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On calculating forces from the flow field with
application to experimental volume data
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The use of flow field information to compute the fluid dynamic force on a body
is investigated with specific application to experimental volumetric measurements.
The calculation method used avoids the explicit evaluation of the pressure on the
boundaries. It is shown that errors in the data introduce an artificial dependence of
the calculations on the position origin, and also that these errors are amplified by the
position vector. A statistical description of the calculation variation associated with
origin dependence is presented. A method is developed that objectively determines
an origin which reduces the effect of the amplified error. The method utilises
mathematical identities which relate the measurements to the main sources of error
in a physically meaningful way, and is also found to be effective for changes of the
external and internal boundaries of the fluid.
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1. Introduction
The calculation of fluid dynamic forces on moving bodies from flow field

information is important for a great number of applications. There are numerous
methods available, and the success of any particular one is related to the type of
problem being analysed. For analytical problems, the integral form of the momentum
equation usually succeeds only for steady flows (Batchelor 1967), since then a
detailed knowledge of the entire velocity field is not required. For unsteady problems
with externally unbounded fluid, this approach is partly redeemed using asymptotic
limits. However, defining total fluid momentum in an infinite region is not without
difficulty (see e.g. Lighthill 1986) and commonly the concept of the distributed
hydrodynamic impulse is introduced, which has an integrated value consistent with
the total momentum. Although computation of the hydrodynamic impulse requires
knowledge of the vorticity field (in place of the velocity), this approach has utility
for analytical work as many flows are more easily described and understood through
the vorticity.

Use of the hydrodynamic impulse to determine forces is common in numerical
approaches. However, many simulations also typically resolve large velocity gradients
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near bodies, and so the total stress on the body may be accurately obtained and
integrated to yield the resultant force. Conversely, in most experiments, resolving
boundary layers near surfaces is not feasible. Forces may be directly measurable,
but this can be difficult for low Reynolds number (Re) flows. Using velocity fields
measured with digital particle image velocimetry (DPIV), several researchers have
successfully calculated forces on bodies via standard control volume (CV) methods
(e.g. Unal, Lin & Rockwell 1997; Kurtulus, Scarano & David 2007; van Oudheusden
et al. 2007; David, Jardin & Farcy 2009; Jardin, David & Farcy 2009; Spedding &
Hedenstrom 2009; Sällström & Ukeiley 2014; Villegas & Diez 2014). In this approach
the pressure on the control surface is typically obtained by spatial integration of the
pressure gradient in the equations of motion; this and other image-based pressure
methods are discussed in van Oudheusden (2013). Others have used equations
involving the hydrodynamic impulse to calculate forces (e.g. Lin & Rockwell 1996;
Noca, Shiels & Jeon 1999; DeVoria & Ringuette 2013).

David et al. (2009) performed simulations and planar DPIV experiments for a
translating NACA0012 airfoil section at 45◦ angle of attack and Re = 1000. Using
the simulations to compute forces from a CV approach, they investigated several
practical effects, such as spatial and temporal resolutions and the addition of random
noise to the numerical data. They found that velocity noise most significantly affects
the pressure term when flow structures cross the bounding outer surfaces. Using
the same CV method, the experimentally determined forces exhibit appreciable
discrepancies with the computations, which were attributed to experimental errors
degrading the pressure calculation. However, these forces were observed to have a
spatiotemporal correlation with the vortex dynamics in the wake flow, implying a
qualitative validation.

The majority of experimental work aiming to determine fluid dynamic forces from
the flow field has been applied to two-dimensional flows. However, Poelma, Dickson
& Dickinson (2006) measured the three-dimensional velocity field around a scaled
fruit fly wing model using stereoscopic DPIV (S-DPIV) volume reconstructions. They
calculated the force on the wing from the equation developed by Wu (1981) and
achieved reasonable results despite the fact that external control surface terms are
not accounted for in the equation, as it is technically valid only for an infinite fluid.
Poelma et al. (2006) comment on this and also on the fact that portions of the wing
and the vorticity field are not contained in their measurement volume. Rangi, van
Oudheusden & Scarano (2011) used a similar method to measure the transonic flow
within a thin volumetric slab near the blade tip of an aircraft propeller. They computed
the pressure field around and on the blade section, as well as the spanwise force
distribution along the span of the blade section. Both quantities compared favourably
with those determined from simulation data. Tronchin, David & Farcy (2013) used
the high-speed laser-scanning tomographic DPIV method developed by David et al.
(2012) to measure the flow around a flapping NACA0012 airfoil at Re= 1000. They
computed forces from a CV approach and from integrating the stress on the surface
of the foil. Both methods yielded similar results and compared reasonably well with
numerical data.

The lack of volumetric S-DPIV data for three-dimensional flows stems from
the time-consuming and intensive techniques required to obtain them (see Poelma
et al. 2006; Lu & Shen 2008; Ozen & Rockwell 2012; Carr, Chen & Ringuette
2013). However, with the increasing use of volumetric velocimetry techniques, there
is a need to investigate the practical aspects of using these experimental data to
predict fluid dynamic forces. This is the aim of the current paper and is assessed
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by investigating aspects such as artificial origin and boundary dependence. The
three-dimensional velocity data of Carr et al. (2013) for the flow around rotating
plates are employed as test cases. First, a brief discussion is given in § 2 on the
different theoretical concepts and equations used, the main purpose being to provide
clarity to the equivalence among them. Section 3 presents some of the practical issues
that arise when experimental data are used to calculate forces. An overview of the
details of the experimental set-up of Carr et al. (2013) is given in § 4. Section 5.1
describes how errors in the data are amplified by the position vector and lead to an
artificial dependence of the calculation on the location of the coordinate origin. A
method to reduce these errors is also introduced. A similar artificial dependence on
the boundaries of the CV is addressed in § 5.2. Lastly, force calculations from the
flow data are presented in § 5.3 and are compared with direct measurements.

2. Theoretical considerations

In analysing the fluid dynamic force on a moving body, F(t), several approaches
may be used to represent certain contributions and these are distinguished primarily
by how the internal boundary of the fluid is treated. Noca et al. (1999) defined
a volume containing only fluid, which is externally bounded, as well as internally
bounded by a surface coincident with the body. They derived various equations that
eliminate the pressure and are general in that the volume is finite and non-material,
the latter allowing for relative motion of the external boundary as well as porosity
through the body. A useful vector/integral identity employed by both Saffman (1992)
and Noca et al. (1999) that expands the volume integral of a vector field, a, is given
by ∫

V
x× (∇× a)dV = (N − 1)

∫
V

adV +
∮

S
x× (n̂× a)dS, (2.1)

where N =∇ · x is the dimension of space and V is a volume bounded by a surface
S with outward normal n̂.

