+ mh. Substitution yields the
following relationship for the equilibrium height:

h = ρ1g(c + eξ)
2γm cos(θ + α)

− rp(0)
m

. (8.4)

Let Λ = ρ1g/2γ cos(θ + α), then the above equation reduces to

mh = Λ(c + eξ)− rp(0). (8.5)
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On rearrangement, we get the following nonlinear equation for the terminal height in
the form f (h) = const., or:

f (h) = Λ[c(h)+ ξe(h)] − mh = rp(0). (8.6)

The parameters c(h), and e(h) are as given in table 1. The admissible root of the above
equation determines the terminal location of the meniscus. One may observe that, for
a diverging straight tube (i.e. m > 0), the larger the value of m, the smaller h will be.
Conversely, for a converging tube (i.e. m < 0), the larger the value of m, the larger h will
be. For the sake of illustration, let us consider the following examples of a converging and
a diverging linear straight tube scenario. The first case represents a diverging capillary tube
with rp(H)/rp(0) = 10. Parameters used for the example of a capillary rise in a diverging
tube with a diameter ratio of 10 are listed below.

rp(0) (m) 1.0 × 10−4 rp(H) (m) 1.0 × 10−3 H (m) 1.0 γ (N m−1) 0.072

ϑ 45° α 0.05° ρ1 (kg m−3) 1.0 ρ2 (kg m−3) 1000

ξ 1000 μ1 (Pa s) 1.0 × 10−5 μ2 (Pa s) 1.0 × 10−3 λ 100

Implementing these parameters into (8.6), one may be able to find the value of the
equilibrium height, h. A graphical implementation of the above equation is shown in
figure 23. The function in (8.6) is modified by dividing through by m. It takes the form
f (h) = (Λ/m)[c(h)+ ξe(h)] − h, and the right-hand side is rp(0)/m. For a diverging
scenario, the parameters used are those listed above. For the converging scenario, the
parameters are the same except that the radius ratio rp(H)/rp(0) is 0.1, with both having
the same rp(0). The intersection of f (h) and the constant rp(0)/m define the location of
the meniscus at equilibrium. Furthermore, the two cases were also investigated using the
developed model and were solved numerically, as given previously, and an almost exact
match is obtained. Figure 24(a) shows the profiles depicting the location and the speed
of the meniscus with time for the diverging scenario. As is clear, the location of the
meniscus asymptotically approaches an equilibrium height of 0.075 m. This conforms to
that theoretically derived, as depicted in figure 23(b). For a converging capillary, on the
other hand, the location of the meniscus is found to be approximately 0.103 m, as obtained
using both the developed general model and the analytical one (figure 23c,d).

For the sake of comparison, it is interesting to examine the location of the meniscus at
equilibrium for a straight tube with the same rp(0). Using the formula h = 2γ cosϑ/rp0ρg,
one finds that h = 0.104 m, which is larger than those for converging and diverging
scenarios.

To enlarge the scope of the comparisons with respect to the ratio between the
equilibrium height of a straight capillary tube with that of converging/diverging ones of
arbitrary radius ratio, an analysis of this topic is highlighted in this section. For simplicity,
let us focus our attention to the case of spontaneous imbibition, where the displaced fluid
is a gas. It is known that, at equilibrium, both the gravity and capillary forces balance each
other. Analysis in Appendix C shows that

hC/D

hS
= 3 cos(ϑ + α)/cosϑ[

rp0
rph

+ rph
rp0

+ 1
] , (8.7)
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Figure 23. Equilibrium height for converging/diverging straight tubes, h* is the normalized location of the
meniscus and u is its speed. The intersection of the function f (h), [ f (h) = (Λ/m)[c(h)+ ξe(h)] − h] and
the line rp(0)/m defines the solution of (8.6), which determines the location of the meniscus. (a) Simulated
equilibrium height (diverging straight tube). (b) Calculated equilibrium height (diverging straight tube).
(c) Simulated equilibrium height (converging straight tube). (d) Calculated equilibrium height (diverging
straight tube).

