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Plünnecke’s inequality is a standard tool for obtaining estimates on the cardinality of

sumsets and has many applications in additive combinatorics. We present a new proof.

The main novelty is that the proof is completed with no reference to Menger’s theorem

or Cartesian products of graphs. We also investigate the sharpness of the inequality and

show that it can be sharp for arbitrarily long, but not for infinite commutative graphs. A

key step in our investigation is the construction of arbitrarily long regular commutative

graphs. Lastly we prove a necessary condition for the inequality to be attained.

1. Introduction

Plünnecke’s inequality is among the most commonly used tools in additive combinatorics.

It was discovered by Helmut Plünnecke in the late 1960s. The inequality puts bounds on

the magnification ratios of a directed, layered graph G, which are defined as

Di(G) = min
∅�=Z⊆V0

| Im(i)(Z)|
|Z | .

Im(i)(Z) is the ith out-neighbourhood of Z and V0 is the bottom layer of the graph.

Plünnecke discovered that under some commutativity conditions on graphs, which have

since been known as Plünnecke conditions and will be defined in Section 2, the sequence

D
1/i
i (G) is decreasing. The directed layered graphs that obey these conditions are called

commutative (or Plünnecke) graphs. In particular Plünnecke proved [5] the following.

Theorem 1.1 (Plünnecke). Let G be a commutative graph with Dh(G) = Δh. Then Di(G) �
Δi for all 1 � i � h.

The main objective of the paper is to present a new proof of Theorem 1.1.

Imre Ruzsa has simplified Plünnecke’s proof in [6, 7]. Plünnecke’s and Ruzsa’s arguments

have more similarities than differences as their backbone is the same. Ruzsa’s simplified
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approach has become the standard way to prove the inequality and we will thus use it as

the point of comparison with the present argument.

Ruzsa’s argument relies on two key ingredients: Menger’s theorem [3] and Cartesian

products of graphs. While there are several variations in the literature [2, 4, 8, 9, 10], they

all follow the original approach closely in first proving the special case when Dh(G) = 1 by

applying Menger’s theorem and then deducing the inequality by using Cartesian product

of graphs. Here we present an elementary and more direct proof, which stays close

to Plünnecke’s and Ruzsa’s argument for the special case, but uses neither of the two

ingredients.

Completing the proof with no reference to Menger’s or an equivalent theorem is

noteworthy for two reasons. It shows that Plünnecke’s inequality is a direct consequence

of Plünnecke’s conditions and little else. Therefore the bounds on the cardinality of

sumsets that follow from it are also a direct consequence of commutativity of addition

and little else. The second reason is that by avoiding Menger’s theorem we are able to

complete the proof without using Cartesian products of graphs. It has not been clear

whether this very helpful tool is a necessary ingredient, and removing it makes the proof

more transparent.

Despite its widespread use there has so far been no attempt to investigate whether

Plünnecke’s inequality is sharp. We answer this question for both finite and infinite

commutative graphs.

Theorem 1.2. For all C ∈ Q and h ∈ Z+ there exists a commutative graph with

Di(G) = Ci

for all 1 � i � h.

Theorem 1.3. Let G be an infinite commutative graph. Then

Di(G) = Ci

can hold if and only if C = 1.

The extremal graphs for Plünnecke’s inequality we present are all regular. It is natural

to ask whether this condition is necessary. The final result of this paper is to show that

in a way it is: every commutative graph where Plünnecke’s inequality is attained must

contain a regular commutative subgraph. The exact meaning of this assertion is explained

in Section 5.

The remaining sections of the paper are organized as follows. In Section 2 we introduce

commutative graphs and the notation used at the remainder of the paper. Section 3

is devoted to the proof of Plünnecke’s inequality; an entirely self-contained argument

is found in Sections 3.2 and 3.3. In Section 4 we prove Theorems 1.2 and 1.3. Finally,

in Section 5 we deduce the existence of the regular subgraph in the case when all the

quantities D
1/i
i (G) are equal.
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2. Commutative graphs

The material in this section can be found in any of the standard references [4, 8, 10]. The

notation used, however, is slightly different.

2.1. Commutative graphs: definition and notation

G will always be a directed layered graph with edge set E(G) and vertex set V (G) =

V0 ∪ · · · ∪ Vh, where the Vi are the layers and h is the level of the graph. For any

S ⊆ Vi we will write Sc = Vi\S for the complement of S in Vi and not in V (G). We will

furthermore assume that directed edges exist only between Vi and Vi+1, and denote this

set of edges by E(Vi, Vi+1).

In order to introduce Plünnecke’s conditions we briefly recall that, given an integer k

and a bipartite undirected graph G(X,Y ), we say that a one-to-k matching exits from X to

Y if we can find distinct elements {yix : x ∈ X and 1 � i � k} in Y such that xyix ∈ E(G)

for all x ∈ X and 1 � i � k. A one-to-one matching is referred to as a matching. We

furthermore write Im and Im(−1) for the out- and in-neighbourhoods.

Plünnecke’s upward condition states that if uv ∈ E(G), then there exists a matching

from Im(v) to Im(u) (in the bipartite graph G(Im(u), Im(v)), where xy is an undirected

edge if and only if it is a directed edge in G). Plünnecke’s downward condition states that

if vw ∈ E(G), then there exists a matching from Im−1(v) to Im−1(w) (in the bipartite graph

G(Im−1(v), Im−1(w)), where xy is an undirected edge if and only if it is a directed edge in

G). A commutative graph is a directed layered graph that satisfies both properties. In the

literature such graphs are sometimes referred to as Plünnecke graphs.