We start with the integral momentum equation for an incompressible fluid enclosing
a solid body, and expand the volume integral of momentum using (2.1). The fluid
volume is Vf and is bounded internally by Sb and externally by Se, so that S= Sb ∪ Se

(see figure 1), and so

F(t) = 1
N − 1

ρ
d
dt

[
−
∫

Vf

x×ωdV +
∮

Sb

x× (n̂× u)dS+
∮

Se

x× (n̂× u)dS

]

+
∮

Se

n̂ ·
[−pI − (u− ue)⊗ u+ T

]
dS, (2.2)

where ρ is the fluid density, ue the velocity of the external boundary, p the pressure,
I the identity tensor and T the deviatoric stress tensor. It can be shown that the total
integral over Se vanishes upon letting Se approach infinity, giving the classical result
for an externally unbounded fluid. Specifically, the viscous and convective flux terms
tend to zero, whereas the contribution from the pressure term is non-vanishing, but
cancels with that of the third term (including the time derivative) in (2.2).

Alternatively, the body may be replaced with fluid (i.e. fluidic body), which allows
integration through the body (e.g. Saffman 1992). The integral over Sb may then be
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Sb

Se

Body

Vf

Global coordinates

Relative coordinates
xo

n

FIGURE 1. Definition of the CV. The fluid volume is Vf and is bounded by the
external, Se, and internal, Sb, boundaries. Here Sb coincides with the body surface. The
outward normal of the control surface is n̂ and that of the body is n̂b. Also shown is a
global coordinate system and the vector xo that defines the arbitrary origin of a relative
coordinate system.

transformed by use of (2.1). If n̂b is the outward normal of the surface of the body
that coincides with Sb, then n̂b =−n̂ and we obtain from (2.2)

F(t) = 1
N − 1

ρ
d
dt

[
−
∫

V
x×ωdV +

∮
Se

x× (n̂× u)dS
]
+ ρ d

dt

∫
Vb

udV

+
∮

Se

n̂ · [−pI − (u− ue)⊗ u+ T ]dS, (2.3)

where Vb is the volume of the body and V = Vf ∪ Vb, the integral over which
includes the vorticity in the body. Equation (2.3) is valid for a bounded fluid, and
is a generalisation of the results given by Wu (1981) since, as with (2.2), the total
integral over Se vanishes when the fluid becomes infinite. Wu (1981) maintains solid
bodies, but essentially employs the fluidic body concept in his final result. The term
with integration over Vb is the inertia force of the fluidic body and for this reason it
is sometimes confused with the added mass force; equation (2.3) is the total force
and need not make explicit distinctions among contributions, as was stated by Poelma
et al. (2006) in reference to the asymptotic equation.

However, to this end we can obtain the potential force contribution by transforming
the integral over Sb in (2.2) in a different manner. Following Saffman (1992, p. 77)
and using (2.1) it can be shown that

ρ

∮
Sb

x× (n̂× u)dS=−(N − 1)ρ
∮

Sb

φn̂dS, (2.4)

where (−ρφ) is often called the ‘pressure–impulse’ associated with the potential, φ.
Then (2.4) may be rewritten in terms of inertia coefficients, or added/virtual masses;
Howe (2007) gives formulae for contributions due to both translation and rotation of
the body. Although the potential is an irrotational flow concept, it is applicable in a
viscous fluid when considered to be established by an incremental change of the body
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velocity (see Appendix of Leonard & Roshko 2001). This is consistent with Lighthill’s
concept of dividing up the flow into a potential flow (vortex sheet coincident with the
body) and a vortex flow (the remaining ‘additional vorticity’), each of which result in
a distinct force contribution (Lighthill 1986; Williamson & Govardhan 2004). Lighthill
(1986) considered an externally unbounded fluid, but inspection of (2.2) shows that
these contributions are given by the first two terms, upon using (2.4). The remaining
terms again represent the finite control surface contributions, which vanish for an
infinite fluid region.

3. Practical considerations
Here, we form an equation that caters to features typical of experimental velocity

data obtained by S-DPIV. We choose to avoid directly evaluating the pressure on Se,
because of the errors inherent to DPIV measurements, which are known to exacerbate
propagation errors in the pressure calculation (Kurtulus et al. 2007; David et al. 2009;
van Oudheusden 2013) and, furthermore, no initial condition is required. Following the
manipulations of Noca et al. (1999) to remove the pressure from (2.2), one can show
that

F(t)=−ρ d
dt

∫
Vf

udV − 1
N − 1

ρ
d
dt

∮
Se

x× (n̂× u)dS+
∮

Se

n̂ · BdS, (3.1)

where

B(x, t)= T − ρu⊗ u+ n̂⊗ x× n̂× (∇ · T − ρu · ∇u)+ ρue ⊗ x×ω

N − 1
. (3.2)

Although the elimination of the pressure essentially substitutes in spatial derivatives,
which are affected by the spatial resolution of the data, the relation is exact. Note that
Noca et al. (1999) perform several further vector manipulations to the terms cross-
multiplying x in (3.2).

Obtaining S-DPIV volume reconstructions presents a balance between temporal
resolution and realistic overall measurement acquisition time. Namely, spatial
resolution and samples for phase-averaging may be favoured over temporal resolution,
leading to larger temporal discretisation error. For example, the test cases studied here
required approximately 4–6 days of completely automated data acquisition to achieve
the desired spanwise spatial and angular resolutions, with an additional 1–2 days of
DPIV processing. An alternative that somewhat alleviates this experimental effort is
the high-speed laser scanning tomographic DPIV method developed by David et al.
(2012). The data acquisition involves an oscillating mirror which scans the laser
plane along the entire measurement volume in a short time. If the flow time scales
are much larger than the scanning time, then the volumetric measurement acquisition
may be considered instantaneous. However, to obtain the time-dependent flow the
same phase-locking method used in S-DPIV reconstructions must be employed, and
likewise for phase-averaging.

Unal et al. (1997) discuss the effect of temporal resolution of DPIV data on
force calculation using a CV method. They state that the time derivative of the
integral of momentum is most affected. Alternatively, Lin & Rockwell (1996) used
the hydrodynamic impulse concept and fit a polynomial to the resulting force impulse
data prior to taking time derivatives. This bypasses a numerical derivative of the
momentum integral, but the temporal resolution is still implicitly involved through
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the material acceleration required for the pressure calculation on the control surface.
Integration of (3.1) seemingly avoids this issue and yields the associated force impulse,
P(t), as

P(t)=−ρ
∫

Vf

udV − 1
N − 1

ρ

∮
Se

x× (n̂× u)dS+
∫ t (∮

Se

n̂ · BdS
)

dt′ (3.3)

≡ P lm + Pnv + Pv. (3.4)

Hence, equation (3.3) contains no time derivatives and the numerical time integration
required to compute the third term is less affected by errors related to the temporal
resolution. Similar to CV approaches, spatial derivatives appear only on the external
boundary (which need not coincide with the measurement volume boundaries).
The terms P lm, Pnv and Pv represent force impulse contributions from total linear
momentum, (asymptotically) non-vanishing and vanishing surface momentum fluxes,
respectively.

