
TLP 17 (1): 91–117, 2017. C© Cambridge University Press 2016

doi:10.1017/S1471068416000156 First published online 1 July 2016

91

The KB paradigm and its application to
interactive configuration�

PIETER VAN HERTUM, INGMAR DASSEVILLE, GERDA JANSSENS

and MARC DENECKER

Department of Computer Science, KU LEUVEN,

Leuven, BELGIUM

(e-mail: pieter.vanhertum@cs.kuleuven.be, ingmar.dasseville@cs.kuleuven.be,

gerda.janssens@cs.kuleuven.be, marc.denecker@cs.kuleuven.be)

submitted 14 February, 2016; revised 21 March, 2016; accepted 2 May, 2016

Abstract

The knowledge base (KB) paradigm aims to express domain knowledge in a rich formal

language, and to use this domain knowledge as a KB to solve various problems and tasks

that arise in the domain by applying multiple forms of inference. As such, the paradigm applies

a strict separation of concerns between information and problem solving. In this paper, we

analyze the principles and feasibility of the KB paradigm in the context of an important class

of applications: interactive configuration problems. In interactive configuration problems, a

configuration of interrelated objects under constraints is searched, where the system assists

the user in reaching an intended configuration. It is widely recognized in industry that

good software solutions for these problems are very difficult to develop. We investigate such

problems from the perspective of the KB paradigm. We show that multiple functionalities in

this domain can be achieved by applying different forms of logical inferences on a formal

specification of the configuration domain. We report on a proof of concept of this approach

in a real-life application with a banking company.

KEYWORDS: interactive configuration, knowledge base paradigm, inferences, applications

of declarative systems

1 Introduction

In this paper, we investigate the application of knowledge representation and

reasoning (KRR) to the problem of interactive configuration (IC). In the past

decades enormous progress in many different areas of computational logic was

obtained. This resulted in a complex landscape with many declarative paradigms,

� This is an extended version of a paper presented at the international symposium on Practical Aspects
of Declarative Languages (PADL 2016), invited as a rapid communication in TPLP. The authors
acknowledge the assistance of the conference program chairs Marco Gavanelli and John Reppy. This
research was supported by the project GOA 13/010 Research Fund KU Leuven and projects G.0489.10,
G.0357.12, and G.0922.13 of the Research Foundation - Flanders.

https://doi.org/10.1017/S1471068416000156 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000156


92 P. Van Hertum et al.

languages, and communities. One issue that fragments computational logic more

than anything else is the reasoning/inference task. Computational logic is divided

in different declarative paradigms, each with its own syntactical style, terminology

and conceptuology, and designated form of inference (e.g., deductive logic, logic

programming, abductive logic programming, databases (query inference), answer set

programming (answer set generation), constraint programming, etc.). Yet, in all of

them declarative propositions need to be expressed. Take, e.g., “each lecture takes

place at some time slot”. This proposition could be an expression to be deduced

from a formal specification if the task was a verification problem, or to be queried

in a database, or it could be a constraint for a scheduling problem. It is, in the first

place, just a piece of information and we see no reason why depending on the task

to be solved, it should be expressed in a different formalism (classical logic, SQL,

ASP, MiniZinc, etc.).

The Knowledge Base (KB) paradigm (Denecker and Vennekens 2008) was

proposed as an answer to this. The KB paradigm applies a strict separation of

concerns to information and problem solving. A KB system allows information to

be stored in a KB, and provides a range of inference methods. With these inference

methods various types of problems and tasks can be solved using the same KB.

As such the KB is neither a program nor a description of a problem, it cannot be

executed or run. It is nothing but information. However, this information can be used

to solve multiple sorts of problems. Many declarative problem solving paradigms

are mono-inferential: they are based on one form of inference. In comparison, the

KB paradigm is multi-inferential. We believe that this implements a more natural,

pure view of what declarative logic is aimed to be. The FO(·) KB project (Denecker

and Vennekens 2008) is a research project that runs now for a number of years.

Its aim is to integrate different useful language constructs and forms of inference

from different declarative paradigms in one rich declarative language and a KB

system. So far, it has led to the KB language FO(·) (Denecker and Ternovska 2008)

and the KB system IDP (De Cat et al. 2016) which were used in the configuration

experiment described in this paper.

An IC problem (McDermott 1982; Mittal and Frayman 1989; Fleischanderl et al.

1998; Junker and Mailharro 2003; Hadzic 2004) is an interactive version of a

constraint solving problem. One or more users search for a configuration of objects

and relations between them that satisfies a set of constraints. Industry abounds with

IC problems: configuring composite physical systems such as cars and computers,

insurances, loans, schedules involving human interaction, webshops (where clients

choose composite objects), etc. However, building such software is renowned in

industry as difficult and no broadly accepted solution methods are available (Axling

and Haridi 1996; Felfernig et al. 2014). Building software support using standard

imperative programming is often a nightmare (Barker and O’Connor 1989; Piller

et al. 2014), due to the fact that (1) many functionalities need to be provided, (2)

they are complex to implement, and (3) constraints on the configuration tend to

get duplicated and spread out over the application, in the form of snippets of code

performing various computations relative to the constraint (e.g., context dependent

checks or propagations) which often leads to an unacceptable maintenance cost. This

https://doi.org/10.1017/S1471068416000156 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000156


The KB paradigm in interactive configuration 93

makes IC an excellent domain to illustrate the advantages of declarative methods

over standard imperative or object-oriented programming.

Our research question is: can we express the constraints of correct configurations

in a declarative logic and provide the required functionalities by applying inference

on this domain knowledge? This is a KRR question albeit a difficult one. In the

first place, some of the domain knowledge may be complex. For an example in

the context of a computer configuration problem, take the following constraint: the

total memory usage of different software processes that needs to be in main memory

simultaneously, may not exceed the available RAM memory. It takes an expressive

knowledge representation language with aggregates to (compactly and naturally)

express such a constraint. Many IC problems include complex constraints: various

sorts of quantification, aggregates, definitions (sometimes inductive), etc. Moreover,

an IC system needs to provide many functionalities: checking the validity of a fully

specified configuration, correct and safe reasoning on a partially specified config-

uration (this involves reasoning on incomplete knowledge, sometimes with infinite

or unknown domains), computing impossible values or forced values for attributes,

generating sensible questions to the user, providing explanation why certain values

are impossible, backtracking if the user regrets some choices, supporting the user by

filling in his don’t-cares while potentially taking into account a cost function, etc.

That declarative methods are particularly suitable for solving this type of problem

has been acknowledged before, and several systems and languages have been

developed (Hadzic 2004; Vlaeminck et al. 2009; Schneeweiss and Hofstedt 2011;

Tiihonen et al. 2013). A first contribution of this paper is the analysis of IC

problems from a Knowledge Representation point of view. We show that multiple

functionalities in this domain can be achieved by applying different forms of logical

inference on the same formal specification of the configuration domain. We define

various sorts of inference and analyze them in terms of which different functionalities

can be supplied. The second contribution is the reverse: we study the feasibility and

usefulness of the KB paradigm in this important class of applications. The logic used

in this experiment is the logic FO(·) (Denecker and Ternovska 2008), an extension

of first-order logic (FO), and the system is the IDP system (De Cat et al. 2016). We

discuss the complexity of (the decision problems of) the inference problems and why

they are solvable, despite the high expressivity of the language and the complexity of

inference. This research has its origin in an experimental IC system we developed in

collaboration with industry. We evaluated our approach using the evaluation criteria

of the knowledge-based configuration research (Felfernig et al. 2014). We conclude

this paper with a discussion of related work in using knowledge-based systems for

configuration and a comparison of our approach with these systems.

2 The FO(.) KB project

2.1 The language

FO(·) refers to the class of extensions of FO logic as is common in logic, e.g.,

FO(LFP) stands for the extension of FO with a least fixpoint construction

https://doi.org/10.1017/S1471068416000156 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000156


94 P. Van Hertum et al.

(Immerman and Vardi 1997). Currently, the language of the IDP system in the

project is FO(T, ID, Agg, arit, PF) (Pelov et al. 2007; Denecker and Ternovska 2008):

FO extended with types, definitions, aggregates, arithmetic, and partial functions.

Abusing notation, we will use FO(·) as an abbreviation for this language. Below, we

introduce the aspects of the logic and its syntax on which this paper relies.

2.2 A specification

A vocabulary is a set Σ of type (denoted as ΣT ), predicate (denoted as ΣP ) and

function symbols (denoted as ΣF ). Variables x, y, atoms A, FO-formulas ϕ are defined

as usual. A predicate P of arity n has a type [τ1, . . . , τn], a n-tuple of type symbols.

A function of arity n has a type [τ1, . . . , τn] → τn+1, a (n + 1)-tuple of type symbols.