The most typical example is G+(A,B), the addition graph of two sets A and B in a

commutative group. This is defined as the directed graph whose ith layer Vi is A + iB,

and a directed edge exists between x ∈ Vi−1 and y ∈ Vi if and only if y − x ∈ B. When

we take A = {0} and B = {γ1, . . . , γn}, where 0 is the identity and γi the generators of a

free commutative group, we call G+({0}, {γ1, . . . , γn}) the independent addition graph on n

generators.

As usual, we write d+
H (v) = |{w : vw ∈ E(H)}| for the out-degree of a vertex v in a graph

H , and d−
H (v) = |{u : uv ∈ E(H)}| for its in-degree. Here H will always be a subgraph of

G. We write d+(v) and d−(v) for d+
G(v) and d−

G(v).

A path of length � in G is a sequence of vertices v0, v1, . . . , v� such that vi−1vi ∈ E(G) for

all 1 � i � �. For a subgraph H of G and Z ⊆ V (H) we thus define

Im(i)
H (Z) = {v ∈ V (H) : ∃ path of length i in H that starts in Z and ends in v}

and

Im(−i)
H (Z) = {v ∈ V (H) : ∃ path of length i in H that starts in v and ends in Z}.

When the subscript is omitted we take H to be G. When i = 1, and consequently Im(1)(Z)

is the out-neighbourhood of Z in H , the superscript will be omitted. We can now formally

define magnification ratios. As we have seen, the ith magnification ratio of G is defined as

Di(G) = min
∅�=Z⊆V0

| Im(i)(Z)|
|Z | .
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We will also write

Δ = D
1/h
h (G).

For X,Y ⊆ V (G) the channel between X and Y is the subgraph that consists of directed

paths starting at X and finishing in Y . For Z ⊆ V0 the channel of Z is the channel between

Z and Vh.

A separating set in any subgraph H is a set S ⊆ V (H) that intersects all directed paths

of maximum length in H .

2.2. Properties of commutative graphs

The following properties of commutative graphs are standard and will be used repeatedly.

(1) For i > j and X ⊆ Vi, Y ⊆ Vj , the channel between X and Y is a commutative graph

in its own right. An important special case is the channel of Z ⊆ V0.

(2) For uv ∈ E(G) Plünnecke’s conditions imply d+(u) � d+(v) and d−(u) � d−(v).

(3) For commutative graphs G and H we define their Cartesian product G × H as follows.

The ith layer of G × H is the Cartesian product of the ith layer of G with the ith layer

of H . As for the edges, (u, x)(v, y) ∈ E(G × H) if and only if uv ∈ E(G) and xy ∈ E(H).

G × H is a commutative graph with Di(G × H) = Di(G)Di(H). Vertex degrees are also

multiplicative as d±
G×H ((u, x)) = d±

G(u) d±
H (x).

(4) We define the inverse I of a commutative graph G as follows: the ith layer of I is the

(h − i)th layer of G and uv ∈ E(I) if and only if vu ∈ E(G). One can informally think

of I as the graph consisting of all paths from Vh to V0. I is always a commutative

graph due to the symmetry of Plünnecke’s conditions.

2.3. Hall’s marriage theorem

We finish this introductory section by stating Hall’s marriage theorem for bipartite graphs

G = G(X,Y ). For any x ∈ X we define its neighbourhood by

Γ(x) = {y ∈ Y : xy ∈ E(G)}

and the neighbourhood of S ⊆ X by

Γ(S) =
⋃
x∈S

Γ(x).

It is clear that in order to have a one-to-k matching from X to Y we need |Γ(S)| � k |S |
for all S ⊆ X. Philip Hall proved in 1935 that the converse is also true [1].

Lemma 2.1 (Hall). Let G(X,Y ) be a bipartite graph. Then a one-to-k matching exists from

X to Y if and only if

|Γ(S)| � k |S | for all S ⊆ X.

3. Proof of Plünnecke’s inequality

We begin our examination of Plünnecke’s inequality with a new proof of Theorem 1.1.

The proof is inspired by the work of Ruzsa that appeared in [6, 7] and in particular by
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an exposition of Ruzsa’s argument due to Terence Tao [9]. However, there are crucial

differences, as Menger’s theorem and Cartesian products of graphs are not needed.

3.1. Outline of the Plünnecke–Ruzsa proof

The traditional proof of Theorem 1.1 can be split in two distinct parts. The first is to

establish the special case when Δ = 1. The key is the relation between magnification ratios

and separating sets in the graph. By applying Menger’s theorem Plünnecke proved the

following powerful result.

Proposition 3.1 (Plünnecke). Let G be a commutative graph with Dh(G) � 1. Then there

are |V0| vertex-disjoint paths from V0 to Vh in G, and therefore Di(G) � 1 for all i.

The duality between separating sets and vertex-disjoint paths is exploited fully. This

poses a serious obstacle when trying to extend this idea for general values of Δ, as

Menger’s theorem is no longer useful. Even for integer Δ �= 1 there is an example which

shows that proving the following natural and plausible generalization would require ideas

beyond those found in this paper.

Question 3.2. Suppose that Dh(G) � kh for some integer k. Then there are |V0| vertex-

disjoint trees, each having at least ki vertices in Vi.

The second part of the proof is to overcome this obstacle by deducing the general case

from Proposition 3.1. Ruzsa achieved this using the multiplicativity of magnification ratios.

