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We study passive scalar fluctuations convected by statistically stationary homogeneous
isotropic turbulence under a uniform mean scalar gradient. In order to elucidate the
parameter dependence of small-scale statistics of scalar fluctuations, we conduct direct
numerical simulations of passive scalar turbulence with 59 different combinations of
Reynolds number and Schmidt number. For all the cases, we compute time-average
statistics of various quantities, which include the scalar derivative skewness and
flatness, the ratio of parallel-to-perpendicular scalar-gradient variances, and the
anisotropy parameter recently proposed (Hill, Phys. Rev. Fluids, vol. 2, 2017,
094601). Notably, the degree of small-scale anisotropy of passive scalar fluctuation
is characterised by a universal function of the Péclet number Peλθ = u′λθ/κ , where
u′ is the root mean square velocity, λθ the Taylor microscale of scalar fluctuation,
κ the mass diffusivity. In the definition of the Péclet number, the use of λθ , rather
than the Taylor microscale of velocity fluctuation, is key to collapsing the data of
different Reynolds and Schmidt numbers. When the Péclet number is low, large-scale
anisotropic scalar structures emerge irrespective of the Reynolds number. These
structures are elongated along the direction of the uniform mean scalar gradient, and
their size is significantly larger than the integral length scale of velocity fluctuation.

Key words: turbulence theory, turbulent mixing, turbulence simulation

1. Introduction

Turbulent heat and mass transport processes are important in various engineering
situations. For example, heat transport problems are concerned with heat exchangers,
whereas mass transport phenomena are found in air pollutant dispersion. In general
situations, a turbulent velocity field generates fluctuations in a scalar field via turbulent
convection, and the fluctuating scalar field conversely affects the velocity field by
local forces due to changes in temperature or mass concentration. Assuming that the
variation of temperature or mass is small enough in a way that does not affect the
velocity field, it is then considered that the scalar field is passively convected by the
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velocity field. Such a scalar is sometimes called a ‘passive scalar’ and is the object
of this study.

Heat and mass transport processes are controlled by the Prandtl number Pr = ν/α
and the Schmidt number Sc = ν/κ , respectively, where ν is the kinematic viscosity,
α is the thermal diffusivity and κ is the mass diffusivity. The Prandtl number
takes a value of approximately 0.71 for air at atmospheric pressure and 27 ◦C,
Pr≈0.871–13.6 for water (H2O), Pr≈100–50 000 for engine oils and Pr≈0.003–0.03
for liquid metals (Eckert & Drake 1959). The value of the Schmidt number, on the
other hand, lies typically in the range of 0.2 to 4 for gas–gas diffusive systems at
standard conditions, whereas Sc≈ 200–1500 for gas–liquid and liquid–liquid diffusive
systems. Since both the Prandtl and Schmidt numbers range widely from small to
large values in our surroundings, it is of great importance to clarify the parameter
dependence of turbulent scalar transport over a broad range of the Schmidt number
(or the Prandtl number).

It has been known that the statistical properties of passive scalar fluctuations
transported by the turbulent velocity field vary significantly depending on the Reynolds
number and Schmidt number. Such a variation is found, for example, in the scalar
variance spectrum in homogeneous isotropic turbulence (see Gotoh, Watanabe &
Suzuki 2011; Gotoh & Yeung 2012; Sreenivasan 2018). When the Reynolds number
is sufficiently high, the asymptotic scalar variance spectrum has the form k−17/3 in the
inertial-diffusive range for Sc� 1, k−5/3 in the inertial-convective range for Sc=O(1),
and k−1 in the viscous-convective range for Sc� 1 (Obukhov 1949; Corrsin 1951;
Batchelor 1959; Batchelor, Howells & Townsend 1959). These power-law scalings
have been studied extensively by early laboratory experiments (e.g., Sreenivasan 1996;
Mydlarski & Warhaft 1998) and direct numerical simulations (DNS) (e.g., Watanabe
& Gotoh 2004, 2007; Gotoh, Watanabe & Miura 2014; Yeung & Sreenivasan 2014;
Gotoh & Watanabe 2015).