Aggregate terms are of the form Agg(E), with Agg an aggregate function symbol

and E an expression {(x, F(x))|ϕ(x)}, where ϕ is any FO-formula, F a function

symbol and x a tuple of variables. Examples are the cardinality, sum, product,

maximum and minimum aggregate functions. For example, sum{(x, F(x))|ϕ(x)} is

read as Σx∈{y|ϕ(y)}F(x). A term in FO(·) can be an aggregate term or a term as

defined in FO. A theory is a set of FO(·) formulas.

A partial set on domain D is a function from D to {t, u, f}. A partial set is two-

valued (or total) if u does not belong to its range. A (partial) structure S consists

of a domain Dτ for all types τ in ΣT and an assignment of a partial set σS to each

predicate or function symbol σ ∈ (ΣP ∪ ΣF ), called the interpretation of σ in S. The

interpretation PS of a predicate symbol P with type [τ1, . . . , τn] in S is a partial

set on domain Dτ1
× · · · × Dτn . For a function F with type [τ1, . . . , τn] → τn+1, the

interpretation FS of F in S is a partial set on domain Dτ1
× · · · ×Dτn ×Dτn+1

. In case

the interpretation of (a predicate or function symbol) σ in S is a two-valued set,

we abuse notation and use σS as shorthand for {d|σS(d) = t}. The precision-order

on the truth values is given by u <p f and u <p t. It can be extended pointwise to

partial sets and partial structures, denoted S �p S′. Informally, this means that

an interpretation has become more precise if tuples of domain elements that were

previously mapped to unknown now map to true or false. Notice that total structures

are the maximally precise ones. We will illustrate this precision relation in Example

2.1. We say that S′ extends S if S �p S′. We will sometimes use σS
x as shorthand

for the set {d|d ∈ Dτ1
× · · · × Dτn ∧ σS(d) = x}, with x ∈ {t, f , u}.

The associated theory TS of a partial structure S is a representation of the

information contained in S as a theory, which will be used in Section 4. It is

defined by the following collection of constraints. For every predicate symbol P , this

collection contains two sets of constraints:

{P (d)|d ∈ PS
t }

{¬P (d)|d ∈ PS
f }

and two sets of constraints for every function symbol F:

{F(d) = e|(d, e) ∈ FS
t }

{¬F(d) = e|(d, e) ∈ FS
f }

https://doi.org/10.1017/S1471068416000156 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000156


The KB paradigm in interactive configuration 95

Given a partial structure S, the domain structure SD is the structure containing

only the domains of S. It is easy to see that S contains the same information as

TS ∪ SD . A total structure1 S is called functionally consistent if for each function

F with type [τ1, . . . , τn] → τn+1, the interpretation FS is the graph of a function

Dτ1
× · · · × Dτn �→ Dτn+1

. A partial structure S is functionally consistent if it has a

functionally consistent two-valued extension. Unless stated otherwise, we will assume

for the rest of this paper that all (partial) structures are functionally consistent.

A domain atom (domain term) is a tuple of a predicate symbol P (a function

symbol F) and a tuple of domain elements (d1, . . . , dn). We will denote it as

P (d1, . . . , dn) (respectively F(d1, . . . , dn)). We say a domain term t of type τ is

uninterpreted in S if {d|d ∈ Dτ ∧ (t = d)S = u} is non-empty.

To define the satisfaction relation on theories, we extend the interpretation of

symbols to arbitrary terms and formulas using the Kleene truth assignments (Kleene

1952). For a theory T and a partial structure S, we say that S is a model of T (or

in symbols S � T ) if TS = t and S is two-valued. We sometimes abuse notation

and write T � ϕ for the entailment relation, as a shorthand for “For every structure

S such that S � T , we have S � ϕ.”.

Example 2.1

To illustrate some of the concepts introduced above, assume a situation where

we have some knowledge about printers, that have some type of connection. A

vocabulary to model such knowledge can look as follows:

Σ = {
ΣT = {printer, connection}
ΣP = {PrinterConnection(printer, connection)}
ΣF = {}

}

A structure S0 in which we have two printers P1 and P2 and two possible

connections: USB and LAN, where we have no additional information, looks

like:

S0 = {
printer = {P1, P2}
connection = {USB, LAN}
PrinterConnection = {(P1, USB) → u, (P2, USB) → u,

(P1, LAN) → u, (P2, LAN) → u}
}

1 Note the difference in typography between a partial structure S and a total structure S .

https://doi.org/10.1017/S1471068416000156 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000156


96 P. Van Hertum et al.

A more precise structure S1 �p S0, containing the partial information that P1 has

USB and P2 certainly has no LAN connection looks like

S1 = {
printer = {P1, P2}
connection = {USB, LAN}
PrinterConnection = {(P1, USB) → t, (P2, USB) → u,

(P1, LAN) → u, (P2, LAN) → f}
}

A total structure S2 �p S1 containing full information can look like

S2 = {
printer = {P1, P2}
connection = {USB, LAN}
PrinterConnection = {(P1, USB) → t, (P2, USB) → t,

(P1, LAN) → f , (P2, LAN) → f}
}

2.3 Inference tasks

In the KB paradigm, a specification is a bag of information. This information can

be used for solving various problems by applying a suitable form of inference on it.

FO is standardly associated with deduction inference: a deductive inference task

takes as input a pair of theory T and sentence ϕ, and returns t if T |= ϕ and f

otherwise. This is well-known to be undecidable for FO, and by extension for FO(·).
However, to provide the required functionality of an IC system we can use simpler

forms of inference. Indeed, in many such domains a fixed finite domain is associated

with each unknown configuration parameter.

A natural format in logic to describe these finite domains is by a partial structure

with a finite domain. Also other data that are often available in such problems can

be represented in that structure. As such various inference tasks are solvable by finite

domain reasoning and become decidable. Below, we give the base forms of inference

for our KB system and recall their complexity when using finite domain reasoning.

We assume a fixed vocabulary Σ and theory T and query. Our complexities are

given in function of the domain size.

Modelexpand(T ,S): input: theory T and partial structure S; output: a model I

of T such that S �p I or UNSAT if there is no such I . Modelexpand (Wittocx

et al. 2008) is a generalization for FO(·) theories of the modelexpansion task as

defined in Mitchell et al. (Mitchell and Ternovska 2005). Complexity of deciding

the existence of a modelexpansion is in NP. Structure S2 in Example 2.1 is the

output of Modelexpand(T ,S1), with S1 as in Example 2.1, and T a theory

consisting of the constraint that every printer has exactly one connection.

https://doi.org/10.1017/S1471068416000156 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000156


The KB paradigm in interactive configuration 97

Modelcheck(T , S): input: a total structure S and theory T over the vocabulary

interpreted by S; output is the boolean value S |= T . Note that Modelcheck

is a degenerate case of the Modelexpand inference, with S a total structure.

Complexity is in P.

Minimize(T ,S, t): input: a theory T , a partial structure S and a term t of numerical

type; output: a model I �p S of T such that the value tI of t is minimal. The

term t represents a numerical expression whose value has to be minimized. This

is an extension to the modelexpand inference. The complexity of deciding that a

certain tI is minimal, is in ΔP
2 .

Propagate(T ,S): input: theory T and partial structure S; output: the most precise

partial structure Sr such that for every model I �p S of T it is true that I �p Sr .

The complexity of deciding that a partial structure S′ is Sr is in ΔP
2 . Note that

we assume that all partial structures are functionally consistent, which implies

that we also propagate functional integrity constraints.

Query(S, E): input: a (partial) structure S and a set expression E = {x | ϕ(x)};
output: the set AQ = {x | ϕ(x)S = t}. Complexity of deciding that a set A is AQ

is in P.

Approximative versions exist for some of these inferences, with lower complexity

(Vlaeminck et al. 2009). More inferences exist, such as simulation of temporal

theories in FO(·) (Bogaerts et al. 2014), but were not used in the experiment.

3 Interactive configuration

In an IC problem, one or more users search for a configuration of objects and

relations between them that satisfies a set of constraints.

Typically, the user is not aware of all constraints. There may be too many of them

to keep track of. Even if the human user can oversee all constraints that he needs

to satisfy, he is not a perfect reasoner and cannot comprehend all consequences of

his choices. This in its own right makes such problems hard to solve. The problems

get worse if the user does not know about the relevant objects and relations or

the constraints on them, or if the class of involved objects and relations is large,

if the constraints get more complex and more “irregular” (e.g., exceptions), if more

users are involved, etc. On top of that, the underlying constraints in such problems

tend to evolve quickly. All these complexities occur frequently, making the problem

difficult for a human user. In such cases, computer assistance is needed: the human

user chooses and the system assists by guiding him through the search space.

For a given IC problem, an IC system has information on that problem. There are

a number of stringent rules to which a configuration should conform, and besides

this there is a set of parameters. Parameters are the open fields in the configuration

that need to be filled in by the user or decided by the system.