The quickest way to do this is by using some graphs we will introduce in Section 4. For

any rational q � Δ there is a commutative graph Rq with Di(Rq) = q−i for all i = 1, . . . , h.

We know that Dh(G × Rq) = Dh(G)Dh(Rq) = (Δq−1)h � 1, and so

1 � Di(G × Rq) = Di(G)Di(Rq) = Di(G)q−i.

This implies that Di(G) � qi for all rationals q � Δ and hence that Di(G) � Δi. For the

reader’s benefit we will note that the standard deduction uses independent addition graphs

instead. In this context it is mandatory to take the product of r copies of G with suitably

chosen independent addition graphs and then let r → ∞.

Ruzsa’s approach is elegant, but leaves one question unanswered: What is the precise

role of Cartesian products in the proof and how does it allow us to use Proposition 3.1

in such a simple way when proving a generalization is tricky? A simple-minded approach

is to see what the existence of the paths in G × Rq implies about G, but this yields a

mere reformulation of Plünnecke’s inequality. A more refined approach suggested by Tim

Gowers is to work in a weighted version of G. In this setting Menger’s theorem could be

replaced by the max-flow min-cut theorem.

In fact Theorem 1.1 will be proved by focusing on the minimum cut in (the network

generated by) G without using any properties of a maximal flow. In doing so we will

mirror Plünnecke’s proof of Proposition 3.1 closely, but will introduce a further ingredient

in Section 3.3 that allows us to apply his argument to all Δ.
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3.2. Weighted commutative graphs

The proof of Proposition 3.1 is built around the fact that when Δ = 1 there is a very

natural relation between separating sets in G and magnification ratios. In order to make

use of this observation for general Δ we need to work with weighted commutative graphs,

i.e., a commutative graph with a weight function

w : V (G) �→ R+.

We will eventually give every vertex in Vi weight Δ−i. The reasons behind this choice will

become apparent shortly, but different weights may be more suitable in other applications.

It should be noted that this can be thought of as an alternative to taking a Cartesian

product of G with the Rq . We also need a notion of the weight of a set of vertices in G

and so we define the weight of any set S ⊆ V (G) as

w(S) =
∑
v∈S

w(v).

In what follows this will equal

h∑
i=0

|S ∩ Vi|C−i

for a positive constant C . The heart of the proof of Proposition 3.1 is to ‘pull down’

any minimum separating set to one that lies entirely in V0 ∪ Vh. Plünnecke achieved

this by applying Plünnecke’s conditions to the paths given by Menger’s theorem. The

same can be done for weighted commutative graphs and, in fact, without any reference

to Menger’s or some other equivalent theorem. The following result demonstrates how

powerful Plünnecke’s conditions are.

Lemma 3.3. Let C be a positive real and let G be a weighted commutative graph with

vertex set V0 ∪ V1 ∪ · · · ∪ Vh and w(v) = C−i for all v ∈ Vi. A separating set of minimum

weight that lies entirely in V0 ∪ Vh exists.

Proving this lemma will be the main objective of the next subsection. For the time being

let us quickly see how to deduce Theorem 1.1 from it.

Corollary 3.4. Let G a weighted commutative graph with vertex set V0 ∪ V1 ∪ · · · ∪ Vh and

w(v) = Δ−i = Dh(G)−i/h for all v ∈ Vi. The weight of any minimal separating set is |V0|.

Proof. By applying Lemma 3.3 we can assume that S0 ∪ Sh is a separating set of minimum

weight with Si ⊆ Vi. We know that Im(h)(Sc
0 ) ⊆ Sh and so |Sh| � | Im(h)(Sc

0 )| � Dh(G)|Sc
0 |.

This in turn implies w(S) = w(S0) + w(Sh) = |S0| + |Sh|D−1
h (G) � |S0| + |Sc

0 | = |V0|. On the

other hand V0 is a separating set and hence w(S) = |V0| for any separating set of minimum

weight.

Plünnecke’s inequality follows in a straightforward manner.
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Proof of Theorem 1.1. We consider any Z ⊆ V0 in the weighted version of G, where

each v ∈ Vi has weight Δ−i. Zc ∪ Im(i)(Z) is a separating set and thus

|V0| � w(Zc ∪ Im(i)(Z)) = w(Zc) + w(Im(i)(Z)) = |V0| − |Z | + | Im(i)(Z)| Δ−i.

That is, | Im(i)(Z)| � Δi|Z |. Taking the minimum over all non-empty Z ⊆ V0 gives the
lower bound on Di(G).

3.3. Separating sets on weighted commutative graphs

We now turn to the proof of Lemma 3.3. The key is to make optimal use of separating

sets of minimal weight. Instead of using vertex-disjoint paths we rely on the following

elementary observation. Suppose that S is a separating set of minimum weight. Then, for

any Z ⊆ S ,

w(Im(Z)) � w(Z) and w(Im−1(Z)) � w(Z).

We begin by establishing the simplest case of Lemma 3.3 when h = 2 and the middle layer
is the separating set. We will need to apply the following in the next section and therefore

state it in slightly more general terms.

Lemma 3.5. Let C be a positive real and let H be a commutative graph of level two with

vertex set U0 ∪ U1 ∪ U2. Suppose that, for all S ⊆ U1,

| Im(S)| � C|S | and | Im−1(S)| � C−1|S |.

If Xi is the set of vertices in U1 that have in-degree equal to i and Yi is set of vertices in
U2 that have in-degree equal to i, then

C|Xi| = |Yi|.