4. Experimental details
The experimental set-up of Carr et al. (2013) is briefly reviewed here; the reader

is referred to the paper for further details. The velocity data are for flow around
rectangular, rigid flat plates of chord c and span b, rotating at 45◦ angle of attack
(figure 2b). The plates have aspect ratios (A= b/c) 2 and 4, with c= 6 and 4.5 cm,
and thickness-to-chord ratios of 5.3 and 3.5 %, respectively. Here, Re=Uoc/ν = 5000,
where Uo = bΩo is the maximum velocity of the plate tip with Ωo as the maximum
angular velocity and ν the kinematic viscosity of the fluid. The angular velocity
programs are trapezoidal, with acceleration/deceleration over the intial/final 10◦ of the
motion; the total rotation is 120◦ with period T .

The experiments were performed in a 91×77×71 cm3 glass-walled tank filled with
a 50 % by mass glycerin–water mixture (ν ≈ 5.11× 10−6 m2 s−1). The data sets were
obtained from chordwise planes of phase-locked, phase-averaged (five realisations)
S-DPIV measurements, and were acquired in an inertial frame which instantaneously
coincides with a Cartesian frame with x- and y-axes parallel and normal, respectively,
to the plate chord and z-axis along the plate span (figure 2a). For both cases,
the volumetric data have spatial resolutions of 1x = 1y = 1.8 mm (in-plane) and
1z = 3.6 mm (out-of-plane), which yield approximate measurement volumes of
17c3 and 61c3 consisting of 36 and 54 planes of S-DPIV data for the A = 2 and
4 cases, respectively. Owing to laser reflections from the plate clamp, the flow over
a spanwise distance of 0.66 cm starting from the plate root was not measured. The
stereoscopic view of the plate does not allow the flow in a thin region extending
from the plate leading and trailing edges to be imaged. The data were acquired with
a constant angular resolution of 1φ= 6◦, giving temporal resolutions of 1t≈ 0.030 s
and 0.033 s for the A = 2 and 4 cases, respectively; non-dimensionally these are
1tUo/c ≈ 0.213 and 0.416. Carr et al. (2013) performed a thorough error analysis
on the experimental configuration and reported an estimate of the normalised velocity
uncertainty as ∼ 0.01 in-plane and twice this out-of-plane.

Forces are measured using a submersible ATI Nano 17-IP68, six-axis transducer
that allows full-scale loads of 25 N and static uncertainties of ∼ 0.07 % full scale
and ∼ 0.63 % of the measurement for the force axes. The plate inertia is analytically
calculable and is subtracted from the transducer measurements. The component of the
inertial force normal to the plate is only non-zero during the acceleration phases of the
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FIGURE 2. (Colour online) (a) The plate dimensions and approximate location in the
measurement volume (not to scale). Also defined are the external boundaries (see § 5.2).
(b) An example of a Q-criterion iso-surface at contour level one for the A= 4 case at
φ = 18◦. Also shown are planes of three-component velocity vectors at 20, 50 and 80 %
span, which are coloured by spanwise velocity. For clarity, the in-plane spacing of the
vectors is (21x, 21y) or twice the DPIV spacing, and the spatial extent of these planes
has been reduced from that of the measurement volume. (c) Normal force traces, Fn, for
raw, averaged and filtered average signals. For clarity, the data are cropped shortly after
the plate deceleration phase begins.

motion and is O(10−3) N which represents less than 5 % of the measured force. To
help reduce mechanical vibrations, the accelerating portions of the velocity programs
were replaced with hyperbolic tangents. The measurement is repeated 40 times and
the averaged result is smoothed by a third-order Butterworth filter (figure 2c); cutoff
frequencies of 35 and 18 Hz for the A = 2 and 4 cases were determined from the
power spectral density of the raw force signals. It is noteworthy that during the motion
the mean difference between the force impulse computed from the averaged and the
filtered average force signals is less than 0.1 %.

5. Results and discussion

A force impulse coefficient is defined as P∗= P/{(1/2ρU2
ocb)T}, and is consistent

with integrating a classical force coefficient over non-dimensional time t/T . Only the
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component normal to the plate, P∗n, is examined as it is the largest. The ratio of the
normal force signal power to the other components is almost 20 dB, and comprises
nearly 98 % of the total power in the transducer data.

5.1. Origin dependence
The S-DPIV measurement frame is instantaneously at rest and so ue ≡ 0 in the
equations of the previous sections. However, the results below are not dependent
on this condition and can be easily modified to include non-zero ue. The explicit
appearance of x in (3.3) requires an origin, say xo (see figure 1), to be specified.
Theoretically, the position origin is arbitrary, but the presence of errors in the data
introduces an artificial dependence on xo.

5.1.1. Statistical considerations
Let P1 be the collection of terms in (3.3) which contain x and P2 be that which

do not. We allow the force impulse to have parametric dependence on xo and write
P(t; xo)= P1(t; xo)+ P2(t). Consider a set of origins of which xo is a member, then
from (3.3) the mean of P over this set is

P(t; xo)= P1(t; xo)+ P2(t)= P(t; xo) (5.1)

where xo is the mean of the set {xo}. Hence, the mean of any number of force
impulses calculated from any number of different origins is equivalent to that
calculated with the origin located at the mean of all origins. Note that {xo} is
an uncountably infinite set and so is a continuous parameter. More importantly, its
probability distribution is at our behest. However, the uniform distribution is the only
one that is statistically justifiable, as any other would require a priori knowledge
of the likelihood of certain origins to yield more accurate results. In general, such
details are not objectively known.

To verify (5.1), we approximate the continuous origin distribution as a discrete one,
{xo,k} with k = 1 . . . K, and use K = 1500 origins uniformly distributed over the
entire measurement volume. For A = 2 and 4, K represents 0.5 and 0.3 % of the
gridded volumes. Then, P(t; xo,k) is directly calculated from the S-DPIV data using
this discrete distribution. Also computed is P(t; xo) with xo corresponding to the
population mean of the continuous distribution, xo = (1/2){max[xo] + min[xo]}, and
to the sample mean of the discrete distribution, xo,k= (1/K)

∑K
k=1 xo,k. The results for

P∗n are plotted in figure 3, which shows that the data are nearly indistinguishable; also
shown are the transducer data. The root-mean-square (RMS) deviations of P∗n(t; xo,k)

from P∗n(t; xo) and P∗n(t; xo,k) are O(10−4) and O(10−16) (∼machine zero), respectively.
The extremely small error for the latter is due to the linear appearance of x in the
equations as well as the linearity of the mean operator. The former is larger because
xo = xo,k + δxo,k, where the discretisation error, δxo,k, is a difference of ∼ 0.05c.