3.1 Running example: Domain knowledge

A simplified version of the application in Section 5.1 is used in Section 4 as running

example. We introduce the domain knowledge of this example here.

https://doi.org/10.1017/S1471068416000156 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000156


98 P. Van Hertum et al.

Table 1. Example data

PriceOf PreReq MaxCost IsOS

software int software software employee int software

Windows 60 Office Windows Secretary 100 Windows

Linux 20 LATEX Linux Manager 150 Linux

LATEX 10

Office 30

DualBoot 40

Example 3.1

Software on a computer has to be configured for different employees. Table 1

contains the information on the software, the requirements, the budgets of the

employees and the prices of software. Available software is Windows, Linux, LATEX,

Office and a DualBoot system. Each software item has a price, which can be seen

in column PriceOf. Column PreReq specifies which software is required for other

software. Every type of employee has a budget, provided in column MaxCost. IsOs

lists the pieces of software that are operating systems. Next to the information in

the table, we know that if more than one OS is installed, a DualBoot System is

required.

3.2 Subtasks of an interactive configuration system

Any system assisting a user in IC must be able to perform a set of subtasks. We

look at important subtasks that an IC system should support.

Subtask 1: Acquiring information from the user

The first task of an IC system is acquiring information from the user. The system

needs to get a value for a number of parameters of the configuration from the user.

There are several options: the system can ask questions to the user, it can make

the user fill in a form containing open text fields, dropdown-menus, checkboxes,

etc. Desirable aspects would be to give the user the possibility to choose the order

in which he gives values for parameters and to omit filling in certain parameters

(because he does not know or does not care). For example, in the running example a

user might need a LATEX-package, but he does not care about which OS he uses. In

that case, the system will decide in his place that a Linux system is required. Since

a user is not fully aware of all constraints, it is possible that he inputs conflicting

information. This needs to be handled or avoided.

Subtask 2: Generating consistent values for a parameter

After a parameter is selected (by the user or the system) for which a value is needed,

the system can assist the user in choosing these values. A possibility is that the

system presents the user with a list of all possible values, given the values for other

https://doi.org/10.1017/S1471068416000156 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000156


The KB paradigm in interactive configuration 99

parameters and the constraints of the configuration problem. Limiting the user with

this list makes that the user is unable to input inconsistent information.

Subtask 3: Propagation of information

Assisting the user in choosing values for the parameters, a system can use the

constraints to propagate the information that the user has communicated. This

can be used in several ways. A system can communicate propagations through a

GUI, for example by coloring certain fields red or graying out certain checkboxes.

Another way is to give a user the possibility to explicitly ask “what if”-questions

to the system. In Example 3.1, a user can ask the system what the consequences

are if he was a secretary choosing an Office installation. The system answers that

in this case a Windows installation is required, which results in a Linux installation

becoming impossible (due to budget constraints) and as a consequence it also derives

the impossibility of installing LATEX.

Subtask 4: Checking the consistency for a value

When it is not possible/desirable to provide a list of possible values, the system

checks that the value the user has provided is consistent with the known data and

the constraints.

Subtask 5: Checking a configuration

If a user makes manual changes to a configuration, the system provides him with

the ability to check if his updated version of the configuration still conforms to all

constraints.

Subtask 6: Autocompletion

If a user has finished communicating all his preferences, the system autocompletes

the partial configuration to a full configuration. This can be done arbitrarily (a value

for each parameter such that the constraints are satisfied) or the user can have some

other parameters like total cost, that have to be optimized.

Subtask 7: Explanation

If a supplied value for a parameter is not consistent with other parameters, the

system can explain this inconsistency to the user. This can be done by showing

minimal sets of parameters with their values that are inconsistent, by showing

(visualizations of) constraints that are violated or by combinations of both. It can

also explain to the user why certain automatic choices are made, or why certain

choices are impossible.

https://doi.org/10.1017/S1471068416000156 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000156


100 P. Van Hertum et al.

Subtask 8: Backtracking

It is not unthinkable that a user makes a mistake, or changes his mind after

seeing consequences of choices he made. Backtracking is an important subtask for

a configuration system, and can be supported in numerous ways. The simplest way

is a simple back button, which reverts the last choice a user made. A more involved

option is a system where a user can select any parameter and erase his value for

that parameter. The user can then decide this parameter at a later timepoint. Even

more complex is a system where a user can supply a value for a parameter and if it

is not consistent with other parameters the system shows him which parameters are

in conflict and proposes other values for these parameters such that consistency can

be maintained.

4 Interactive configuration in the KB paradigm

To analyze the IC problem from the KB point of view, we aim at formalizing the

subtasks of Section 3 as inferences. In this paper, we do not deal with user interface

aspects. For a given application, our KB consists of a vocabulary Σ, a theory T

expressing the configuration constraints and a partial structure S. Initially, S0 is the

partial structure that contains the domains of the types and the input data. During

IC, S0 will become more and more precise partial structures Si due to choices

made by the user. For IC, the KB also contains LS0
, the set of all uninterpreted

domain atoms/terms2 in S0. These domain terms are the logical formalization of

the parameters of the IC problem. Σ and T are fixed. As will be shown in this

section, all subtasks can be formalized by (a combination of) inferences on this KB

consisting of Σ, T ,S0, LS0
and information gathered from the user.

Example 4.1

Continuing Example 3.1, use vocabulary Σ

Σ =

ΣT = {software, employee, int}
ΣP = {Install(software), IsOS(software), P reReq(software, software)}
ΣF = {PriceOf(software) : int, MaxCost(employee) : int,

Cost : int, Requester : employee}

The initial partial structure S0 consists of

employee → {Secretary,Manager}
software → {Windows, Linux, LaTeX,Office, DualBoot}

and interpretations for MaxCost (employee):int, IsOs(software), PriceOf(software):

int and PreReq(software, software) as can be seen in Table 1. All symbols from

Σ that are not specified above are assumed to be fully unknown in S0.

2 In the rest of this paper, a domain atom is treated as a term that evaluates to true or false.

https://doi.org/10.1017/S1471068416000156 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000156


The KB paradigm in interactive configuration 101

The set of parameters LS0
is

{Requester, Install(Windows), Install(Linux),

Install(Office), Install(LaTeX), Install(DualBoot), Cost}

The theory T consists of the following constraints:

∀s1 s2 : Install(s1) ∧ PreReq(s1, s2) ⇒ Install(s2).

// The total cost is the sum of the prices of all installed software.

Cost = sum{(s, P riceOf(s))|Install(s)}.
Cost � MaxCost(Requester).

∃s : Install(s) ∧ IsOS(s).

Install(Windows) ∧ Install(Linux) ⇒ Install(DualBoot).

Subtask 1: Acquiring information from the user

Key in IC is collecting information from the user on the parameters. During the run

of the system, the set of parameters that are still open changes. In our KB system

a derived inference (a combination of the inferences as introduced in Section 2.3) is

used to calculate this set of parameters. Complexity results of derived inferences stem

from basic results formulated by Mitchell and Ternovska (2005) and the observation

that modelchecking is polynomial in the size of the domain.

Definition 4.2 (Calculating uninterpreted terms)
GetOpenTerms(T ,S) is the derived inference with input a theory T , a partial

structure S �p S0 and the set LS0
of terms. Output is a set of terms such that for

every term t in that set, there exist models I1 and I2 of T that extend S (I1, I2 �p S)

for which tI1 �= tI2 . Or formally

{l|l ∈ LS0
∧ {d|(l = d)S′

= u} �= ∅ ∧ S′ = Propagate(T ,S)}

The complexity of deciding whether a given set of terms A is the set of uninterpreted

terms is in ΔP
2 .

An IC system can use this set of terms in a number of ways. It can use a metric

to select a specific term, which it can pose as a direct question to the user. It can

also present a whole list of these terms at once and let the user pick one to supply

a value for. In Section 5.1, we discuss two different approaches we implemented for

this project.

Example 4.3
In Example 4.1, the parameters and domains are already given. Assume that the user

has chosen the value Manager for Requester, true for Install(Windows) and false

for Install(Linux). The system will return GetOpenTerms(T ,S) = {Install(Office),

Install(DualBoot), Cost}.

Subtask 2: Generating consistent values for a parameter

A domain element d is a possible value for term t if there is a model I �p S such

that (t = d)I = t.

https://doi.org/10.1017/S1471068416000156 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000156


102 P. Van Hertum et al.

Definition 4.4 (Calculating consistent values)

GetConsistentValues(T ,S, t) is the derived inference with input a theory T , a partial

structure S and a term t ∈ GetOpenTerms(T ,S). Output is the set

{tI | I is a model of T extending S}

The complexity of deciding that a set P is the set of consistent values for t is in ΔP
2 .

Example 4.5

The consistent values for Requester given T and the initial partial structure S0 from

Example 4.1 is:

GetConsistentValues(T ,S, Requester) = {Secretary,Manager}

Consistent values for other terms are the integers for Cost and {true, false} for the

others.