Similarly, if X ′
i is the set of vertices in U1 that have out-degree equal to i and Y ′

i is the set
of vertices in U0 that have out-degree equal to i, then

C−1|X ′
i | = |Y ′

i |.

Proof. The sets Xi form a partition of U1. We partition U2 into:

Tk = Im(Xk),

Tk−1 = Im(Xk−1)\Tk,

...

T1 = Im(X1)\(T2 ∪ · · · ∪ Tk).

Similarly we have a partition of U1 into X ′
1, . . . , X

′
k′ and a partition of U0 into:

T ′
k′ = Im−1(X ′

k′ ),

T ′
k′−1 = Im−1(X ′

k′−1)\Tk′ ,

...

T ′
1 = Im−1(X ′

1)\(T ′
2 ∪ · · · ∪ T ′

k′ ).

See Figure 1.
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Figure 1. An illustration of the k = 3 case.

By the definition of the Ti we have that

Im(Xj ∪ · · · ∪ Xk) = Tj ∪ · · · ∪ Tk.

If we let xi = |Xi| and ti = |Ti|, then the hypothesis on H implies that

k∑
i=j

ti � C

k∑
i=j

xi for all 1 � j � k.

Adding these inequalities for j = 1, . . . , k gives

k∑
i=1

iti � C

k∑
i=1

ixi.

It follows from Plünnecke’s downward condition and the definition of Ti and Xi that

d−(v) � i for all v ∈ Ti. Hence

|E(U0, U1)| =

k∑
i=1

|E(U0, Xi)|

=

k∑
i=1

ixi

� C−1
k∑

i=1

iti

� C−1
k∑

i=1

|E(U1, Ti)|

= C−1|E(U1, U2)|.

We repeat the above calculation, this time using the second partition of U1, and

get

|E(U1, U2)| � C|E(U0, U1)|.
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Putting everything together yields

|E(U0, U1)| � C−1|E(U1, U2)| � |E(U0, U1)|.

We must therefore have equality in every step, which implies that Yi = Ti and Y ′
i = T ′

i ,

as well as C|Xi| = |Yi| and C−1|X ′
i | = |Y ′

i |.

We now apply the lemma to ‘pull down’ minimal separating sets in the special, yet

important, class of graphs of level two discussed in the beginning of the subsection.

Lemma 3.6. Let C be a positive real and let H be a weighted commutative graph of level

two with vertex set U0 ∪ U1 ∪ U2 and w(v) = C−i for all v ∈ Vi. Suppose that U1 is a

separating set of minimum weight. Then so is U0.

Proof. For every S ⊆ U1 both Sc ∪ Im(S) and Sc ∪ Im−1(S) are separating sets. The

minimality of w(U1) implies that

| Im(S)| � C|S | and | Im−1(S)| � C−1|S |.

We can therefore apply Lemma 3.5 to get

w(U1) = C−1|U1| = C−1

∣∣∣∣
k′⋃
i=1

X ′
i

∣∣∣∣ = C−1
k′∑
i=1

|X ′
i | =

k′∑
i=1

|Y ′
i | =

∣∣∣∣
k′⋃
i=1

Y ′
i

∣∣∣∣ = |U0| = w(U0).

We are finally able to prove Lemma 3.3, which will finish the proof of Theorem 1.1.

Proof of Lemma 3.3. Let S be any separating set of minimum weight and Si = S ∩ Vi.

Let j ∈ {0, 1, . . . , h − 1} be maximal subject to Sj �= ∅. We will show that, when j > 0, we

can find another separating set of minimum weight that lies in V0 ∪ · · · ∪ Vj−1 ∪ Vh.

We work in a subgraph H of level two consisting of all paths in G that start in a suitably

chosen U0 ⊆ Vj−1 and end in a suitably chosen U2 ⊆ Vj+1. U0 consists of all vertices in

Vj−1 that can be reached via paths in G that successively pass from Sc
0 , . . . , S

c
j−1, and U2

consists of all vertices in Vj+1 that lead to Sc
h . S is a separating set of minimal weight and

thus the middle layer U1 equals Sj . In the weighted version of H , where vertices in Ui

have weight C−i, U1 is a separating set of minimum weight (if not, let S ′
j be a separating

set of smaller weight and observe that S0 ∪ · · · ∪ Sj−1 ∪ S ′
j ∪ Sh is then a separating set

in G of smaller weight than S). By Lemma 3.6, U0 is also a separating set of minimum

weight in H and thus S0 ∪ · · · ∪ Sj−1 ∪ U0 ∪ Sh is a separating set of minimum weight

in G.

Looking back at the proof of Plünnecke’s inequality we realize that Plünnecke’s

conditions were not used directly. Instead we relied on two properties that follow from

them: properties (1) and (2) in Section 2. It is clear that both are necessary in the proof. It

is therefore natural to ask how different this pair of conditions is compared to Plünnecke’s.

Ruzsa has already noted in [8] that the two sets of conditions are equivalent, and as a

consequence the proof of Plünnecke’s inequality requires the full strength of Plünnecke’s

https://doi.org/10.1017/S096354831100037X Published online by Cambridge University Press

https://doi.org/10.1017/S096354831100037X


930 G. Petridis

conditions. This observation was left as an exercise and so we offer a quick explanation.

Suppose that Plünnecke’s, say upward, condition fails for an edge uv. It follows that

there is no matching from Im(v) to Im(u) in the bipartite graph G(Im(v), Im(u)) where

xy is an edge if and only if yx is an edge in G. By Lemma 2.1 we know there exists

S ⊆ Im(v) such that | Im(−1)(S)| < |S |. Now consider the channel H between u and S . This

is a commutative graph and uv ∈ E(H), yet d+
H (u) = | Im(−1)(S)| < |S | = d+

H (v).