Since widely varying the Reynolds and Schmidt numbers results in the diversity
of turbulently mixed states of a passive scalar and their corresponding statistics, it is
meaningful to find a suitable control parameter upon which passive scalar statistics
is systematically dependent, if any. The aim of this study is to demonstrate that the
Péclet number based on the Taylor microscale of scalar fluctuation, defined in (2.15),
works as such a control parameter. In passive scalar turbulence, there exist multiple
characteristic length scales of velocity and scalar fluctuations. Having multiple choices
of length scales, one can define the Péclet number using a characteristic length scale
of velocity fluctuation (cf. (2.15)). Note here that characteristic length scales of
scalar fluctuation vary relative to those of velocity fluctuation and the system size
depending on the existing control parameters and injection methods of velocity and
scalar fluctuations. Accounting for this variation may be one of the key ingredients
to suitably characterise different turbulently mixed states of a passive scalar. One
successful example of this is found in the work by Lepore & Mydlarski (2012),
who investigated higher-order scalar structure functions for two different scalar fields
generated in two ways: heated cylinder and mandoline. They found that, although
the scalar (temperature) is convected by an identical turbulent flow, the value of
the thermal integral length scale differs between heated cylinder and mandoline,
which results in the different values of the Péclet number based on this length scale.
When plotted against the Péclet-number-compensated separation, which takes into
account the variation of the thermal integral length scale, the higher-order scalar
structure functions collapse at small scales for the two different scalar fields (Lepore
& Mydlarski 2012).
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In this study, we investigate parameter dependencies of small-scale statistics
of scalar fluctuations convected by statistically stationary homogeneous isotropic
turbulence, considering the effect of variations of length scales of turbulence. Scalar
fluctuations therein are sustained under a uniform mean scalar gradient. We focus
especially on the small-scale anisotropy of scalar fluctuations appearing in this flow
system. It has been reported that, in turbulent flows with a mean scalar gradient,
the skewness of scalar derivative fluctuations in the direction of the mean gradient
becomes non-zero (Sreenivasan & Tavoularis 1980; Budwig, Tavoularis & Corrsin
1985; Sreenivasan 1991; Holzer & Siggia 1994; Tong & Warhaft 1994; Mydlarski
& Warhaft 1998; Warhaft 2000; Yeung, Xu & Sreenivasan 2002; Schumacher,
Sreenivasan & Yeung 2003; Yeung et al. 2004; Yeung, Donzis & Sreenivasan 2005;
Donzis & Yeung 2010; Yeung & Sreenivasan 2014), and it has still remained unsettled
whether or not the small-scale scalar anisotropy can persist over a wide range of
parameter values.

In order to achieve the aim mentioned above, we undertake an exhaustive
parametric DNS study. We conduct DNS of passive scalar turbulence with 59 different
combinations of Reynolds and Schmidt numbers. Since we change the values of these
numbers herein, the velocity and scalar characteristic length scales vary accordingly
although the scalar injection method is fixed. We discuss the parameter dependences
of scalar statistics based on our DNS data. In § 2, we describe numerical methods
and parameters used to simulate passive scalar turbulence. The results of the present
study are shown in § 3, and our conclusion and discussion are presented in § 4.

2. Governing equations and numerical simulations

In the present study, we perform DNS of a passive scalar advected by statistically
stationary homogeneous isotropic turbulence under a uniform mean scalar gradient.
Under a triply periodic boundary condition (0 6 x1, x2, x3 < 2π), we solve the
incompressible Navier–Stokes equations

∂u
∂t
+ (u · ∇)u=−

1
ρ
∇p+ ν∇2u+ f , ∇ · u= 0, (2.1)

where u(x, t), p(x, t) and f (x, t) are the velocity, pressure and external forcing fields,
respectively, and fluid density ρ is assumed to be constant. In order to generate
statistically stationary isotropic turbulence, we use the white Gaussian isotropic force
f (x, t), which is defined in Fourier space as

f̂i(k, t)= 0, f̂i(k, t)̂fj(−k, s)= Pij(k)
W(k)
4πk2

δ(t− s), (2.2a,b)

where Pij(k) = δij − kikj/k2 is a projection operator, δij is the Kronecker delta, δ(·)
is the Dirac delta function and (·) and (̂·) denote a time average and the Fourier
coefficient of (·), respectively. Here, W(k) is set to a constant value of 0.3 for the
forcing wavenumber range 86 |k|6 9, otherwise, W(k)= 0. With respect to a passive
scalar, we decompose the scalar concentration Θ(x, t) into mean and fluctuation parts
as Θ(x, t)=Θ(x)+ θ(x, t). For sustaining scalar fluctuations, we impose a uniform
mean scalar gradient in the x3-direction as ∇Θ = (0, 0, Γ ), where Γ is the magnitude
of the gradient and is set to unity without loss of generality. We thereby solve the
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following governing equation for θ(x, t):