where hC/D is the equilibrium height of the meniscus in a converging/diverging capillary
tube, hS is the equilibrium height of the meniscus inside a straight tube with the same
radius at the inlet, rp0 is the tube radius at the inlet, rph is the tube radius at the location of
the meniscus and α is the angle of inclination of the converging/diverging tube. Derivation
of the above equation is presented in Appendix C. For the case in which α is small, the
above equation reduces to

hC/D

hS
= 3[

rp0
rph

+ rph
rp0

+ 1
] . (8.8)

Furthermore, when rp0 = rph (i.e. straight tube), the above ratio is one. Equation (8.8)
indicates that the equilibrium height for a converging/diverging straight tapered tube is
always smaller than that of the corresponding straight tube with the same inlet radius. It is
interesting to also explore the cases of converging/diverging and sinusoidal profiles for the
cases of upward imbibition against gravity. Figure 24 shows the profiles of the location of
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Figure 24. Imbibition in converging/diverging quadratic tube profiles (a,b) as well as in sinusoidal
one (c) when gravity is considered. The profiles approach asymptotically the equilibrium height.
(a) Converging quadratic tube: H = 1.0 m, rp(0) = 1.0 × 10−4 m, rp(H) = 1.0 × 10−5 m, rp(H)/rp(0) =
0.1, ε = [rp(H)− rp(0)]/H2 = −0.00009, rp(z) = 0.0001 − 0.00009z2. (b) Diverging quadratic tube:
H = 1.0 m, rp(0) = 1.0 × 10−4 m, rp(H) = 1.0 × 10−3 m, rp(H)/rp(0) = 10, ε = [rp(H)− rp(0)]/H2 =
0.0009, rp(z) = 0.001 + 0.0009z2. (c) Sinusoidal profile: H = 1.0 m, rp,min = 1.0 × 10−4 m, rp,max = 1.0 ×
10−3 m, rp,max/rp,min = 10, n = # Cycles = 5.

the meniscus for the case of a converging/diverging quadratic and sinusoidal profiles, with
the geometric parameters as given on the figures.

As one notices, the gravity equilibrates the interfacial force within the tube. This is
manifested by noticing the profiles of the location of the meniscus, which show that they
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reach a terminal location inside the tubes. For the case of a converging quadratic tube
with parameters as given in figure 24(a), the meniscus rises to a height of approximately
0.103 m, which is slightly smaller than that of a straight tube of the same rp(0). For the
case of a diverging quadratic profile with parameters as given in figure 24(b), the meniscus
equilibrates at a height of 0.0835 m. Lastly, for the case of sinusoidal profile (figure 24c),
the meniscus equilibrates at a height of 0.017 m. In other words, the equilibrium height
for all the considered profiles is smaller than that of a straight tube having the same inlet
radius. Finally, the model, as developed, can be implemented in studying two-phase flows
in porous media (El Amin, Salama & Sun 2011) as well as in dynamic pore network models
to locate the meniscus as it develops in the pore throats. It can also be used in the modelling
of the filtration of emulsions using polymeric-type membranes (Salama, Zoubeik & Henni
2017; Zoubeik, Salama & Henni 2018; Echakouri, Salama & Henni 2020)

9. Conclusion

In this work, a model is developed to investigate imbibition/drainage processes in
capillaries with arbitrary axisymmetric cross-sections. It generalizes previous models
and accounts for, pressure, gravity, capillary and friction forces. While the model is
derived to be general, the effects of inertia have been neglected in the considered
scenarios. Furthermore, the model does not account for electrostatic forces that may
arise due the accumulation of charges, particularly in nanosized tubes. The model lumps
all the complexities of the fluids, the geometry and the contrast in properties into a
single nonlinear differential equation with the primary variables including the location
of the meniscus and its speed. Three scenarios of tube profiles are considered including,
tapered straight tubes, quadratically varying tubes and sinusoidal ones. In all these
scenarios, the tube profile maintains a small angle of tangency (i.e. |drp/dz| � 1). The
developed model reduces to that recently developed for straight capillaries. It also reduces
to the Washburn–Lucas model for spontaneous imbibition in horizontal capillaries. A
fourth-order accurate, Runge–Kutta scheme has been assimilated to solve the model’s
equation. In addition, an analytical expression has been developed for the case of
converging/diverging straight horizontal tubes. The numerical algorithm shows perfect
match with the analytical solution.