Before moving on we prove a slight variation of Lemma 3.5, which will be useful in

Section 5.

Lemma 3.7. Let C be a positive real and let H be a commutative graph of level two with

vertex set U0 ∪ U1 ∪ U2. Suppose that for all S ⊆ U1 we have

| Im−1(S)| � C−1|S | and C|E(U0, U1)| = |E(U1, U2)|.

Then |U1| = C|U0|.

Proof. This is almost identical to what we have already seen. We partition U1 and U0

into, respectively, X ′
1, . . . , X

′
k′ and T ′

1, . . . , T
′
k′ , as in the proof of Lemma 3.5. We have

Im−1(X ′
j ∪ · · · ∪ X ′

k′ ) = T ′
j ∪ · · · ∪ T ′

k′ .

If we once again let x′
i = |X ′

i | and t′i = |T ′
i |, then the first hypothesis on H implies that

C

k′∑
i=j

t′i �
k′∑
i=j

x′
i for all 1 � j � k′. (3.1)

Adding the k′ inequalities gives

C

k′∑
i=1

it′i �
k′∑
i=1

ix′
i.

From Plünnecke’s upward condition we know that d+(v) � i for all v ∈ T ′
i , and in a similar

fashion to the proof of Lemma 3.5 we get

|E(U1, U2)| � C|E(U0, U1)|.

The second condition on H implies that equality must hold in every step. In particular,

setting j = 1 on (3.1) gives

C|U0| = C

k′∑
i=1

t′i =

k′∑
i=1

x′
i = |U1|.

4. Regular commutative graphs

We now turn to investigating the sharpness of Plünnecke’s inequality and prove Theor-

ems 1.2 and 1.3. For the former we construct arbitrarily long commutative graphs where

D
1/i
i (G) is constant. The latter will be proved by examining the growth of commutative

graphs that originate at a singleton.
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4.1. Regular commutative graphs

The two theorems are closely related with the existence of regular commutative graphs.

Definition. Let C ∈ Q+. RC is a regular commutative graph of ratio C whenever d−(v) = d

and d+(v) = Cd for all v ∈ V (G) and some d ∈ Z+.

It is easy to see why they are important in this context.

Lemma 4.1. Let C ∈ Q+ and i � h be positive integers. Suppose that G is a regular com-

mutative graph of ratio C with vertex set V0 ∪ · · · ∪ Vh. Then

Di(G) = Ci

and

|Vi| = Ci|V0|.

Furthermore the inverse of G is an RC−1 .

Proof. Suppose that d− = d and d+ = Cd for all vertices of the graph. There are Cd|Z |
edges coming out from every Z ⊆ V0. These edges land in at least C|Z | vertices in V1

and hence we get that | Im(Z)| � C|Z |, and consequently that D1(G) � C . Looking at

Im(i)(Z) = Im(Im(i−1)(Z)) we see that | Im(i)(Z)| � Ci|Z | – and consequently that Di(G) �
Ci. Next we count the edges between Vi−1 and Vi in two different ways to get

Cd |Vi−1| = |E(Vi−1, Vi)| = d |Vi|.

Hence |Vi| = Ci|V0|, which shows that Di(G) � Ci.

We know that the inverse of G is a commutative graph. It is furthermore regular with

ratio C−1.

To prove Theorem 1.2 it is therefore enough to construct arbitrarily long RC for

all C ∈ Q+. Let us begin by two simple yet fundamental observations. It is enough to

construct arbitrarily long Rk for all positive integers k, because if we let C = p/q be any

rational, then the Cartesian product of an Rp with the inverse of an Rq is an RC . A path

is an infinite R1, so from now on we will focus on Rk for integer k > 1.

4.2. Arbitrarily long regular commutative graphs

Getting an Rk of level two is not hard, but we will not present the simplest example as it

cannot be extended to an Rk of level three. We will instead inductively build arbitrarily

long Rk . Our aim is to take an Rk of level h and add a layer from below in such as a way

as to get an Rk of level h + 1. To achieve this we have to tweak the Rk of level h slightly

by taking its Cartesian product with a suitably chosen commutative graph. The following

graph has the desired properties.
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Lemma 4.2. Let k and h be positive integers. There exists an R1 of level h that gives rise

to a one-to-k matching from the image of any v ∈ U0 to U0 itself. U0 is the bottom layer of

the graph.

Proof. We work in Z2k2 and consider the level h addition graph G+(A,B) for A = Z2k2

and

B = {0, 1, 2, . . . , k − 1, k, 2k, 3k, . . . , k2}.

This is an R1. We define a map θ from the image of any v ∈ U0 to Uk
0 by:

θ(v + 0) = {v, v − 1, v − 2, . . . , v − (k − 1)},
θ(v + 1) = {v + 1, v + 1 − 2k, v + 1 − 3k, . . . , v + 1 − k2},
θ(v + 2) = {v + 2, v + 2 − 2k, v + 2 − 3k, . . . , v + 2 − k2},

...

θ(v + k − 1) = {v + k − 1, v + (k − 1) − 2k, v + (k − 1) − 3k, . . . , v + (k − 1) − k2},
θ(v + k) = {v + k, v − k, v − 2k, . . . , v − (k − 1)k},

θ(v + 2k) = {v + 2k, v + 2k − 1, v + 2k − 2, . . . , v + 2k − (k − 1)},
...