Subtask 3: Propagation of information

It is informative for the user that he can see the consequences of assigning a

particular value to a parameter.

Definition 4.6 (Calculating consequences)

PosConsequences(T ,S, t, a) and NegConsequences(T ,S, t, a) are derived inferences

with input a theory T , a partial structure S, an uninterpreted term t ∈
GetOpenTerms(T ,S) and a domain element a ∈ GetConsistentValues(T ,S, t). As

output it has a set C+, respectively C− of tuples (q, b) of uninterpreted terms and

domain elements. (q, b) ∈ C+, respectively C− means that the choice a for t entails

that q will be forced, respectively prohibited to be b. Formally,

C+ = {(q, b) | (q = b)S′
= t ∧ (q = b)S = u

∧ S′ = Propagate(T ,S ∪ {t = a})
∧ q ∈ GetOpenTerms(T ,S) \ {t} }

C− = {(q, c) | (q = c)S′
= f ∧ (q = c)S = u

∧ S′ = Propagate(T ,S ∪ {t = a})
∧ q ∈ GetOpenTerms(T ,S) \ {t} }

The complexity of deciding whether a set P is C+ or C− is in ΔP
2 .

Example 4.7

Say the user has chosen Requester = Secretary and wants to know the con-

sequences of making Install(Windows) true. The output in this case contains

(Install(LaTeX), f ) in PosConsequences(T ,S, t, a) and (Install(LaTeX), t) in

NegConsequences(T ,S, t, a) since this combination is too expensive for a secretary.

Note that there is not always such a correspondence between the positive and

negative consequences. For example, when deriving a negative consequence for Cost,

this does not necessarily imply a positive consequence.

https://doi.org/10.1017/S1471068416000156 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000156


The KB paradigm in interactive configuration 103

Subtask 4: Checking the consistency for a value

A value d for a term t is consistent if there exists a model of T in which t = d that

extends the partial structure representing the current state.

Definition 4.8 (Consistency checking)

CheckConsistency(T ,S, t, d) is the derived inference with input a theory T , a partial

structure S, an uninterpreted term t and a domain element d. Output is a boolean

b that represents whether S extended with t = d still satisfies T . Formally we

return t if

(S ∪ {tS = d}) � T

and f otherwise. Complexity of deciding if a value d is consistent for a term t is

in NP.

Example 4.9

If a user has chosen Install(Windows) and Install(LaTeX) to be true, then Manager

will and Secretary will not be a consistent answer for Requester.

Subtask 5: Checking a configuration

Once the user has constructed a 2-valued structure S and makes manual changes to

it, he may need to check if all constraints are still satisfied. A theory T is checked

on a total structure S by calling Modelcheck(T , S), with complexity in P.

Subtask 6: Autocompletion

If a user is ready communicating his preferences (Subtask 1) and there are undecided

terms left which he does not know or care about, the user may want to get a full

configuration (i.e., a total structure). This is computed by modelexpand. In particular:

I = Modelexpand(T ,S)

In many of those situations the user wants to have a total structure with, for

example, a minimal cost (given some term representing the cost t). This is computed

by minimize:

I = Minimize(T ,S, t)

Example 4.10

Assume the user is a secretary and all he knows is that he needs Office. He chooses

Secretary for Requester and true for Install(Office) and calls autocompletion. A

possible output is a structure S where for the remaining parameters, a choice is made

that satisfies all constraints, e.g., Install(Windows)S = t, Install(DualBoot)S = t and

the other Install atoms false. This is not a cheapest solution (lowest cost). By calling

minimize using cost-term Cost, the DualBoot is dropped.

https://doi.org/10.1017/S1471068416000156 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000156


104 P. Van Hertum et al.

Subtask 7: Explanation

It is clear that a whole variety of options can be developed to provide different kinds

of explanations to a user. If a user supplies an inconsistent value for a parameter,

options can range from calculating an inconsistent subset of the theory T (1) to

giving a proof of inconsistency as in Pontelli and Son (2006) (2), to calculating

a partial subconfiguration that has this inconsistency (3). UnsatSubstructure is a

logical inference for option 3.

Definition 4.11 (Calculating inconsistent structures)

UnsatSubstructure(T ,S) is a derived inference with input a theory T and a partial

structure S that cannot be extended to a model of T and as output all (partial)

structures S′ �p S such that S′ cannot be extended to a model I of T . Formally,

we return

{S′|S′ �p S ∧ ¬(∃I �p S′ ∧ I � T )}
Complexity of deciding if a set is an inconsistent substructure is in co − NP.

The inference in Definition 4.12 calculates an inconsistent subtheory.

Definition 4.12 (Calculating inconsistent theories)

UnsatSubtheory(T ,S) is a derived inference with input theory T and a partial

structure S such that there does not exist a model I , extending S, satisfying T .

The inference has as output all theories T ′ such that T ′ ⊆ T and there is no model

satisfying T , extending S. Formally, we return

{T ′|T ′ ⊆ T ∧ ¬(∃I �p S ∧ I � T ′)}

Complexity of deciding if a theory is such an inconsistent theory is in co − NP.

Note that Definition 4.11 and 4.12 do not make any statements of minimality.

Using the associated theory TS and domains structure SD of a partial structure

S, it is possible to consider calculating minimally precise partial configurations as

a special case of calculating a minimal inconsistent subset of the theory. As in

Shchekotykhin et al. (2014), we can introduce a “background theory” B ⊂ T ∪TS (a

subset of the theory in which there are assumed to be no conflicts). We define multiple

derived logical inferences, with different degrees of minimality (not-minimal, subset-

minimal and minimal in size) of increasing complexity, able to provide explanations

to the user.

Definition 4.13 (Calculating inconsistent theories with a background )

UnsatSubtheory(T ,S, B) is a derived inference with input theory T , a partial

structure S and a background theory B ⊆ T ∪ TS such that there does not

exist a model I , with the domains as in SD satisfying T ∪ TS (or equivalently:

extending S and satisfying T ), but there is a model satisfying B. The inference

has as output all theories T ′ such that B ⊆ T ′ ⊆ T ∪ TS and there is no model

satisfying T . Formally, we return:

{T ′|B ⊆ T ′ ⊆ (T ∪ TS ) ∧ ¬(∃I �p SD ∧ I � T ′)}

Complexity of deciding if a theory is such an inconsistent theory is in co − NP.

https://doi.org/10.1017/S1471068416000156 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000156


The KB paradigm in interactive configuration 105

Definition 4.14 (Calculating minimal inconsistent theories with a background )

MinimalUnsatTheory(T ,S, B) is a derived inference with input theory T , a partial

structure S and a background theory B as above. Output is the subset of subset

minimal theories from UnsatSubtheory(T ,S, B). Complexity of deciding if a set is

a subset minimal inconsistent theory is in ΔP
2 .

Definition 4.15 (Calculating minimum inconsistent theories with a background )

MinimumUnsatTheory(T ,S, B) is a derived inference with input theory T , a partial

structure S and a background theory B as above. Output is the subset of cardinality

minimal theories from MinimalUnsatTheory(T ,S, B). Complexity of deciding if a

set is a cardinality minimal inconsistent theory is ΠP
2 .

Note that Definition 4.11 is equivalent to calculating a minimal inconsistent subset

of a theory T ∪TS , with B = T , if you translate the output back to a pair of a theory

and a structure. Definition 4.12 is equivalent to calculating a minimal inconsistent

subset of a theory T ∪ TS, with B = TS, if you translate the output back to a pair

of a theory and a structure.

In the recent literature multiple approaches are discussed, all mapping to one of

our explanation-related inferences. QuickXPlain (Junker 2004) is an algorithm that

implements Definition 4.13. The Hitting Set Directed Acyclic Graph (HSDAG) (Re-

iter 1987) algorithm calculates subset minimal inconsistent theories (Definition 4.14,

as in different ASP solvers (Shlyakhter et al. 2003; Syrjänen 2006). Implementations

of Definition 4.15 have been described in (Lynce and Silva 2004) and (Zhang et al.

2006). In our experiment, we have an implementation of Definition 4.14 (Wittocx

et al. 2009), where we do however do not calculate the entire set of subset minimal

theories. We only calculate one, which gives one explanation of the inconsistency. If

the user resolves that problem, he can ask for a new explanation which will point

to another reason of inconsistency. This process is reiterated until all problems are

resolved.

Example 4.16

We show a minimal inconsistent subtheory in a situation with T as in Example

4.1 and Si, a partial structure representing an intermediate configuration where a

user started with S0 and has chosen Secretary for Requester, and wants to Install

Office and Linux. This is not possible, and as such, the user asks the system for

an explanation in the form of a minimal inconsistent theory. A possible minimal

inconsistent theory with B = ∅, is

(Install(Office) ∧ PreReq(Office,Windows)) ⇒ Install(Windows).