∂

∂t
θ + (u · ∇)θ = κ∇2θ − Γ u3, (2.3)

in conjunction with (2.1).
The energy spectrum, Eu(k, t), is computed by integrating the energy spectral density

Qu(k, t)= 1
2 ûi(k, t)ûi(−k, t) over a spherical surface in k-space as

Eu(k, t)=
∫ 2π

0
dψ
∫ π

0
dφk2 sin φQu(k, t). (2.4)

The scalar variance spectrum, Eθ(k, t), is similarly computed as

Eθ(k, t)=
∫ 2π

0
dψ
∫ π

0
dφk2 sin φQθ(k, t), (2.5)

where Qθ(k, t) = θ̂ (k, t)θ̂(−k, t) is the scalar variance spectral density. Using these
spectra, the total kinetic energy and scalar variance per unit mass are computed,
respectively, as

1
2 〈u

2
〉(t)= 3

2 u′(t)2 =
∫
∞

0
Eu(k, t) dk, (2.6)

〈θ 2
〉(t)= θ ′(t)2 =

∫
∞

0
Eθ(k, t) dk, (2.7)

where 〈(·)〉 denotes the space average of (·) over the entire computational domain,
and u′(t) and θ ′(t) are the space-averaged root mean squares of velocity and scalar
fluctuations.

Here we introduce several characteristic length scales of turbulence. We define
integral length scales of velocity and scalar fluctuations, respectively, as

Lu(t)=
3π

4

∫
∞

0
k−1Eu(k, t) dk∫
∞

0
Eu(k, t) dk

, (2.8)

Lθ(t)=
π

2

∫
∞

0
k−1Eθ(k, t) dk∫
∞

0
Eθ(k, t) dk

. (2.9)

The Taylor microscales of velocity and scalar fluctuations are computed, respectively,
by

λu(t)=

√
15νu′(t)2

ε(t)
, (2.10)

λθ(t)=

√
6κθ ′(t)2

χ(t)
, (2.11)
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where the energy dissipation rate ε(t) and the scalar dissipation rate χ(t) per unit
mass are computed as ε(t) = ν/2〈(∂ui/∂xj + ∂uj/∂xi)

2
〉 and χ(t) = 2κ〈(∂θ/∂xi)

2
〉,

respectively. The Kolmogorov scale, ηK(t), and the Batchelor scale, ηB(t), are defined
as

ηK(t)= ν3/4ε(t)−1/4, (2.12)
ηB(t)= κ1/2ν1/4ε(t)−1/4

= ηK(t)Sc−1/2. (2.13)

We discuss our results using the Reynolds number Reλ(t) based on λu(t) and the
Péclet number Peλθ (t) based on λθ(t), which are, respectively, written as

Reλ(t)=
u′(t)λu(t)

ν
, (2.14)

Peλθ (t)=
u′(t)λθ(t)

κ
. (2.15)

Instead of the Péclet number thus defined, Peλ(t) = ScReλ(t) = u′(t)λu(t)/κ is
sometimes used in the literature. As will be discussed, however, equation (2.15)
is more appropriate in characterising the small-scale scalar statistics for various
Reynolds and Schmidt numbers.

Setting moderate forcing wavenumbers (8 6 |k| 6 9) in (2.2) effectively improves
the isotropy of the velocity field. The (2π)3 periodic domain becomes significantly
larger than the integral length scale Lu of the velocity. See table 1 for the quantitative
information about the isotropic flows of four different Reynolds numbers (Reλ ≈ 7,
29, 63 and 106). Denoting one side of the triply periodic box by Lbox (=2π),
Lbox/Lu is 22.2, 21.7, 27.2 and 29.6 at Reλ ≈ 7, 29, 63 and 106, respectively. In this
numerical set-up, a large number of eddies of various orientations, the size of which
is comparable to Lu, are contained in the computational domain, whereby even an
instantaneous velocity field becomes reasonably isotropic on space average. Here,
the degree of isotropy of velocity fluctuations is evaluated in terms of values of
u′22 /u