θ(v + k2) = {v + k2, v + k2 − 1, v + k2 − 2, . . . , v + k2 − (k − 1)}.

A routine check confirms that every element of θ(v + j) is indeed joined to v + j in the

graph. For example, v + 1 is joined to v + 1 as it equals v + 1 − 0 and v − k is joined to

v + k as it equals v + k − 2k. A second routine check confirms that θ(v + b) ∩ θ(v + b′) = ∅
for all v ∈ U0 and distinct b, b′ ∈ B. In other words the graph yields a one-to-k matching

between the image of any v ∈ U0 and U0 itself, as claimed.

We can now complete the inductive step by combining the above with Lemma 2.1 and

the multiplicativity of degrees.

Proposition 4.3. Suppose that an Rk of level h exists with the property that every vertex in

the first layer is joined to every vertex in the second layer. Then an Rk of level h + 1 with

the same property exists.

Proof. Suppose that W0, . . . ,Wh are the layers of Rk with |W0| = d. The defining

properties of Rk imply that d− = d and d+ = dk. Let R1 be the graph described in

Lemma 4.2 with layers U0, . . . , Uh.

We let Gh = Rk × R1. This graph is a regular commutative graph of ratio k whose

bottom layer has size |W0 × U0| = 2dk2. Next we add a layer of size 2dk to the bottom

and join every added vertex to the whole of W0 × U0. Let Gh+1 be the resulting graph

of level h + 1, which is regular with in-degree 2dk and out-degree 2dk2. To complete the

proof we show that Gh+1 is a commutative graph.
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We only need to check Plünnecke’s conditions involving the recently added bottom layer.

The remaining layers pose no problem as they belong to Gh, which is commutative. The

downward condition is immediate as the size of the bottom layer equals the in-degree. To

check the upward condition we consider an edge u(w, v), where u lies in the bottom layer

of Gh+1 and (w, v) lies in the second layer, i.e., w ∈ W0 and v ∈ U0. Plünnecke’s condition

requires finding a matching from ImGh+1
((w, v)) = W1 × ImR1

(v) to ImGh+1
(u) = W0 × U0.

With this in mind we turn our attention to the bipartite graph (W1 × ImR1
(v),W0 × U0)

and aim to apply Lemma 2.1. We keep the same notation as in Section 2 and write Γ(x)

for the neighbourhood of x in the bipartite graph, which is precisely Im−1
Gh+1

(x). Let π2 be

the projection onto R1. For any S ⊆ W1 × ImR1
(v) we have from Lemma 4.2

|Γ(S)| =

∣∣∣∣W0 ×
⋃

x∈π2(S )

Im−1
R1

(x)

∣∣∣∣
�

∑
x∈π2(S )

|W0| |θ(x)|

= |π2(S)| |W0| k
= |π2(S)| |W1|
� |S |.

Hence Hall’s condition is satisfied, and as a consequence so is Plünnecke’s.

We construct arbitrarily long Rk (and hence finish the proof of Theorem 1.2) as follows.

We start with the two-layer (and hence non-commutative) graph consisting of a single

vertex in V0 joined to all k vertices in V1. A first application of Proposition 4.3 yields an

Rk of level two. Repeated applications yield an arbitrarily long Rk .

In light of Theorem 1.3 it should be noted that this construction does not lead to

infinite regular commutative graphs as in each step the size of the bottom layer increases.

4.3. Infinite regular commutative graphs

The construction of arbitrarily long regular commutative graphs we have presented does

not give infinite regular commutative graphs. This does not of course rule out their

existence. In order to prove Theorem 1.3 we will examine how much a Plünnecke graph

originating at a singleton can grow. Plünnecke’s inequality gives |Vh| � |V1|h, but the

growth is in fact far from exponential.

Lemma 4.4. Let G be an infinite commutative graph where |V0| = 1 and |V1| = n. Then

|Vh| �
(
n+h−1

h

)
.

The bound is best possible.

Proof. We perform a double induction on n and h. Let A(n, h) be the maximum of

|Vh| taken over all commutative graphs with |V0| = 1 and |V1| = n. Take such a G with

V0 = {u} and V1 = {v1, . . . , vn}. Any element of Vh can either be reached from a path

passing from v1 or exclusively via paths that pass from {v2, . . . , vn}. In the former case the
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vertex lies in the commutative graph consisting of all paths that start in v1. By Plünnecke’s

upward condition the second layer of this graph has at most n elements and so there are

at most A(n, h − 1) such vertices in Vh. ‘In the latter case the vertex lies in the channel

between u and Vh\Im(h)(v1).’ The second layer of this graph is a subset of {v2, . . . , vn} and

hence there are at most A(n − 1, h) such vertices in Vh. We have therefore proved that

A(n, h) � A(n, h − 1) + A(n − 1, h).

It follows from Plünnecke’s condition that A(1, h) = 1 =
(
h
h

)
for all h and we know that

A(n, 1) = n =
(
n
1

)
. The stated bound follows inductively from the well-known identity(

a
b

)
=

(
a−1
b

)
+

(
a−1
b−1

)
, and is attained when G is an independent addition graph on n

generators.

Deducing Theorem 1.3 is straightforward.

Proof of Theorem 1.3. A path is an infinite commutative graph whose magnification

ratios are all equal to one.

Let 1 �= C ∈ Q+ and let G be a commutative graph where Di(G) = Ci for all i. We have

to show that G is finite.