For A= 2, P∗n is underpredicted throughout the motion, whereas for A= 4, it is
fairly well-predicted early on, but then continually deviates. At φ = 66◦ there is a
failure of the calculation indicated by a significant change of the slope in the data,
and P∗n actually decreases after φ = 78◦. This calculation failure is discussed further
in § 5.1.2. The RMS deviations of P∗n from the transducer data are 29 and 38 % for
A = 2 and 4, respectively. Although there are certainly experimental errors in the
S-DPIV measurements and numerical inaccuracies introduced into those data, these
are unlikely, in and of themselves, to cause such large discrepancies. A more probable
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FIGURE 3. (Colour online) Normal component of force impulse, P∗n, from the transducer
and S-DPIV data plotted against rotational angle, φ, for (a) A= 2 and (b) A= 4. The
direct calculation is from the average of a set of uniformly distributed origins, and the
single calculations are from one origin located at the mean of the set.

and insightful explanation is the amplification of these errors by the position vector,
as is investigated next. Noca (1997) refers to this issue as the ‘moment-arm dilemma’
in connection to cross-multiplications involving x.

Despite the consistency observed in figure 3, there is still no indication of the
quality of the calculation other than the transducer data. Furthermore, without these
data, failure of the calculation may not be so obvious, and therefore more information
is needed about the reliability of the calculation. It is desirable to obtain further
statistics and with minimal calculation so as to avoid computing a large discrete set
of P(t; xo,k). From (5.1) the force impulse deviation from the mean is

P(t; xo)− P(t; xo)= P1(t; xo)− P1(t; xo)= A · (xo − xo) (5.2)

where A(t) is a tensor that depends only on time. By substituting (3.2) into (3.3) and
the result into (5.2), then using the triple vector product to isolate the position vector
terms, it is found that

A(t) = 1
N − 1

{∫ t (∮
Se

[n̂⊗ (ρu · ∇u−∇ · T )− (ρu · ∇u−∇ · T )⊗ n̂]dS
)

dt′

+ ρ
∮

Se

[n̂⊗ u− u⊗ n̂]dS
}
. (5.3)

Since P is theoretically invariant with xo, this requires A= Dxo P(t; xo)≡ 0; here the
allowed non-zero A represents errors in the data, specifically those on the boundary Se.
The manner in which these errors are amplified by the position vector is clear from
the right-hand side of (5.2) and the covariance matrix of P(t; xo) can be written as

Σ(P)= AΣ(xo)A
T, (5.4)

where Σ(xo) is the covariance matrix of xo and matrix notation has been adopted
for operations. Since one is most often interested in the components of P, it seems
more appropriate to investigate the scalar variances of these individual components.
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FIGURE 4. (Colour online) Standard deviation, σ(P∗n), versus φ for (a) A = 2 and
(b) A= 4. The calculation methods are the same as those in figure 3.

By definition, these variances, Var(Pi), are given by the diagonal elements of Σ(P).
Now, since xo uniquely describes any point, its components must be independent
(i.e. uncorrelated), and so the covariance of different components is zero. Thus,
Σ(xo) is a diagonal matrix with entries corresponding to the scalar variances of each
component of xo, Var(xoi). It then follows that

Var(Pi)= A2
ijVar(xoj) (5.5)

where summation notation is implied. Further inspection of (5.3) reveals that A is a
skew-symmetric tensor and so its three independent elements are the components of
a vector, say a, subject to Aij = εijkak, and whence (5.5) becomes

Var(Pi)= (εijkak)
2Var(xoj)=

∑
j6=i

A2
ijVar(xoj) (5.6)

∴ σ(Pi)=
√∑

j 6=i

A2
ijVar(xoj), (5.7)

where σ(Pi) is the standard deviation of the ith component of P. Similar to (5.1) for
the mean of P, equation (5.7) only requires one calculation involving the experimental
data (i.e. A(t)) to determine the standard deviation of Pi(t; xo) corresponding to a
continuous distribution of origins, {xo}.

To validate (5.7), we again use the finite number (K = 1500) of P(t; xo,k) obtained
from the discrete origin distribution to directly calculate σ(Pi). Also, the right-hand
side of (5.7) is computed with Var(xoi) corresponding to the population variance of
the continuous distribution, Var(xoi)= (1/12){max[xoi] −min[xoi]}2, and to the sample
variance of the discrete distribution, Var(xoi,k)= (1/K − 1)

∑K
k=1(xoi,k− xoi,k)

2. Figure 4
plots the results for σ(P∗n), and once again the data are in almost perfect agreement.
The RMS deviations between each of the calculations are O(10−4); here the machine
zero value does not occur because of the nonlinear variance operator.

For both A cases, σ(P∗n) is initially low, but steadily rises as the flow develops.
Physically, this corresponds to a ‘breakdown’ event in the outboard main flow
structure (Carr et al. 2013). Since the theoretical standard deviation of Pi(t; xo) over
a set of xo is zero, one may then use the experimental σ(Pi) as a quality indicator
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FIGURE 5. Normalised mean-shifted histogram and predicted p.d.f. of P∗n for (a) φ= 12◦

and (b) φ = 96◦ for A= 4. The number of bins for the histograms is d√Ke = 39. Note
that the horizontal scale ratio of (b) to (a) is 25:1.

for the computed P. For example, σ(P∗n) for the A= 4 case rapidly increases after
φ ≈ 66◦, which is consistent with the qualitative observation made earlier about this
point indicating a failure of the calculation (see also § 5.1.2). Similar observations can
be made about the A= 2 case. The obvious drawback is the subjective determination
of an appropriate threshold for σ(Pi), above which the calculated P is unacceptable.

Additional insight is gained using the properties of the uniform distribution, for
which the probability density function (p.d.f.) is only non-zero within ±√3 standard
deviations of the mean. Hence, we may assert that only a particular extent of the
distribution of P(t; xo) is explained by xo, meaning that

Pr[|Pi − Pi|>
√

3σ(Pi)]> 0, (5.8)

with equality only for errors that are truly uniformly distributed on the boundary.
This condition is fairly well-approximated when flow structures are not crossing Se,
such as for the first several measurement times; at later times, the error distribution,
and so P, may display a non-uniform character. Therefore, in addition to an increase
in σ(Pi), the departure of the distribution of P from uniform can also help indicate
increased error levels in the calculation. This is exemplified in figure 5, which shows
histograms of P∗n, as well as the predicted p.d.f. defined by the bracketed terms in
(5.8) for small and large φ. The standard deviation and the width of the histograms
are equivalent as error indicators, but the shape of the distribution provides an
additional, more objective indication of unexplained error. Note that the histogram
does not require calculation of P(t; xo,k), but only of A(t) and the generation of xo,k.

5.1.2. Objective origin selection
The analysis in § 5.1.1 provides easily obtainable statistical information about the

variation of P with xo. However, the results are dependent on the extent of the
specified origin distribution. For example, changing the intervals that define this
distribution will result in a different mean origin and hence a different mean force
impulse. Furthermore, the standard deviation will yield the same value for any origin
distribution that has the same variance, regardless of the global spatial location of
that distribution (i.e. xo). Although (5.2) is valid for any two origins, an origin that
minimises σ(Pi) cannot be found since the deviation is relative, and we have no
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objective reason to believe either associated force impulse is accurate. We now show
that satisfying an identity condition leads to improved results for P.