Cost = sum{(s, P riceOf(s))|Install(s)}.
Cost � MaxCost(Requester).

This means that there is no valid configuration because Windows needs to be

installed as prerequisite for Office, and the total cost then exceeds the budget of a

Secretary.

https://doi.org/10.1017/S1471068416000156 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000156


106 P. Van Hertum et al.

Subtask 8: Backtracking

If a value for a parameter is not consistent, the user has to choose a new value for

this parameter, or backtrack to revise a value for another parameter. In Section 3.2

we discussed three options of increasing complexity for implementing backtracking

functionality. Erasing a value for a parameter is easy to provide in our KB system,

and since this is a generalization of a back button (erasing the last value) we have a

formalization of the first two options. Erasing a value d for parameter t in a partial

structure S is simply modifying S such that (t = d)S = u. As with explanation,

a number of more complex options can be developed. We look at one possibility.

Given a partial configuration S, a parameter p and a value d that is inconsistent for

that parameter, calculate a minimal set of previous choices that need to be undone

such that this value is possible for this parameter. The converse of this problem

is very well known under the name of maximum satisfiability problems. In other

words, you want to hold on to as much of the structure as possible while ensuring

satisfiability.

This problem is closely related to the explanation subtask (Marques-Silva and

Planes 2008; Heras et al. 2011). You can imagine the explanation problem as asking

the system to point out a mistake in your reasoning. However, solving this mistake

will not guarantee you have not made any other mistake in the rest of the problem.

What we actually need is a minimal set of things we can remove, so every problem

is solved simultaneously.

So more formally, we can use Definition 4.11 and calculate UnsatStructure(T∧(t =

d),S). This inference calculates a set A of sets of previous choices that together

are inconsistent. Undoing an arbitrary choice in all of these sets results in a partial

subconfiguration S′ of S such that d is a possible value for t in S′. To find the

maximal partial subconfiguration S′ that satisfies that property, the minimal hitting

set (Reiter 1987) of all sets in A has to be calculated.

5 Proof of concept

5.1 Implementation

In this section, we will describe the developed application and implementation. Our

application has a simple client-server architecture. The server plays the role of the

reasoning engine, which is mainly a thin wrapper around the IDP system. The client

consists of a GUI made in QML (QML 2015) as front-end.

The server converts IDP into a stateless server which is accessible through the

web. The client application sends the necessary information, consisting of theories,

partial structures and choices, to this server and the server executes the needed

inferences. This is a design which involves repeatedly sending over the choices a user

has made, but it allows for a very simple architecture to show the feasibility of our

design.

This implementation was done in cooperation with Adaptive Planet, a consulting

company (Adaptive Planet 2015) that developed the user interface, and an interna-

tional banking company that provided us with a substantial configuration problem

https://doi.org/10.1017/S1471068416000156 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000156


The KB paradigm in interactive configuration 107

for testing purposes. More practical information about this implementation, some

screenshots, a downloadable demo and another example of a configuration system

developed with IDP as a reasoning engine (a simpler course configuration demo)

can be found at: http://www.configuration.tk.

5.1.1 The reasoning engine

As explained before, the application we developed was built on the KB system

IDP, which was not developed specifically with configuration problems in mind.

It provides the basic inferences listed at the end of Section 2. The goal of this

experiment was to check if this general infrastructure could be readily applied to

applications such as configuration.

In Section 4, we showed how the tasks which are needed for configuration

relate to the infrastructure provided by IDP. Our main implementation task was to

convert these specifications to code. Some subtasks such as autocompletion did not

require any extra work, as this functionality is directly available as the modelexpand

inference. Some functionality, e.g., calculating consequences, did require some work

but the existing functionality provided almost all needed components.

We mainly use the existing forms of inference that are readily available in the

IDP system. No dedicated or specialized algorithms are used for the configuration

subtasks. This proves the point that the KB-paradigm is very flexible but this also

means that we had relatively little impact upon the efficiency of our server. However,

the system ended up being quite responsive and we could conclude that IDP (and

by extension the KB-paradigm) passed the test for usefulness in this application.

5.1.2 User interface

Apart from a reasoning engine, it is also necessary to have an accessible front end so

the user has easy access to the multitude of functionalities which are available. The

front end consists of an application written in the Qt framework using QML (QML

2015) and connects to a configuration engine over the web. For the purposes of our

demo, we developed two different graphical interfaces

Wizard In the wizard interface, the user is interrogated and he answers on subsequent

questions selected by the system, using the GetOpenTerms inference. An important

side note here is that the user can choose not to answer a specific question, for

instance because he cannot decide as he is missing relevant information or because

he is not interested in the actual value (at this point). These parameters can be filled

in at a later timepoint by the user, or by the system, using propagation, or in case

the user calls autocompletion.

Drill-Down In the drill-down interface, the user sees a list of the still open parameters,

and can pick which one he wants to fill in next. This interface is useful if the user

is a bit more knowledgeable about the specific configuration and wants to give the

values in a specific order.

https://doi.org/10.1017/S1471068416000156 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000156


108 P. Van Hertum et al.

In both interfaces the user is assisted in the same way when he enters data.

When he or the system selects a parameter, he is provided with a dropdown list of

the possible values, using the GetConsistentValues inference. Before committing to

a choice, he is presented with the consequences of his choice, using the calculate

consequences inference. The nature of the system guarantees a correct configuration

and will automatically give the user support using all information it has (from the

KB, or received from the user).

5.2 Evaluation

5.2.1 Evaluation criteria

When evaluating the quality of software (especially when evaluating declarative

methods), scalability (data complexity) is often seen as the most important quality

metric. Naturally when using an IC system, performance is important. However, in

the configuration community it is known that reasoning about typical configuration

problems is relatively easy and does not exhibit real exponential behavior (Tiihonen

et al. 2013). Also, depending on the application, it is reasonable to expect the number

of parameters to be limited, since humans need to fill in the configuration in the

end. When developing a configuration system, challenges lie in the complexity of

the knowledge, its high volatility, and the complex functionalities to be built. To

get a more complete view of the performance of a configuration system, we chose

to evaluate on a larger set of different evaluation criteria. In the recent literature

(Felfernig et al. 2014), nine evaluation criteria are used to differentiate between

different paradigms used for configuration. In Section 6, ten other approaches will

be discussed and compared to our solution using the same nine criteria.

Grapical Modeling Concepts (C1) is supported if there are standard graphical mod-

eling techniques available that visualize configuration knowledge. They improve

understandability, development time, and maintenance of new KBs.

Component Oriented modeling (C2) is a criterion that states that the modeling

language is a natural language that allows KB design on the basis of real-world

concepts: types, relations, hierarchies, etc.

Automated Consistency Maintenance (C3) can be broken down to two categories.

First, a system can have support for a priori automated consistency maintenance.

This helps a developer write consistent constraints and verifying correctness while

writing the KB. Second, runtime automated consistency maintenance supports the

end user, by guaranteeing that every intermediate configuration he can make, can

be extended to a valid configuration.

Modularization concepts are available (C4) if the modeling language is modular and

has support for adding additional structure to the KB, for example by organizing

the constraints in blocks or groups.

Maintainability (C5) relates to the adaptability of the KB if the background in-

formation changes. This background information is volatile, it is for example

depending on ever-changing company policies. As such, it is vital that when

that information changes, the system can be easily adapted. When using custom

https://doi.org/10.1017/S1471068416000156 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000156


The KB paradigm in interactive configuration 109

software, all tasks using domain knowledge (like rules and policies) need their

own program code. The domain knowledge is scattered all over the program. If

this policy changes, a programmer has to find all snippets of program code that

are relevant for guarding this policy and modify them. This results in a system

that is hard to maintain, hard to adapt, and error-prone. Every time the domain

knowledge changes, a whole development cycle has to be run through again. Some

systems have support for intelligent KB navigation tools for complex knowledge

spaces.

Model-based (C6) means that a KB in the system expresses exactly what it means

for a configuration to be valid. This in contrast to rule-based configuration, where

a knowledge base also contains problem solving knowledge (i.e., information on

how the rules should be used/fired).

Efficiency (C7) relates to efficiency and scalability of the reasoning engine.

Ability to solve generative problem settings (C8) means that the language supports

talking about component types instead of specific objects. A system supports

generic constraints if it allows for constraints that apply to every instance of

a component type on which the constraint is defined. For example, the first

constraint of Theory T in Example 4.1 is a generic constraint about all software,

without explicitly naming the individual pieces of software.

Ability to provide explanations (C9) means that the system is able to communicate

reasons for inconsistencies or explain why certain choices are forced/prohibited.

5.2.2 Evaluation

The criteria discussed in previous section are a good way to evaluate the KB

implementation of a configuration system. We evaluate our implementation and the

IDP system with these criteria.