When C < 1 we let V0 be the bottom layer of G. The definition of magnification ratios

implies that there exists ∅ �= Zi ⊆ V0 such that | Im(h)(Zi)| = Ci|Zi|. The quantity Ci|Zi| is

a non-zero integer less than Ci|V0| and so i cannot be arbitrarily large. When C > 1 we

let V1 be the second layer of G. Lemma 4.4 implies that

Di(G) �
(

|V1| + i − 1

i

)
= O(i|V1|),

which for large enough i is less than Ci.

5. Inverse theorem for Plünnecke’s inequality

We conclude the paper by establishing a necessary condition for Plünnecke’s inequality

to be attained. We use some of the results in Section 3 to prove an inverse result for

Theorem 1.1.

Theorem 5.1. Let C ∈ Q+ and let G be a commutative graph with Di(G) = Ci for all i.

Then there exists ∅ �= Z ⊆ V0 whose channel is a regular commutative graph of ratio C .

The definition of ‘channel of Z ’ can be found in Section 2.

5.1. Inverse theorem for Plünnecke’s inequality

The first step in proving Theorem 5.1 is to identify Z . It turns out that choosing the

smallest non-empty subset of V0 that has a chance of working will do. We will later need

the cardinalities of the various layers of the channel of such a Z .
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Lemma 5.2. Let C ∈ Q+ and suppose G is a commutative graph with Di(G) = Ci for all

1 � i � h. Let ∅ �= Z ⊆ V0 be of minimal size subject to | Im(Z)| = C|Z | and let H be the

channel of Z with vertex set U0 ∪ · · · ∪ Uh. Then |Ui| = Ci|U0| for all 1 � i � h.

Proof. For any S ⊆ Z = U0 we have that Im(i)(S) = Im(i)
H (S) so we will drop the subscript.

Observe that D1(H) = C . We use this to show that Di(H) = Ci for all i. Indeed

Ci = Di(G) � Di(H) � Di
1(H) = Ci,

the first inequality following from the definition of magnification ratios, while the second

follows from Theorem 1.1. Hence | Im(i)(S)| = Ci|S | for some S ⊂ U0. Im(S)c ∪ Im(i)(S) is

a separating set in the weighted version of H , where as usual w(v) = C−i for all v ∈ Ui.

By Corollary 3.4 we know that

|U0| � w(Im(S)c) + w(Im(i)(S))

= C−1(|U1| − | Im(S)|) + C−i| Im(i)(S)|
= |U0| − C−1| Im(S)| + |S |.

Thus | Im(S)| � C|S |. The minimality of Z implies that S = Z = U0.

We proceed with the proof of Theorem 5.1. We will use Lemma 3.5 on page 927

repeatedly to show that H has to in fact be regular.

Proof of Theorem 5.1. Similarly to above we let ∅ �= Z ⊆ V0 be of minimal size subject

to | Im(Z)| = C|Z |. Our goal is to prove that its channel H is a regular commutative

graph of ratio C . We will not have to work in G any further, so to keep the notation

simple we will write Im and Im−1 instead of ImH and Im−1
H . Note, however, that in general

Im−1
G �= Im−1

H .

We want to apply Lemma 3.5, so we let U0 ∪ U1 · · · ∪ Uh be the vertex set of H

with the usual weights w(v) = C−i for all v ∈ Ui. We partition U1 into X1, . . . , Xk (where

d−�Xi
= i) and X ′

1, . . . , X
′
k′ (where d+�X ′

i
= i). We also partition U0 and U2, respectively,

into Y ′
1 , . . . , Y

′
k′ (where d+�Y ′

i
= i) and Y1, . . . , Yk (where d−�Yi

= i). To check that the

condition of Lemma 3.5 is satisfied we observe that U1, which by Lemma 5.2 has weight

|U0|, is by Corollary 3.4 a separating set of minimum weight. For every S ⊆ U1 both

Sc ∪ Im(S) and Sc ∪ Im−1(S) are separating sets. The minimality of w(U1) implies that

| Im(S)| � C|S | and | Im−1(S)| � C−1|S |.

Our first task will be to establish that Y ′
k′ = U0 and that the out-degree in U0 ∪ U1 is

k′. Suppose not. Then

k′−1⋃
i=1

Y ′
i

is both non-empty and not the whole of U0. By the minimality of Z ,

∣∣∣∣
k′−1⋃
i=1

X ′
i

∣∣∣∣ =

∣∣∣∣Im
(k′−1⋃

i=1

Y ′
i

)∣∣∣∣ > C

∣∣∣∣
k′−1⋃
i=1

Y ′
i

∣∣∣∣.
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U2

�
�

�
�

R2 := Yj Y c
j

���������

U1

�
�

�
�R1 := Xj Xc

j���������
U0

�
�

�
�R0 := Im−1(Xj) Im−1(Xj)

c

Figure 2. An illustration of how different parts of the graph are connected. Lines may correspond

to multiple or no edges.

On the other hand, by Lemma 3.5 we know that

∣∣∣∣
k′−1⋃
i=1

X ′
i

∣∣∣∣ =

k′−1∑
i=1

|X ′
i | = C

k′−1∑
i=1

|Y ′
i | = C

∣∣∣∣
k′−1⋃
i=1

Y ′
i

∣∣∣∣.
So Y ′

k′ = U0, and by Lemma 3.5 |X ′
k′ | = C|Y ′

k′ | = |U1|, so X ′
k′ = U1 and d+�U0 ∪ U1

= k′.

Next we establish that Xk = U1 and that the in-degree in U1 ∪ U2 is k. Let j be minimal

subject to Yj �= ∅. Let R be the channel between Z = U0 and Yj .