Recall that the ‘error tensor’, A, is composed of terms which are amplified by
the position vector. These terms are a direct result of the pressure removal, in
which the material acceleration and viscous stress are substituted (see (3.1) and
(3.2)). Since only the velocity is measured, all other flow quantities are calculated.
Therefore, to mitigate this error amplification it would be ideal to relate the associated
terms through conditions involving strictly the velocity. For the local acceleration
(represented by Pnv, see (3.4)), such a condition is achieved by letting a= u in (2.1),
and similarly for the convective acceleration with a=∇( 1

2 |u|2). These conditions are

(N − 1)
∫

Vf

udV =
∫

Vf

(x− xo)×ωdV −
∮

S
(x− xo)× n̂× udS (5.9a)

−(N − 1)
∮

S

1
2
|u|2n̂dS=

∮
S
(x− xo)× n̂× [u · ∇u+ u×ω] dS, (5.9b)

and for completeness S = Sb ∪ Se, but the contributions from Sb are exactly known.
No condition exists for the viscous term, but its contribution is often negligible such
as here with an average of less than 0.25 % of P∗n. Since both of the above equations
are theoretically invariant under x, we define the ‘objective origin’, xo, as the one
that best satisfies the summation of these equations on a component-wise basis. This
is determined as the origin which yields the smallest RMS deviation (over time)
between the left- and right-hand side. Note that random velocity measurement errors
will affect the left-hand sides of (5.9), but spatial integration of these quantities leads
to negligible error accumulation (see appendix A).

Figure 6 shows P∗n from the transducer and S-DPIV using the objective origin, as
well as the individual contributions to P∗n from the three terms in (3.4). For A= 2,
the agreement of the S-DPIV data with the transducer throughout the motion is
substantially improved compared with figure 3(a). For A = 4, the agreement is
slightly improved prior to φ ≈ 66◦, however the calculation failure thereafter is still
present. The RMS deviations of P∗n from the transducer data are now 4 and 23 %
for A = 2 and 4, respectively. Table 1 lists these RMS values along with those
corresponding to figure 3 for comparison, and it is clear that the objective origin
yields a significant improvement compared with the transducer data. The terms P lm
and Pnv together are equivalent to the hydrodynamic impulse of the fluid, and Pv

represents momentum flux in the more usual sense. P∗v becomes non-negligible at
φ ≈ 24◦ for A = 2, but not until φ ≈ 72◦ for A = 4, which makes sense given
the larger relative spatial domain of the latter. The calculation failure of the A = 4
case clearly affects P∗nv and P∗v as is evinced through their abrupt changes occurring
at φ = 66◦. Similar to the results of others, this is associated with flow structures
crossing the outer boundaries.

The persistence of the calculation failure for the A = 4 case suggests that these
data contain a source of error other than random measurement noise and amplification.
This additional error is caused by the outboard ‘breakdown’ of the flow for this case,
which we believe to be transitional. More specifically, the outboard leading-edge
vortex structure lifts off from the plate and eventually breaks down into a dispersed,
less coherent structure. This process is likely not converged with only five realisations
of S-DPIV data. Although transducer data of several other Re and A cases indicate
that this event has no significant effect on the force (Carr, DeVoria & Ringuette 2014),
any non-repeatability weakens the validity of the S-DPIV volume reconstruction
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FIGURE 6. (Colour online) Plots of P∗n as calculated from the objective origin for (a) A=
2 and (b) A= 4. Also shown are the contributions to P∗n from linear momentum (P∗lm),
non-vanishing (P∗nv) and vanishing (P∗v) surface fluxes of momentum.

A Figure 3 (%) Figure 6 (%) RMS reduction (%) β (deg.) b/a

2 29 4 90 3 0.05
4 38 23 41 30 0.26

TABLE 1. RMS deviations of P∗n from the transducer data for origins at the mean of
the uniform distribution (figure 3) and the objective origin (figure 6), and the per cent
reduction of the actual RMS values. Also, the angle β between the RMS-axis and v, and
the minor-to-major axis ratio, b/a, of the RMS field elliptical contours.

for which each plane of data represents an independent measurement of the flow.
This also applies to non-repeatability in phase-averaged, whole-volume tomographic
DPIV measurements. In either case, even in the absence of measurement noise, the
reconstructed data would not be completely consistent with the true flow. We must
then make a distinction between these two sources. The amplified error related to
measurement noise is simply referred to as noise amplification, while the other source
is termed non-repeatability error and represents fluctuations in the flow occurring
from different realisations of the experiment. Both types of error are susceptible to
amplification by the position vector.

More insight into noise amplification and non-repeatability error may be gained
by comparing the error tensor, A, to the conditions given in (5.9) that determine
the objective origin. The difference between two force impulses calculated from any
two origins, say xo,1 and xo,2, is Av, where v = xo,2 − xo,1 (recall (5.2)). Errors in
the data make A non-zero and xo,1 6= xo,2 by assumption and so the force impulse
difference can be made zero only if v ∈ ker(A). Since A is skew-symmetric, then
∃ λ∈ spec(A) such that λ=0. Hence, the nullspace of A is equivalent to the eigenspace
corresponding to λ= 0 and is guaranteed to be non-trivial. Recall A= Dxo P, so that
the (real) eigenvector v represents the direction in which changes in the force impulse
are zero. Now, note that the ith components of P and (5.9) are independent of the
ith component of the position vector. The RMS field used to determine the objective
origin for Pi can then be visualised as a surface with a domain defined by the
remaining two components of xo. Here the RMS fields corresponding to P∗n are found
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to have a narrow minimum valley with essentially elliptical contours of eccentricities
very near unity. This is, however, a general feature (see appendix B). Then, the
direction in which changes in the RMS field are minimal is well-approximated by
the vector along the ellipse’s major axis; we refer to this as the RMS axis. Therefore,
if the errors involved in computing P are dominated by noise amplification, then v
will nearly coincide with the RMS axis.

Defining the angle between the RMS axis and the time average of v as β, it
is found that β = 3◦ for A = 2, which suggests that the error in this case is
mostly due to noise amplification and thus explains the success of the objective
origin in providing agreement between the S-DPIV and transducer data. Conversely,
for A= 4 β is considerably larger at 30◦ and, as mentioned previously, indicates a
significant non-repeatability error leading to the calculation failure. However, repeating
the calculations using only the data prior to φ = 66◦ yields β = 3.8◦ and an RMS
deviation from the transducer data over this range of 4 %. In practice, one could
repeat such computations over a successively larger time range of data until an
observable increase in β occurs, thus indicating a transition of error type from noise
amplification to non-repeatability. An origin that better corrects the calculation after
the failure was found via trial-and-error, but the absence of an objective method to
determine this origin strongly suggests the result is merely imposed and unphysical.