Grapical Modeling Concepts (C1). IDP has no support for graphical modeling of

domain knowledge and we did not develop any tools for this experiment. However,

it must be noted, that a highly expressive and readable modeling language often

makes graphical modeling obsolete.

Component Oriented modeling (C2). The FO(·) language used in this experiment is

an extension of typed FO logic. FO logic is about a small set of connectives:

∧,∨,¬,⇒,⇔, ∃, ∀. These connectives are also the basic connectives of information

used by humans. Classical logic is a good KR language because it has a very clear

informal semantics. It does, however, not suffice for knowledge representation.

FO(·) extends classical logic with a number of extensions that arise from research

in AI and KR, such as aggregates, inductive definitions, types, . . . This makes

FO(·) a suited modeling language for a configuration system.

Automated Consistency Maintenance (C3). A priori consistency maintenance is sup-

ported in the implementation by using the explanation inferences. If the developer

has a collection of constraints that is consistent, it is possible to evaluate if a new

constraint leads to an inconsistency and ask the system what other constraints

it conflicts with, using for example Definition 4.14. At runtime consistency

maintenance is partially supported, by using the inferences in subtask 2, 3,

https://doi.org/10.1017/S1471068416000156 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000156


110 P. Van Hertum et al.

and 4. These inferences are theoretically able to guarantee consistency, but due

to computational limitations, approximate versions can be used. These are not

always able to give the same guarantees.
Modularization concepts are available (C4). The implemented configuration system

is modular, since a KB can consist of multiple theories and structures, that together

make up the specification. The explanation inference allows that a user selects

background constraints, as in Definition 4.14, and in this way he can choose about

which constraints he needs feedback.
Maintainability (C5). The development of a KB system with a centrally maintained

KB makes the knowledge directly available, readable, and adaptable. A well-

known advantage of this approach is in maintainability: if domain information

changes, the developer can easily modify the KB. The current implementation

does; however, have no additional support for KB navigation tools.
Model-based (C6). The FO(·) modeling methodology is based on formulating the

properties of a correct configuration in a natural way, such that the models of

a specification correspond with configurations. This is inherently a model-based

approach.
Efficiency (C7). As explained in Section 5.1, we have only written a thin layer upon

existing software which did not target configuration problems specifically. The

performance of the IDP system has been tested extensively in other contexts

(Jansen et al. 2014; Bruynooghe et al. 2015). The reasoning engine for IDP is

very similar in performance to mainstream ASP solvers (Calimeri et al. 2014).

Their performance was tested more extensively in the context of configuration by

Tiihonen et al. (2013). It is also very difficult to reliably compare the response times

for interactive systems. Standard benchmarking techniques in software engineering

traditionally use instances which need multiple minutes to solve. In this setting,

we aim for subsecond response times, for which no standard benchmarks are

available as far as we are aware.

In this experiment (a configuration task with 300 parameters and 650 constraints),

our users reported a response time of a half second on average with outliers up

to 2 seconds. Note that the provided implementation was a naive prototype

and optimizing the efficiency of the implemented algorithms is still possible in a

number of ways.
Ability to solve generative problem settings (C8). FO(·) is an extension of FO logic,

and as such has native support for quantification which is needed for generative

problem settings.
Ability to provide explanations (C9). Subtask 7 and 8 in Section 4 are inferences

that are used to support giving explanations. The implemented configuration

system has an implementation of Definition 4.14.

6 Related work

6.1 Other approaches

In different branches of AI research, people have been focusing on configura-

tion software in different settings. The following discussion of knowledge-based

https://doi.org/10.1017/S1471068416000156 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000156


The KB paradigm in interactive configuration 111

approaches is based on a book in the recent literature (Felfernig et al. 2014). After

the discussion we will compare the ten approaches with our approach (IDP).

Historically, the first knowledge-based configuration systems were rule-based

(RBS) (McDermott 1982; Barker and O’Connor 1989). These systems operate on

a working memory and if the condition of a rule is fulfilled, it fires and modifies

the working memory, applying the conclusion of that rule. Rule-based systems are

sensitive to rule orderings. This complicates modification of the rule-base. More

importantly, inclusion of problem solving knowledge in the rule-base, makes a rule-

base problem specific and focused towards one specific task. This leads to the same

problems as in imperative languages. To solve different tasks, more rule-bases have

to be built, leading to duplication and fanning out of knowledge, giving issues in

maintainability.

Constraint Satisfaction Problems are widely used for tackling configuration prob-

lems (Mittal and Frayman 1989; Fleischanderl et al. 1998). A (static3) constraint

satisfaction problem (SCSP) is a triple (V ,D, C) of a set of domain variables V =

{v1, v2, . . . , vn}, a set of domains {dom(v1), dom(v2), . . . , dom(vn)} and set of constraints

C . A solution for a SCSP is an assignment S of domain elements di ∈ dom(vi) to

variables vi, such that each variable has a value in S and constraints C are satisfied

by S . A configuration task in SCSP is searching for a solution for a SCSP (V ,D, C),

where C contains the configuration constraints together with the user preferences.

To make efficient CSP configuration systems, different techniques have been used,

such as local search (Li et al. 2005), symmetry breaking (Kiziltan et al. 2001) and

knowledge compilation techniques such as binary decision diagrams (Hadzic and

Andersen 2005). In response to limitations of SCSP in configuration, extensions

have been developed. Dynamic Constraint Satisfaction Problems (DCSP) (Mittal and

Falkenhainer 1990) allow for variables to be inactive or irrelevant. If a variable is

inactive, it does not need a value in a solution (for example, when configuring a

smartphone, no camera resolution is needed if no camera is present). Generative

Constraint Satisfaction Problems (GCSP) (Fleischanderl et al. 1998) extends SCSP

with component types and generative constraints.

Janota (2008) studied a mapping of CSP to SAT to use a SAT solver to provide

functionality for a configuration system.

There exist many graphical approaches for doing knowledge configuration, and

visualizing a configuration model. Kang (1990) used feature models (FM) for

modeling these concepts, while UML was proposed in (Falkner and Haselböck

2013). FM and UML configuration approaches have no reasoning algorithms, they

need to be used with external algorithms. Karatas et al. (2010) for example combined

feature models with constraint logic programming (CLP) to provide reasoning and

automated analysis.

Decidable subsets of FO logic, description logics (DL) are used often in context

of the semantic web. They have also been used for the development of configuration

systems (McGuinness and Wright 1998; Hotz et al. 2006). The trade-off for having

3 In constrast to dynamic and generative constraint satisfaction problem.

https://doi.org/10.1017/S1471068416000156 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000156


112 P. Van Hertum et al.

Table 2. Comparison of systems from Section 6 using criteria from Section 5.2 as in (Felfernig

et al. 2014). We use a �to mark good support, a ≈ for partial support and a − to denote that

no support is available

RBS SCSP DCSP GCSP SAT FM UML DL ASP HB IDP

C1 - - - - - � � ≈ - ≈ -

C2 - - - � - - � � � � �
C3 - ≈ ≈ ≈ ≈ - - ≈ ≈ ≈ ≈
C4 ≈ - - � - - � � � � �
C5 - ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ �
C6 - � � � � � � � � � �
C7 � � � � � - - ≈ ≈ ≈ ≈
C8 ≈ - - � - - - - ≈ � �
C9 ≈ � � � ≈ - - � � � �

decidable subsets of FO logic is that they are limited in expressivity. This make

domain knowledge in these systems less readable, less natural and harder to maintain.

An ontology based method was also proposed by Vanden Bossche et al. (2007)

using OWL.

Tiihonen et al. developed a configuration system WeCoTin (Tiihonen et al. 2013),

based on Answer Set Programming (ASP). WeCoTin uses Smodels, an ASP system, as

inference engine, for propagating consequences of choices. Answer set programming

is a form of declarative programming based on the stable-model semantics (Gelfond

and Lifschitz 1988) for logic programs. The architecture of their reasoning engine is

closely related to the reasoning engine we use. Also, in language, many similarities

can be identified (Denecker et al. 2012), as they both have their roots in extended

logic programming.

Combinations of the above approaches are also proposed in the literature, called

hybrid (HB) configuration systems. Typically, they use a DL-based representation

for the ontology, together with constraints. They combine reasoning engines from

these fields to provide inference (Hotz et al. 2006).

6.2 Comparison of approaches

Felfernig et al. (2014) evaluated all these paradigms with respect to the evaluation

criteria from Section 5.2.1. In Table 2, we show this evaluation, together with scores

for our implementation in the IDP column, based on the discussion of Section 5.2.2.