The cases of spontaneous imbibition in horizontal capillaries of axially varying
cross-section have been investigated first. For a converging straight capillary tube,
interesting patterns have been observed. Under the prescribed assumptions, when the
radius ratio rp(0)/rp(H) equals the viscosity ratio between the invading wetting fluid and
the non-wetting one, the speed of the meniscus assumes a constant value and its location
follows a linear path. This indicates that both the friction and capillary forces balance each
other along the tube. If rp(0)/rp(H) < λ, the location of the meniscus follows a nonlinear
path with a continuously decreasing slope, which implies a continuous decrease in the
speed of the meniscus along the tube. This indicates that, in this regime, the friction force
is larger than the capillary force. If, on the other hand, rp(0)/rp(H) > λ, the speed of the
meniscus increases along the tube, indicating that, in this regime, the capillary force is
larger than the overall friction force. Other scenarios including the case of a quadratically
varying converging/diverging tube as well as sinusoidal ones have also been studied.

For a quadratically diverging tube profile, the meniscus advances first at a faster pace
when the degree of divergence is large (i.e. larger rpH/rp0). This is due to the smaller
overall resistance offered by the tube when rpH/rp0 is large. Later, this trend reverses and
the meniscus advances at a smaller pace when rpH/rp0 is large because of the increase in
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the cross-sectional area. Similar behaviour can be noticed for a quadratically converging
tube, albeit opposite to the previous scenario. That is the meniscus advances at a slower
rate compared with that of a straight tube having the same inlet diameter. This is due to
the larger resistance offered by the tube, which is larger when rpH/rp0 is smaller. Later in
time, the meniscus advances at a faster rate in a nonlinear fashion over that for a straight
tube of the same inlet tube radius, which is in accordance with the increase in the capillary
pressure as the tube radius decreases.

For the case of a sinusoidal tube profile, the speed of the meniscus depends on the
wavenumber for the same maximum and minimum radii. The wavenumber represents
the number of complete cycles within the length of the tube, therefore, a tube with a
wavenumber (κ) of 0.0 is a straight tube. The speed of the meniscus at the early time is
larger when κ > 0 compared with the straight tube with a radius equal to the minimum
radius. This is attributed to the larger resistance of the straight tube with the minimum
radius compared with that of the sinusoidal profile. At a later time, the meniscus speed
oscillates due to the periodic change in the tube radius.

Furthermore, the effect of gravity on the height at which the meniscus equilibrates for
all the studied scenarios has also been investigated. The model shows the journey of the
meniscus towards equilibrium. It can also be used to directly determine the equilibrium
height. It has been identified that all the scenarios with the same radius of the tubes at the
inlet result in the equilibrium height being smaller than that of a corresponding straight
tube with the same inlet size.

The developed model is also able to investigate drainage scenarios in which a
non-wetting fluid displaces a wetting one. In this case, a boosting pressure is needed to
work against interfacial, friction and possibly gravity forces. If such a pressure force is
enough to overcome these forces, the non-wetting fluid will be able to invade the capillary
tube. The model can be used in pore dynamic network models to monitor the location of
the meniscus (which is related to the saturation of the invading fluid) with time.