The eigenvector v describing one direction along which zero change occurs in P
for any position explains the appearance of the RMS field contours as long, narrow
regions. The minor-to-major-axis ratio, b/a, quantifies the narrowness of these RMS
contours; b/a= 0.05 and 0.26 for A= 2 and 4, respectively. Although the ratio for
A= 4 is approximately 5 times that of A= 2, both are small enough to make the
direction defined by the major axis, i.e. the RMS axis, unambiguously distinct.

5.2. Boundary dependence
Previously we used the entire measurement volume for any calculations. Theoretically
the size and shape of the boundary are inconsequential to the force, so long as Se

encloses the body. This is obvious from the limit as Se→ Sb of any of the equations
in § 2 which will yield an identity of F as the surface integral of the total stress on
the body. However, A assumes a parametric dependence on Se via its surface integral
definition (see (5.3)), which is non-zero because of errors in the data. In other words,
the artificial dependence of P (and F) on Se arises for the same reasons as origin
dependence, and the two create identical effects. Hence, the objective origin defined
in § 5.1.2 can be used at each change of Se to minimise noise amplification.

5.2.1. External boundary
In this section the objective origin method is investigated for consistency of results

with varied Se. We define the bounding surfaces of the rectangular measurement
volume as XL, XR, YT , YB, ZI and ZO where the subscripts denote left, right, top,
bottom, inboard and outboard (see figure 2a). The results are interpreted through the
RMS deviations of P∗n from the transducer data.

We begin with the in-plane boundary surfaces XL, XR, YT and YB, and Se is
altered by allowing one surface to progressively encroach inward until the plate is
reached, while all others remain fixed at their most outward locations. After each
repositioning of the boundaries the objective origin is recalculated. Figure 7 plots
the corresponding RMS values, and for clarity only results below a certain value are
shown as some are in excess of 175 % when very near the plate. Also, for the x-plane
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FIGURE 7. RMS deviations of P∗n from the transducer data for changes of the in-plane
boundaries for (a) A = 2 and (b) A = 4. The arrows indicate the direction of inward
movement of the specified surface. The horizontal dashed line in (a) marks 5 %.

surfaces XR and XL, the abscissa is shifted so that the zero position corresponds to
the leading and trailing edge, respectively, of the plate. For A= 4, the errors begin
to increase almost immediately for all boundaries except XR, for which the error
remains nearly constant, likely because this boundary is ‘upstream’ of the plate and
so noisy flow structures do not cross it. The continually increasing errors are not
surprising for this case because of the calculation failure. However, for A = 2 the
errors are initially nominally constant near their lowest levels, which correspond to
the largest domain size (i.e. figure 6a). As figure 7(a) indicates, the errors are below
5 % for approximately 0.5 chords of inward travel of the boundaries. This shows that
the objective origin is successful in mitigating noise amplification errors until the
boundaries are a certain distance away from the plate. For XL and YT , which have the
majority of flow structure crossings, this distance is approximately 1.5c, while for XR
it is only ∼ 0.1c from the leading edge, and each of the errors increases rapidly upon
further enclosing of Se. The most outward location of YB is 0.29c and it also has
some flow structure crossings, thus explaining why this error increases right away.

For both A cases, the increases of the RMS deviation are caused by two,
combinatory effects. First, as pointed out by Mohebbian & Rival (2012), when
Se becomes smaller and closer to the body, a larger portion of the bounding surfaces
have flow structures crossing them. Hence, the noise on Se is significantly increased
and susceptible to amplification. Second, flow structures will cross the surfaces at
earlier times and so when noise amplification becomes very large the S-DPIV data
will be in disagreement with the transducer for longer periods of time.

Even at its most outward position ZI ⊂ Se intersects the plate near the root (see
figure 2a). Technically, if Se does not entirely enclose the body, then the comparison
of flow field data with the actual force on the body is physically inconsistent. However,
by moving ZI further inward we may assess the consequence of the missing region
of flow near the root of the plate, which for the A = 2 and 4 plates is 5.5 and
3.7 % of the respective spans (see § 4). Neglecting this small portion of the flow in
the calculation should have a minor effect. This is because the azimuthal velocity
of the plate is lowest near the root and so the total stress, particularly the pressure
differential, is likely to be small there.

The ZI boundary is made to traverse along the entire length of the domain and
figure 8 plots the corresponding data showing that for initial displacements of the
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FIGURE 8. RMS deviations of P∗n from the transducer data for changes of the z-plane
boundaries for (a) A = 2 and (b) A = 4. The arrows indicate the direction of inward
movement of the specified surface. The vertical dashed lines mark the plate tip at z/b= 1,
and the horizontal lines mark 4 % for (a) and 23 % for (b); see table 1.

boundary the RMS values remain very close to those listed in table 1. This supports
the assertion that the missing region of flow near the plate root has little effect on the
calculation. However, the fact that the errors are near these values for locations of ZI
as large as 30 and 55 % span for A=2 and 4 is most likely a feature of the particular
cases studied here, in which the flow structures near the root (i.e. leading-edge and
trailing-edge vortices) are fairly symmetrical (see Carr et al. 2013). Figure 8 shows
that this symmetry is also apparent in the data for ZO, which are essentially a mirror
image of the ZI data.

5.2.2. Internal boundary
Mohebbian & Rival (2012) conducted a numerical study on a two-dimensional

flat plate at zero incidence to a Re = 1600 freestream with a periodic vertical gust
velocity. They employed a CV method that uses only control surface terms, and forces
were computed for several different CV sizes which agreed well with those obtained
from the total stress on the plate. Their calculations only slightly suffered when flow
structures cross the boundary. The CV method used by Mohebbian & Rival (2012)
is analogous to the ‘flux equation’ of Noca et al. (1999) in which the pressure is
circumvented. Noca et al. (1999) showed similar agreement between forces obtained
from the ‘flux equation’ and surface stresses determined from numerical data of a
two-dimensional oscillating circular cylinder at Re= 100, but using the experimental
data of Noca, Shiels & Jeon (1997) they found inconsistency of the results when the
position origin or the CV size was altered. They attributed this to three-dimensionality
and the ‘moment-arm dilemma,’ which here we call noise amplification.

For many experiments it can be difficult to obtain high-quality, near-body
measurements, and bypassing this task with a ‘flux method’ seems logical; several
authors have reasonably stated this as justification for such methods. On the other
hand, any ‘flux method’ will suffer from noise amplification, as the substitution∫

Vf

udV =
∮

S
n̂ · (u⊗ x)dS (5.10)

is inherently relied upon. In fact, Mohebbian & Rival (2012) found that upon
coarsening the grid of their simulation data to that of typical DPIV spatial resolutions,
the accuracy of the calculations worsened as the domain size increased. Note that use
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FIGURE 9. Plots of P∗n calculated from the ‘flux method’ and using objective origins
corresponding to conditions involving only surface integrals, P∗n,Se

, and both surface and
volume integrals, P∗n,Vf

, for (a) A= 2 and (b) A= 4.

of (5.10) requires incompressibility, and again that S= Sb ∪ Se, where the contribution
from Sb is equivalent to the inertia of the fluidic body.