All these approaches are focused towards one specific inference: ontologies are

focused on deduction, rule systems are focused on backward/forward chaining,

etc. These approaches are less general then the KB paradigm, which is specifically

designed to reuse the knowledge for different reasoning tasks. The contributions

of this paper are different from previously discussed approaches: we analyzed IC

problems from a Knowledge Representation point of view. This paper is a discussion

of possible approaches and the importance of this point of view. We made a study

of desired functionalities for an IC system and how we can define logical reasoning

https://doi.org/10.1017/S1471068416000156 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000156


The KB paradigm in interactive configuration 113

tasks to supply these functionalities. As far as we are aware, the language we used

in this experiment is more expressive than earlier approaches.

The expressivity of the language is crucial for the usability of the approach.

It allows us to address a broader range of applications, moreover it is easier to

formalize and maintain the domain knowledge. Not discussed by Felfernig et al.

(2014) et al. is work by Vlaeminck et al. (2009). They did a preliminary experiment

using the KB approach for IC, also using the FO(·) IDP project. It is on this

work that we continue in this paper by analyzing a real-life application of a larger

scale and discussing new functionalities and inferences. This theoretical approach

benefits from (1) the expressive language to express domain knowledge adequately

and (2) the general basic inferences that realize derived inferences in an easy way,

supporting the discussed functionalities, resulting in a IC system that scores very

well with relation to the evaluation criteria (Table 2).

An interesting remark in Table 2 is that the IDP column resembles the GCSP

column, a generalization of CSP, developed for configuration. The IDP-system has

better support for C5 (maintainability), due to the high level modeling language and

the strict separation between domain knowledge and reasoning. GCSP has better

efficiency results. This can be partly explained by the fact that CSP uses dedicated

algorithms for reasoning over global constraints such as alldifferent. The goal of

reusing knowledge makes that we typically do not make use of this kind of specific

algorithms, since a dedicated algorithm can only be developed with one specific

inference in mind.

7 Challenges and future work

IC problems are part of a broader kind of problems, namely service provisioning

problems. Service provisioning is the problem domain of coupling service providers

with end users, starting from the request until the delivery of the service. Tradition-

ally, such problems start with designing a configuration system that allows users to

communicate their wishes, for which we provided a knowledge-based solution. Once

all the information is gathered from a user, it is still necessary to make a plan for

the production and delivery of the selected configuration. Hence, the configuration

problem is followed by a planning problem that shares domain knowledge with the

configuration problem but that also has its own domain knowledge about providers

of components, production processes, etc. This planning problem then leads to a

monitoring problem. Authorizations could be required, payments need to be checked,

or it could be that the configuration becomes invalid mid-process. In this case the

configuration needs to be redone, but preferably without losing much of the work

that is already done. Companies need software that can manage and monitor the

whole chain, from initial configuration to final delivery and this without duplication

of domain knowledge. This is a problem area where the KB approach holds great

promise but where further research is needed to integrate the KB system with the

environment that the company uses to follow up its processes.

Other future work may include language extensions to better support con-

figuration-like tasks. A prime example of this are templates (Dasseville et al. 2015).

https://doi.org/10.1017/S1471068416000156 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000156


114 P. Van Hertum et al.

Oftentimes the theory of a configuration problem contains lots of constraints which

are similar in structure. It seems natural to introduce a language construct to

abstract away the common parts. Another useful language extension is reification,

to talk about the symbols in a specification rather than about their interpretation.

Reification allows the system to reason on a meta level about the symbol and for

example assign symbols to a category like “Technical” or “Administrative”.

8 Conclusion

The KB paradigm, in which a strict separation between knowledge and problem

solving is proposed, was analyzed in a class of knowledge intensive problems:

Interactive Configuration (IC) problems. As we discussed why solutions for this

class are hard to develop, we proposed a novel approach to the configuration

problem based on an existing KB system. We analyzed the functional requirements

of an IC system and investigated how we can provide these, using logical inferences

on a KB. We identified interesting new inference methods and applied them to the

IC domain. We studied this approach in context of a large application, for which

we built a proof of concept, using the KB system as an engine, which we extended

with the new inferences. As proof of concept, we solved a configuration problem for

a large banking company. Results are convincing and open perspectives for further

research in service provisioning.

References

Adaptive Planet 2015. Adaptive planet. http://www.adaptiveplanet.com/.

Axling, T. and Haridi, S. 1996. A tool for developing interactive configuration applications.

Journal of Logic Programming 26, 2, 147–168.

Barker, V. E. and O’Connor, D. E. 1989. Expert systems for configuration at digital: XCON

and beyond. Communications of the ACM 32, 3, 298–318.

Bogaerts, B., Jansen, J., Bruynooghe, M., De Cat, B., Vennekens, J. and Denecker, M.

2014. Simulating dynamic systems using linear time calculus theories. TPLP 14, 4–5 (7),

477–492.

Bruynooghe, M., Blockeel, H., Bogaerts, B., De Cat, B., De Pooter, S., Jansen, J.,

Labarre, A., Ramon, J., Denecker, M. and Verwer, S. 2015. Predicate logic as a modeling

language: Modeling and solving some machine learning and data mining problems with

IDP3. TPLP 15, 783–817.

Calimeri, F., Ianni, G. and Ricca, F. 2014. The third open answer set programming

competition. TPLP 14, 1, 117–135.

Dasseville, I., van der Hallen, M., Janssens, G. and Denecker, M. 2015. Semantics of

templates in a compositional framework for building logics. TPLP 15, 4–5, 681–695.

De Cat, B., Bogaerts, B., Bruynooghe, M., Janssens, G. and Denecker, M. 2016. Predicate

logic as a modelling language: The IDP system. CoRR abs/1401.6312v2.

Denecker, M., Lierler, Y., Truszczyński, M. and Vennekens, J. 2012. A Tarskian informal

semantics for answer set programming. In ICLP (Technical Communications), A. Dovier

and V. S. Costa, Eds. LIPIcs, vol. 17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,

ACM TOCL: New York, NY, USA, 277–289.

https://doi.org/10.1017/S1471068416000156 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000156


The KB paradigm in interactive configuration 115

Denecker, M. and Ternovska, E. 2008. A logic of nonmonotone inductive definitions. ACM

Transactions on Compututaional Logic 9, 2 (Apr.), 14:1–14:52.

Denecker, M. and Vennekens, J. 2008. Building a knowledge base system for an integration

of logic programming and classical logic. In Proc. of ICLP, M. Garcı́a de la Banda and

E. Pontelli, Eds. LNCS, vol. 5366. Springer: Heidelberg, Germany, 71–76.

Falkner, A. A. and Haselböck, A. 2013. Challenges of knowledge evolution in practice. AI

Communications 26, 1, 3–14.

Felfernig, A., Hotz, L., Bagley, C. and Tiihonen, J. 2014. Knowledge-based Configuration:

From Research to Business Cases , 1st ed. Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA.

Fleischanderl, G., Friedrich, G., Haselböck, A., Schreiner, H. and Stumptner, M.

1998. Configuring large systems using generative constraint satisfaction. IEEE Intelligent

Systems 13, 4, 59–68.

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic programming.

In Proc. of ICLP/SLP, R. A. Kowalski and K. A. Bowen, Eds. MIT Press, Springer:

Heidelberg, Germany, 1070–1080.

Hadzic, T. 2004. A BDD-based approach to interactive configuration. In Proc. of Principles

and Practice of Constraint Programming - CP 2004, 10th International Conference, CP 2004,

Toronto, Canada, September 27–October 1, 2004, M. Wallace, Ed. LNCS, vol. 3258.

Springer: Heidelberg, Germany, 797.

Hadzic, T. and Andersen, H. R. 2005. Interactive reconfiguration in power supply

restoration. In Proc. of Principles and Practice of Constraint Programming - CP 2005,

11th International Conference, CP 2005, Sitges, Spain, October 1–5, 2005, P. van Beek,

Ed. Lecture Notes in Computer Science, vol. 3709. Springer: Heidelberg, Germany, 767–

771.

Heras, F., Morgado, A. and Marques-Silva, J. 2011. Core-guided binary search algorithms

for maximum satisfiability. In Proc. of the 25th AAAI Conference on Artificial Intelligence,

AAAI 2011, San Francisco, California, USA, August 7–11, 2011.

Hotz, L., Krebs, T., Deelstra, S., Sinnema, M. and Nijhuis, J. 2006. Configuration in

Industrial Product Families - the ConIPF Methodology. IOS Press, Inc: Amsterdam, The

Netherlands.

Immerman, N. and Vardi, M. Y. 1997. Model checking and transitive-closure logic. In Proc.

of Computer Aided Verification, 9th International Conference, CAV ’97, Haifa, Israel, June

22–25, 1997, O. Grumberg, Ed. Lecture Notes in Computer Science, vol. 1254. Springer:

Heidelberg, Germany, 291–302.

Janota, M. 2008. Do SAT solvers make good configurators? In Proc. of Software Product

Lines, 12th International Conference, SPLC 2008, Limerick, Ireland, September 8–12, 2008,

Second Volume (Workshops), S. Thiel and K. Pohl, Eds. Lero Int. Science Centre, University

of Limerick, Ireland, 191–195.