Declaration of interests. The author reports no conflict of interest.
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Appendix A. Analytical expression for the dynamic location of meniscus in
converging/diverging straight tubes

It has been established for converging/diverging straight tubes, that the speed of the
meniscus may be calculated using

(A1)

With some manipulations, the above equation simplifies to
dh
dt

= γ cos(θ + α){
4μ1H
rp(0)

[
rp(0)
rp(H)

(
1 − h

H

) + ( h
H

)
λ
]} . (A2)

Let β = rp(0)/rp(H), then substitution yields

dh
dt

= γ cos(θ + α){
4μ1H
rp(0)

[
β

(
1 − h

H

) + ( h
H

)
λ
]} . (A3)
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Simplifications and rearrangement yield

dh
dt

= γ cos(θ + α){
4μ1H
rp(0)

[
(λ− β) h

H + β
]} . (A4)

For a diverging profile (i.e. β < 1), in cases when λ	 β, the above equation reduces to

dh
dt

= γ cos(θ + α){
4μ1H
rp(0)

[
λ h

H + β
]} . (A5)

Let ψ = γ rp(0) cos(θ + α)/4μ1H, on substitution into (A4), one finds

dh
dt

= ψ[
(λ− β) h

H + β
] . (A6)

Rearrangement and integration yield∫ h

0

[
(λ− β)

h
H

+ β

]
dh =

∫ t

0
ψ dt. (A7)

The above equation yields

(λ− β)

2H
h2 + βh = ψ t. (A8)

On rearrangement, one finds

(λ− β)

2Hψ
h2 + β

ψ
h = t. (A9)

The interesting scenario would be the case in which λ = β, and, in this case, the above
equation becomes

β

ψ
h = t. (A10)

Which depicts a linear variation of h against t and also a constant speed of the meniscus
along the tube.

Appendix B

In this appendix, we highlight the influence of the configuration of the tube on
both capillary and friction forces. This discussion will be derived for the case of
converging/diverging straight tubes, however, it is also applicable to other scenarios. In
fact, one can gain more insight by reformatting (5.8) into a form that highlights the
influence of both capillary and friction forces

dh
dt

= γ rp(h) cos(θ + α)

{4μ1r2
p(h)[a(h)+ b(h)λ]} . (B1)

In this equation, the numerator, which represents the capillary force, is correlated with
the geometrical factor, rp(h). Likewise, the denominator, which represents friction force,
is proportional to r2

p(h)[a(h)+ b(h)λ]. One may normalize these parameters as follows:
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(i) normalized numerator as rp(h)/rp(0); and
(ii) normalized denominator as r2

p(h)[a(h)+ b(h)λ]/r2
p(0)(a + b);

where a + b is a geometrical constant calculated as

a + b =
∫ H

h

dz
r2

p(z)
+

∫ h

0

dz
r2

p(z)
=

∫ H

0

dz
r2

p(z)
= const. (B2)

We investigate how these parameters change along the tube and how they influence
the contribution of capillary and friction forces. Starting with a converging straight
tube scenario with rp(0) = 0.001 m, we consider four convergence cases; namely with
rp(H)/rp(0) equal to 0.5, 0.1, 0.01 and 0.001. We also consider a diverging scenario for
which rp(0) = 0.0001 m and rp(H)/rp(0) = 10. It is to be mentioned that the geometrical
parameters a, and λb represent the contributions to the total resistance of the displaced and
the displacing fluids, respectively.

Figure 25(a) shows the variations of the normalized geometrical parameters along
the tube when rp(H)/rp(0) = 0.5 (i.e. for a converging straight tube). The parameter
λb/(a + b), which represents the contribution of the invading fluid into the overall friction
force, takes over the resistance early once the meniscus starts to move as shown in the
left-hand side figure. On compiling this into the right-hand side figure, it is clear that on
multiplication of these geometric parameters with the square of the radius of the tube at
the location of the meniscus, the overall friction force still increases along the tube. On the
other hand, the net the capillary force reduces along the tube because of the reduction in
the tube diameter.

This implies that the meniscus experiences drag that leads to its speed continuing to
decrease along the tube. For the case when rp(H)/rp(0) = 0.1, as shown in figure 25(b),
the invading fluid takes over the resistance a little late. In other words, at the beginning,
the resistance of the displaced fluid contributes the most to the overall resistance before
the resistance of the invading fluid takes over, as shown in the left-hand side figure. The
right-hand side figure shows the overall friction and capillary forces along the tube. It is
interesting to notice that the friction force increases at the beginning until approximately
half the tube length then decreases. This implies that, at the beginning, it is the parameter
(a + λb)/(a + b) that contributes the most, before the radius of the tube takes over. In
comparison with capillary force, the friction force is still larger (as shown in the right-hand
side figure), and, therefore, the meniscus decelerates.