The ‘flux method’ is first assessed via its direct implementation, which is
accomplished by replacing the total linear momentum, P lm, in (3.3) with (5.10).
The form of the method employed should dictate the identity conditions used to
determine the objective origin and, depending on the data available, any term in the
equation for P (or F) that has an identity relation to a term strictly involving the
velocity should be used. However, use of a ‘flux method’ may imply that only data
on Se are available and in this case the objective origin conditions should be modified
to include just (5.9b), which only requires surface integrals.

Figure 9 plots P∗n from the transducer and S-DPIV using the ‘flux method’ with
objective origins determined from just (5.9b), denoted as P∗n,Se

, and from both of
(5.9) with (5.10) as well, denoted as P∗n,Vf

. Both calculations yield similar results.
For A = 4 the largest differences occur after φ = 66◦, when non-repeatability error
dominates, which the objective origin cannot account for. Furthermore, P∗n,Se

and P∗n,Vf

are comparable to the P∗n in figure 6, which were obtained from (3.3). For A = 2,
the RMS deviations of P∗n,Se

and P∗n,Vf
from the transducer data are 4.6 and 5 %,

respectively, while for A = 4 these values are both 21 %. These errors are close to
those listed in table 1 for figure 6, demonstrating the feasibility of a ‘flux method.’
However, this is not surprising as the methods are related by vector/integral identities
(also see § 5 of Noca et al. 1999) and the noise on Se, which is mitigated by the
objective origin, remains the same.

We now assess the ‘flux method’ indirectly by returning to (3.3) for P, but
allow Sb to progressively expand by removing data near the plate. This represents
an increasing region of unimaged flow or invalidated measurements caused by, for
example, reflections, shadows and perspective. One data point surrounding the plate
is randomly selected for permanent deletion, the force impulse calculation performed,
and the process repeats until a ‘layer’ of data around the plate is depleted; this
is done for two layers. Also, we only consider the in-plane coordinates such that
for each selected (xb, yb) ∈ Sb, the entire range of zb is removed; namely, spanwise
rows of data are deleted. The origin and Se are fixed as the objective origin and the
boundary of the largest domain, as in § 5.1; these choices yielded the lowest RMS
deviation, denoted as RMSo.
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FIGURE 10. Shifted RMS deviations of P∗n from the transducer data for an increasing
region of removed data, Vdel, near the plate for (a) A = 2 and (b) A = 4. The shift
value is RMSo = 4 % and 20 % for (a) and (b), respectively.

The results are again interpreted through the RMS deviations of P∗n from the
transducer data, and are presented in figure 10 (dashed lines), where the dependent
axis is 1RMS ≡ RMS − RMSo and the independent axis is the volume ratio of
the deleted neighbourhood of data, Vdel, to that of the plate, Vplate. As would be
expected, the RMS continually increases as more data are removed. For A= 2, the
error begins to quickly grow even for small ratios of deleted data (Vdel/Vplate < 10 %).
This is because the removed data, being proximal to the moving plate, possess large
momentum. For A = 4 the error increase is less, because the flow ‘breakdown’
causes non-repeatability errors throughout the measurement volume and these are
more significant than those due to data loss near the plate.

The same calculations are repeated, but the objective origin is successively
implemented after each data removal. The results are also given in figure 10 (solid
lines) and show that the error is consistently reduced. Of course the error must
still have an increasing trend, because important flow data are removed. Although the
decrease in error is only by a value of approximately 1 %, recall that the fixed origins
correspond to those used for figure 6 and so the newly calculated origins are only
slightly displaced from the preceding ones. Regardless, figure 10 is further evidence
that the objective origin method, the definition of which has physical meaning,
provides more accurate calculations by attenuating the amplified noise in the data.

5.3. Force estimation
Having calculated data for P, there are several ways to estimate the force, F. Here,
we implement a standard centred finite difference (FD), as well as the least squares
(LSQ) method to fit a high-order polynomial to the force impulse data, which is then
differentiated. The force impulse data used are those in figure 6 and P∗n is associated
with the normal force component, F∗n . Also, since the current experiments are starting
flows, we take advantage of the fact that P(t= 0)= 0.

Figure 11 plots F∗n from the transducer as well as from the FD and LSQ methods
for the S-DPIV data. Both methods produce similar results and the LSQ data are
essentially a smoothed version of the FD data. The acceleration/deceleration phases
occur over the first/last 10◦ of the plate motion, but the angular resolution of the
S-DPIV data is 1φ = 6◦, with the first measurement at φ = 6◦. Hence, we cannot
expect to capture the non-circulatory force peaks with acceptable accuracy. For A= 2,
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FIGURE 11. Normal force coefficient, F∗n , from the transducer and S-DPIV data for
(a) A= 2 and (b) A= 4. For clarity, data for φ > 108◦ have been omitted.

the prediction of F∗n through the majority of the constant velocity phase is reasonable,
and likewise for A= 4 prior to the calculation failure at φ ≈ 66◦. The behaviour of
F∗n may of course be inferred from the slope of P∗n.

As expected the actual force computation is sensitive to the temporal resolution.
This is not only true for computing the numerical derivative, but also and more
importantly, for obtaining accurate values of P. Although the current method (3.3)
avoids time derivatives, it still relies on computation of the material acceleration,
which is directly linked with the pressure gradient. Several techniques for improving
the computation of the material acceleration have been developed recently and
typically time-resolved (TR) data are essential for their implementation. For example,
Novara & Scarano (2013) used three-dimensional tomographic TR-DPIV to perform
particle tracking velocimetry (PTV) over a large number of image recordings. The
method benefits from accurate trajectory reconstructions, as well as the higher spatial
resolution of tomographic DPIV compared with conventional PTV. They report a
significant reduction of precision errors and a near absence of truncation errors.
Another technique is the ‘pyramid correlation’ developed by Sciacchitano, Scarano
& Wieneke (2012), which greatly increases the signal-to-noise ratio of the particle
image correlation leading to a decrease in the errors when the material acceleration
is computed.

6. Concluding remarks
The practical implementation of calculating the force on a moving body, F, from

experimental flow field information was investigated. The flow data were obtained
from S-DPIV volume reconstructions, and forces were directly measured with a
transducer. To avoid introducing further errors into the data with numerical time
derivatives, an equation for the force impulse, P, was used in the majority of the
work. This equation also avoids the explicit evaluation of the pressure on the external
boundary. However, the associated substitutions still rely on computation of the
material acceleration in a direct manner through the convective contribution, and
indirectly through an integral term representing the local acceleration. The pressure
removal introduces the explicit appearance of the position vector in the equations.
Any errors in the data introduce an artificial dependence of the calculations on the
position origin and, furthermore, these errors are also amplified by the position vector.
This amplification is akin to the propagation error that is incurred through the spatial
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integration of the pressure gradient when the pressure is evaluated directly, and
the choice of reference pressure location, from which the integration begins, is the
analogue of origin dependence.