Jansen, J., Dasseville, I., Devriendt, J. and Janssens, G. 2014. Experimental evaluation of

a state-of-the-art grounder. In Proc. of the 16th International Symposium on Principles and

Practice of Declarative Programming, Kent, Canterbury, United Kingdom, September 8–10,

2014, O. Chitil, A. King, and O. Danvy, Eds. ACM, 249–258.

Junker, U. 2004. QUICKXPLAIN: Preferred explanations and relaxations for over-

constrained problems. In Proc. of the 19th National Conference on Artificial Intelligence,

16th Conference on Innovative Applications of Artificial Intelligence, July 25–29, 2004, San

Jose, California, USA, D. L. McGuinness and G. Ferguson, Eds. AAAI Press/The MIT

Press: Cambridge, Massachusetts, USA, 167–172.

Junker, U. and Mailharro, D. 2003. Preference programming: Advanced problem solving

for configuration. AI EDAM 17, 1, 13–29.

https://doi.org/10.1017/S1471068416000156 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000156


116 P. Van Hertum et al.

Kang, K. 1990. Feature-oriented Domain Analysis (FODA): Feasibility Study; Technical

Report CMU/SEI-90-TR-21 - ESD-90-TR-222. Software Engineering Inst., Carnegie Mellon

University: Pittsburgh, Pennsylvania, USA.

Karatas, A. S., Oguztüzün, H. and Dogru, A. H. 2010. Mapping extended feature models to

constraint logic programming over finite domains. In Proc. of Software Product Lines: Going

Beyond - 14th International Conference, SPLC 2010, Jeju Island, South Korea, September

13–17, 2010, J. Bosch and J. Lee, Eds. Lecture Notes in Computer Science, vol. 6287.

Springer: Heidelberg, Germany, 286–299.

Kiziltan, Z., Flener, P. and Hnich, B. 2001. Towards inferring labelling heuristics

for CSP application domains. In KI 2001: Advances in Artificial Intelligence, Joint

German/Austrian Conference on AI, Vienna, Austria, September 19–21, 2001, Proceedings,

F. Baader, G. Brewka, and T. Eiter, Eds. LNCS, vol. 2174. Springer: Cambridge,

Massachusetts, USA, 275–289.

Kleene, S. C. 1952. Introduction to Metamathematics. Van Nostrand: New York, New York,

USA.

Li, B., Chen, L., Huang, Z. and Zhong, Y. 2005. Product configuration optimization using

a multiobjective genetic algorithm. The International Journal of Advanced Manufacturing

Technology 30, 1, 20–29.

Lynce, I. and Silva, J. P. M. 2004. On computing minimum unsatisfiable cores. In Proc. of

SAT 2004 - The 7th International Conference on Theory and Applications of Satisfiability

Testing, 10–13 May 2004, Vancouver, BC, Canada, Online Proceedings.

Marques-Silva, J. and Planes, J. 2008. Algorithms for maximum satisfiability using

unsatisfiable cores. In Proc. of Design, Automation and Test in Europe, DATE 2008, Munich,

Germany, March 10–14, 2008, 408–413.

McDermott, J. P. 1982. R1: A rule-based configurer of computer systems. Artificial

Intelligence 19, 1, 39–88.

McGuinness, D. L. and Wright, J. R. 1998. An industrial-strength description-logics-based

configurator platform. IEEE Intelligent Systems 13, 4, 69–77.

Mitchell, D. G. and Ternovska, E. 2005. A framework for representing and solving NP

search problems. In Proc. of AAAI, M. M. Veloso and S. Kambhampati, Eds. AAAI

Press/The MIT Press: Cambridge, Massachusetts, USA, 430–435.

Mittal, S. and Falkenhainer, B. 1990. Dynamic constraint satisfaction problems. In Proc.

of the 8th National Conference on Artificial Intelligence. Boston, Massachusetts, July 29–

August 3, 1990, vol. 2, T. Dieterich and W. Swartout, Eds. AAAI/MIT Press, Morgan

Kaufmann: Burlington, Massachusetts, USA, 25–32.

Mittal, S. and Frayman, F. 1989. Towards a generic model of configuraton tasks. In Proc. of

the 11th International Joint Conference on Artificial Intelligence. Detroit, MI, USA, August

1989, N. S. Sridharan, Ed. Morgan Kaufmann, 1395–1401.

Pelov, N., Denecker, M. and Bruynooghe, M. 2007. Well-founded and stable semantics of

logic programs with aggregates. TPLP 7, 3, 301–353.

Piller, F. T., Harzer, T., Ihl, C. and Salvador, F. 2014. Strategic capabilities of mass

customization based e-commerce: Construct development and empirical test. In Proc. of

47th Hawaii International Conference on System Sciences, HICSS 2014, Waikoloa, HI, USA,

January 6–9, 2014. IEEE, 3255–3264.

Pontelli, E. and Son, T. C. 2006. Justifications for logic programs under answer set

semantics. In Proc. of ICLP, S. Etalle and M. Truszczyński, Eds. LNCS, vol. 4079. Springer:

Heidelberg, Germany, 196–210.

QML 2015. Qml. http://qmlbook.org/.

Reiter, R. 1987. A theory of diagnosis from first principles. Artificial Intelligence 32, 1,

57–95.

https://doi.org/10.1017/S1471068416000156 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000156


The KB paradigm in interactive configuration 117

Schneeweiss, D. and Hofstedt, P. 2011. Fdconfig: A constraint-based interactive product

configurator. In Proc. of Applications of Declarative Programming and Knowledge

Management - 19th International Conference, INAP 2011, and 25th Workshop on Logic

Programming, WLP 2011, Vienna, Austria, September 28–30, 2011, Revised Selected Papers,

H. Tompits, S. Abreu, J. Oetsch, J. Pührer, D. Seipel, M. Umeda, and A. Wolf, Eds. Lecture

Notes in Computer Science, vol. 7773. Springer: Heidelberg, Germany, 239–255.

Shchekotykhin, K. M., Friedrich, G., Rodler, P. and Fleiss, P. 2014. Interactive ontology

debugging using direct diagnosis. In Proc. of the 3rd International Workshop on Debugging

Ontologies and Ontology Mappings, WoDOOM 2014, co-located with 11th Extended Semantic

Web Conference (ESWC 2014), Anissaras/Hersonissou, Greece, May 26, 2014, P. Lambrix,

G. Qi, M. Horridge and B. Parsia, Eds. CEUR Workshop Proceedings, vol. 1162. CEUR-

WS.org, 39–50.

Shlyakhter, I., Seater, R., Jackson, D., Sridharan, M. and Taghdiri, M. 2003. Debugging

overconstrained declarative models using unsatisfiable cores. In Proc. of ASE, IEEE

Computer Society: Washington, D.C., United States, 94–105.

Syrjänen, T. 2006. Debugging inconsistent answer set programs. In Proceedings of the

11th International Workshop on Non-Monotonic Reasoning, NMR 2006, Lake District, UK,

30 May–1 June, J. Dix and A. Hunter, Eds. 77–84.

Tiihonen, J., Heiskala, M., Anderson, A. and Soininen, T. 2013. Wecotin - A practical

logic-based sales configurator. AI Communications 26, 1, 99–131.

Vanden Bossche, M., Ross, P., MacLarty, I., Van Nuffelen, B. and Pelov, N. 2007. Ontology

driven software engineering for real life applications. In Proc. of 3rd International Workshop

on Semantic Web Enabled Software Engineering (SWESE), June 6–7 2007, Innsbruck,

Austria. Springer: Heidelberg, Germany.

Vlaeminck, H., Vennekens, J. and Denecker, M. 2009. A logical framework for configuration

software. In Proc. of the 11th International ACM SIGPLAN Conference on Principles and

Practice of Declarative Programming, September 7–9, 2009, Coimbra, Portugal, A. Porto

and F. J. López-Fraguas, Eds. ACM, 141–148.

Wittocx, J., Mariën, M. and Denecker, M. 2008. The idp system: A model expansion

system for an extension of classical logic. In Proc. of LaSh, M. Denecker, Ed. ACCO:

Leuven, Belgium, 153–165.

Wittocx, J., Vlaeminck, H. and Denecker, M. 2009. Debugging for model expansion. In

Proc. of ICLP, P. M. Hill and D. S. Warren, Eds. LNCS, vol. 5649. Springer: Heidelberg,

Germany, 296–311.

Zhang, J., Li, S. and Shen, S. 2006. Extracting minimum unsatisfiable cores with a greedy

genetic algorithm. In Proc. of AI 2006: Advances in Artificial Intelligence, 19th Australian

Joint Conference on Artificial Intelligence, Hobart, Australia, December 4–8, 2006, Springer:

Heidelberg, Germany, 847–856.

https://doi.org/10.1017/S1471068416000156 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000156