For the case when rp(H)/rp(0) = 0.01, interesting features are observed. First of all,
the influence of the resistance of the invading fluid becomes important later towards the
middle of the tube. In other words, it is the resistance of the displaced fluid that dominates
the overall resistance at the start, as depicted in figure 25(c) (left-hand side). The effect of
the radius of the tube is interesting for this particular scenario. As shown in figure 25(c)
(right-hand side), the friction force drops linearly along the tube, coinciding with that of
the capillary force. This implies that, in this particular scenario, the meniscus moves at a
constant speed.

Further decrease in radius ratio, likewise, shows interesting features. As shown in
figure 25(d) (left-hand side), for the scenario rp(H)/rp(0) = 0.001, the contribution of
the displaced fluid to the friction force dominates the overall friction, except towards
the end of the tube. The effect of the radius of the tube along its length is shown in
figure 25(d) (right-hand side). It is interesting to notice that the friction force is smaller
than the capillary force and hence there is an increase in the speed of the meniscus along
the tube.
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Figure 25. Variations of the geometric parameters a, and b (left-hand side) and of the friction and capillary
parameters (right-hand side) along the tube length. (a) rp(H)/rp(0) = 0.5, rp(0) = 0.001 m; (b) rp(H)/rp(0) =
0.1, rp(0) = 0.001 m; (c) rp(H)/rp(0) = 0.01, rp(0) = 0.001 m; (d) rp(H)/rp(0) = 0.001, rp(0) = 0.001 m;
(e) rp(H)/rp(0) = 10, rp(0) = 10 − 4 m.

947 A12-32

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

64
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.642


Investigation of the imbibition/drainage of fluids

The case of a diverging capillary tube, on the other hand, for one radius ratio
(rp(H)/rp(0) = 10) is shown in figure 25(e). As seen on the left-hand side figure, the
friction force due to the invading fluid dominates the overall friction force right from the
beginning and this leads the friction force always dominating the capillary force and the
speed of the meniscus always decreasing.

Appendix C. Equilibrium height in converging/diverging capillaries

When an invading wetting fluid imbibes into a vertical tube that is filled initially with a
non-wetting fluid, it rises against the gravity by the virtue of interfacial forces. When the
tube is converging or diverging along its length, it is interesting to determine that height
along the tube where the meniscus equilibrates (i.e. stop moving upwards). The invading
fluid in the converging/diverging tube represents a truncated cone whose volume may be
determined as

V = 1
3πh[r2

po + r2
ph + rp0rph], (C1)

where V is the volume of the invading fluid, rpo is the radius at the start of the tube and rph
is the radius of the tube at a height h where the meniscus exists. Gravitational force over the
column of the invading fluid is ρgV = πhρg[r2

po + r2
ph + rp0rph]/3, and the capillary force

is 2πrphγ cos(ϑ + α), where α < 0 for a converging tube and is α > 0 for a diverging one.
Equating the two forces yields

2πrphγ cos(ϑ + α) = 1
3πhρg[r2

po + r2
ph + rp0rph]. (C2)

From which one can determine the height of the meniscus hC/D, as

hC/D = 6rphγ cos(ϑ + α)

ρg[r2
po + r2

ph + rp0rph]
. (C3)

For a uniform straight tube, the equilibrium height (hS) of the meniscus in a tube with
the same radius at the beginning (i.e. same rp0) may be determined as

hS = 2γ cosϑ
rp0ρg

. (C4)

With some simplifications, the ratio between hC/D and hS is

hC/D

hS
= 3 cos(ϑ + α)/cosϑ[

rp0
rph

+ rph
rp0

+ 1
] . (C5)

For small α

hC/D

hS
= 3[

rp0
rph

+ rph
rp0

+ 1
] . (C6)

According to the above equation, when rph = rp0, it is clear that hC/D = hS. For any
other ratio, one finds hC/D < hS.
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