Considering a continuous uniform distribution of origins of any extent, it was
shown that the mean and standard deviation of P over this set may each be obtained
from a single calculation with the data. The standard deviation, along with the
distribution of P can be used as error indicators for the quality of the force impulse
calculation. However, these statistics are dependent on the prescribed extent of the
origin distribution.

A distinction between two types of error, designated as noise amplification and
non-repeatability error, was made. The former refers to random velocity measurement
noise that is superimposed on the true velocity, and the latter is error which affects
the validity of the volume reconstructions from independent S-DPIV data planes.
Both types of error are subject to amplification via multiplication with the position
vector. The definition of the angle β quantifies the relative dominance of these
errors, where small or near-zero values indicate noise amplification and larger values
imply non-repeatability. This angle provides a metric by which the quality of the
data for computing forces is acceptable. Non-repeatability error can be avoided with
volumetric velocimetry techniques, which yield an entire volume of data as one
independent measurement. However, the common practice of phase-averaging will
reintroduce this type of error.

When noise amplification is dominant, the error may be attenuated. We proposed
a method that objectively determines an origin which reduces the unphysical effects
due to origin dependence associated with noise amplification. The method was
termed the ‘objective origin’ and uses vector/integral identities that relate the
velocity measurements to subsequently calculated amplified noise terms. A significant
improvement in the calculations was observed as evinced by a large reduction in
the RMS deviations of the S-DPIV data from the transducer. The objective origin
was also shown to effectively mitigate noise amplification errors for changes in the
external and internal boundaries.

Lastly, the computed data for P were used to obtain an estimate of F. Reasonable
agreement in the force magnitude was observed. Although the force impulse method
used here avoids time derivatives and the direct evaluation of the pressure, the
material acceleration must still be computed. In other words, the effect of temporal
resolution cannot be avoided completely. It is well-known that accurately computing
the pressure from velocity data is challenging and so any force method will suffer
from the associated difficulties, regardless of whether or not the pressure is analytically
removed. Although time-resolved data will yield more accurate estimations of the
material acceleration, and therefore of force impulse, force or the pressure field, noise
amplification is still possible. Thus, the objective origin method presented here is then
a generally applicable technique to minimise noise amplification.
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Appendix A. Velocity errors in the ‘objective origin’
The identities in (5.9) were used to determine the objective origin by minimising

the RMS deviation of the summation of the equations. However, the left-hand sides,
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consisting of integrals involving only the velocity, may be affected by the random
measurement errors as well. Let the measured velocity be decomposed as u=uT + δu,
where uT is the true velocity and δu the measurement error. The error in computing
the left-hand side of (5.9a) is simply ∫

Vf

δudV, (A 1)

and is negligible since the integration of a random error over a sufficiently large
domain, such as Vf , tends to zero; the measurement volumes for the A = 2 and 4
cases consist of approximately 330 000 and 496 000 grid points, respectively.

For (5.9b), the situation is slightly more complex because of the nonlinear term
|u|2 = |uT |2 + 2uT · δu+ |δu|2. The associated error is∮

Se

(uT · δu) n̂dS+
∮

Se

1
2
|δu|2n̂dS. (A 2)

The integrand of the first integral may be considered a random error and so its
integrated contribution negligible, although the argument is perhaps not as strong as
that for (A 1). However, with respect to the integration, the sign of the dot product
creates an additional randomness and so accumulation of errors is likely to be small.
For the second integral, let the velocity error be characterised by a representative
value, say δu> 0, which yields∣∣∣∣∮

Se

1
2
|δu|2n̂dS

∣∣∣∣6 1
4
(δu)2Se (A 3)

since Se is an enclosure. Carr et al. (2013) performed a thorough error analysis on
the experimental configuration and reported an estimate of the (normalised) velocity
error as δu= 0.01. Using the largest measurement domains for values of Se, equation
(A 3) yields very conservative errors of 4.2× 10−4 and 1.5× 10−3 for the A= 2 and
4 cases, respectively, and are also considered negligible.

Hence, provided that the experiment is carefully conducted to minimise the
measurement error, then the quantities on the left-hand sides of (5.9) will be calculated
with fair accuracy. This provides justification that the definition of the objective origin
has a physically meaningful implication.

Appendix B. Contours of the RMS field
In § 5.1 it was stated that the data produced elongated elliptical contours in the RMS

field corresponding to the summation of (5.9). In this appendix we show that this is
a general feature that arises as a result of the RMS-based definition of the objective
origin, and is not specific to these data. The sum of (5.9) can be written as

A= B+ C × xo, (B 1)

where

A(t) = (N − 1)

[∫
Vf

udV −
∮

S

1
2
|u|2n̂dS

]
, (B 2)

B(t) =
∫

Vf

x×ωdV +
∮

S
x× n̂× [u · ∇u+ u×ω− u]dS, (B 3)

C(t) =
∫

Vf

ωdV +
∮

S
n̂× [u · ∇u+ u×ω− u]dS. (B 4)
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Note that in the absence of errors A ≡ B, and C ≡ 0 since the equations must be
true for any x. The component-wise definition of the objective origin is chosen
because since 98 % of the transducer power is from the normal component, the
other components are essentially noise, and so an attempt to compute these from
the flow field will suffer from a substantially lower signal-to-noise ratio in those
data. Therefore, a vector-based definition for the objective origin would make an
unnecessary inclusion of such noise and bias the objective origin calculation. Now,
the RMS of the third component is arbitrarily chosen for consideration. Also, for
reasons apparent below we let xo = (x, y, z)T, and from (B 1) we obtain

RMS2 = 〈[(Az − Bz)− (Cxy−Cyx)]2〉. (B 5)

The components of A, B and C are now assumed to be uncorrelated and to then
represent mean values over time. This assumption is justified when the errors are
mainly due to noise amplification, but becomes invalid when non-repeatability is
significant. This is the reason that the objective origin can only handle the former
type of error. After some algebra, expanding the right-hand side will yield

RMS2 + (Bz − Az)
2 = [Cyx− (Bz − Az)]2 + [Cxy− (Az − Bz)]2 − 2CxCyxy. (B 6)

The right-hand side of (B 6) can be separated into the following two equations

E =
(

x′

a

)2

+
(

y′

b

)2

(B 7)

ψ = kxy, (B 8)

where

x′ = x−
(

Bz − Az

Cy

)
, y′ = y−

(
Az − Bz

Cx

)
, (B.9a,b)

a= 1
Cy
, b= 1

Cx
, and k=−2CxCy. (B.10a–c)

Since (B 7) is the equation of an ellipse with a contour value of E, the reason for
the ellipticity in the RMS field contours is apparent. Furthermore, equation (B 8) is a
rectangular hyperbola, which is perhaps more recognisable as the stream function for
potential stagnation point flow, where the asymptotes of the hyperbolae represent the
principal axes of the rate-of-strain tensor (Batchelor 1967). Hence, the superposition
of the function ψ with the ellipse acts to stretch the latter and explains the general
appearance of highly eccentric contours.
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