We observe that Im−1(Yj) = Xj . This holds, as by Plünnecke’s downward condition

Im(−1)(Yj) ⊆
j⋃

i=1

Xi.

The choice of j implies that Yi = ∅, for i < j. By Lemma 3.5 we have |Xi| = C−1|Yi| = 0

for all i < j. Thus Im(−1)(Yj) = Xj as claimed.

Thus R0 = Im−1(Xj), R1 = Xj and R2 = Yj are the layers of R (see figure 2). We will

apply Lemma 3.7 on page 930 to R and so we need to check that the two conditions

are satisfied. We begin with the second. We have d−
R (v) = d−

H (v) = j for all v ∈ R and by

Lemma 3.5 that |R2| = |Yj | = C|Xj | = C|R1|. Thus

|E(R1, R2)| =
∑
w∈R2

d−(w) = |R2| j = C|R1| j = C|E(R0, R1)|.

For the first we observe that Im−1
R (v) = Im−1(v) for all v ∈ R. We have seen above that U1

is a separating set in H of minimum weight and so we have that | Im−1
R (S)| = | Im−1(S)| �

C−1|S | for all S ⊆ R1. We can now apply Lemma 3.7 to get

|R1| = C|R0|. (5.2)

On the other hand we know that Im(Im−1(Xj)
c) = Xc

j , and so if R0 = Im−1(Xj) �= U0, the

minimality of Z implies

|U1| − |Xj | > C(|U0| − | Im−1(Xj)| = |U1| − C| Im−1(Xj)|,
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i.e., that C|R0| > |R1|, which contradicts (5.2). We must therefore have R0 = U0. Hence

|Xj | = |R1| = C|R0| = C|U0| = |U1|, i.e., Xj = U1 = Xk and so |Yj | = C|Xj | = |U2|, i.e.,

Yj = U2 = Yk . In particular d−�U1 ∪ U2
= k.

We therefore have regularity in the bottom three layers. We must check that the ratio

of k′ to k is C . This follows from counting the edges between U0 and U1 in two ways:

k′|U0| = |E(U0, U1)| = k|U1| = kC|U0|.

The final step is to establish regularity for the remaining layers of G. We consider any

w ∈ U2. d
+(w) � k′ = Ck, and so

C|E(U1, U2)| = C|U1|Ck = Ck|U2| � |E(U2, U3)|.

The fact that |U2| = C|U1| follows from Lemma 5.2. Similarly d−(x) � k for any x ∈ U3

and so

C|E(U1, U2)| = Ck|U2| = k|U3| � |E(U2, U3)|.

We must therefore have equality in each step and therefore d+(w) = Ck for all w ∈ U2

and d−(x) = k for all x ∈ U3. We repeat this step for all remaining layers to finish off the

proof.

Remark. An alternative way to prove Theorem 5.1 is to first establish the special case

when C = 1 using Proposition 3.1, and then deduce the general case by the multiplicativity

of magnification ratios and degrees. This time, independent addition graphs cannot work

and we need to use regular commutative graphs.

Proposition 3.1 gives a sensible-looking necessary and sufficient condition for all

magnification ratios of a commutative graph to be equal to one.

Corollary 5.3. Let G be a commutative graph and V0 be its bottom layer. Di(G) = 1 for all

i if and only if there exist |V0| vertex-disjoint paths of maximum length in G and the channel

of some ∅ �= Z ⊆ V0 is an R1.

Proof. When Di(G) = 1 for all i we know from Proposition 3.1 that there are |V0| vertex-

disjoint paths of maximum length in G, and we just proved the existence of a suitable

non-empty Z ⊆ V0. Conversely, the existence of the vertex-disjoint paths of maximum

length guarantees that Di(G) � 1 for all i and Lemma 5.2 guarantees that | Im(i)(Z)| = |Z |
and hence Di(G) � 1.

Not a whole lot more can be said about the structure of such G. It is clear that the

channel of Zc must have magnification ratios no smaller than one, and that is about it.

For example, take any commutative graph G of level two with vertex set V0 ∪ V1 ∪ V2

and Di(G) � 1 and any regular commutative graph R with ratio one and vertex set

U0 ∪ U1 ∪ U2. Form a new graph G′ of level two by placing an edge between any u ∈ Vi

and any v ∈ Ui+1. G
′ has magnification ratios equal to one as

| Im(i)
G′ (S)| = | Im(i)

G (S ∩ V0)| + | Im(i)
R (S ∩ U0)| � |S ∩ V0| + |S ∩ U0| = |S |
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and

| Im(i)
G′(U0)| = | Im(i)

R (U0)| = |U0|.

G′ is furthermore a commutative graph. The way G is joined to R means that for the

upward condition we only need to worry about elements in V0. Let uv ∈ E(V0, V1). Then

ImG′ (v) = ImG(v) ∪ U2 and ImG′(u) = ImG(u) ∪ U1. We know from Plünnecke’s condition

that a matching exists from ImG(v) to ImG(u) and from Proposition 3.1 and Lemma 5.2

that a matching exists from U2 to U1. Putting the two matchings together gives a matching

from ImG′ (v) to ImG′(u). Next take uv ∈ E(V0, U1), ImG′ (v) = ImR(v), and we know from

Proposition 3.1 that there is a matching from ImR(v) to U1 ⊆ ImG′ (u) and hence from

ImG′ (v) to ImG′ (u). Similar considerations show that the downward condition is satisfied.
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