′2
1 and u′23 /u

′2
1 , both of which are very close to unity (thus velocity fluctuations

being isotropic) for the four different Reynolds numbers (see table 1). One should
keep in mind that, although the random forcing (2.2) is delta correlated in time, the
velocity field has a finite correlation time of the order of TL, where TL = Lu/u′ is
the large-eddy turnover time. Using larger forcing wavenumbers, we can reduce the
effect of the finite correlation time such that it becomes shorter (relative to Lbox/u′)
and the fluctuations of global quantities for velocity field are more attenuated. The
latter is found in table 1 such that the ratio σu′2/u′2 takes small values of the
order of 10−2, where σu′2 is the temporal standard deviation of u′(t)2. One of the
important advantages of using moderate forcing wavenumbers is that it improves
the sampling for small-scale statistics of scalar fluctuations albeit at the cost of a
reduced inertial range. It also allows scalar structures to grow significantly larger
than Lu, as will be demonstrated in § 3.1. The velocity-derivative skewness Su =

〈(∂u1/∂x1)3〉/〈(∂u1/∂x1)2〉3/2 is −0.00637, −0.342, −0.502 and −0.525 at Reλ≈ 7, 29,
63 and 106, respectively (table 1). The velocity field at Reλ ≈ 7 is far from being
turbulent. Nonetheless, the velocity field evolves in a spatio-temporally random
manner because of the random forcing (2.2), thereby mixing a passive scalar.

In the present study, DNS is performed using the pseudo-spectral method and the
fourth-order Runge–Kutta–Gill method (see Gotoh et al. (2011), for further details).
We have run long-term numerical simulations at the four different Reynolds numbers
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Label ν Reλ Lu λu ηK u′22 /u
′2
1 u′23 /u

′2
1 σu′2/u′2 Su

A 0.01 7.23 0.283 0.264 0.0419 1.001 0.9994 0.0540 −0.00637
B 0.003 29.0 0.289 0.215 0.0171 0.9995 0.9978 0.0390 −0.342
C 8× 10−4 62.7 0.231 0.117 0.00633 1.002 1.004 0.0285 −0.502
D 3× 10−4 106 0.212 0.0726 0.00301 1.001 0.9984 0.0282 −0.525

TABLE 1. Velocity statistics of DNS with the four different values of ν. Here, Reλ is
the Reynolds number based on the Taylor microscale (2.14), Lu is the integral length
scale (2.8), λu is the Taylor microscale (2.10), ηK is the Kolmogorov microscale (2.12), Su
is the velocity-derivative skewness. The velocity statistics of labels A, B, C and D are,
respectively, computed using runs A1, B1, C1 and D1 shown in tables 2 and 3.

(Reλ ≈ 7, 29, 63, 106) while varying the Schmidt number. We use 59 different
combinations of ν and Sc, where the lowest and highest Sc used are 1/4096 and
256, respectively (see tables 2 and 3). When Sc� 1, it is necessary to make the time
resolution finer to resolve the scalar diffusion time scale that becomes much shorter
than the advection time scales. We also need to allocate the number of numerical
grid points, N3, such that both the Kolmogorov scale (2.12) and the Batchelor scale
(2.13) are well resolved. When Sc is unity, the Kolmogorov scale equals the Batchelor
scale (i.e., ηK = ηB). At a fixed Reynolds number, however, ηB becomes smaller with
increasing Sc so that N3 must be increased accordingly (Yeung et al. 2004; Donzis
& Yeung 2010; Gotoh, Hatanaka & Miura 2012). In the present study, we use a
reasonable spatial resolution for each simulation; kmaxηB is at worse equal to 1.24 for
run A256 (see table 2), where the cutoff wavenumber kmax=

√
2N/3 (Gotoh & Yeung

2012). For computing turbulence statistics in a statistically stationary state, time
averages are taken over the time period of Tav which excludes the initial transient
period of time. Here, Tav is at worse equal to 4.19 TL for run D1024i (see table 3).

3. Results
3.1. Scalar variance spectra and flow visualisations

Figure 1(a) shows the variation of the time-averaged scalar variance spectrum Eθ(k)
for decreasing Sc at the highest Reynolds number Reλ ≈ 106. Here, Eθ(k) exhibits
the power-law scalings slightly shallower than k−5/3 for Sc = 1 and than k−17/3 for
Sc= 1/1024 (Yeung & Sreenivasan 2013, 2014). Batchelor et al. (1959) analytically
derived the k−17/3 power-law scaling for the turbulent scalar fluctuation field, which
is locally isotropic. We show below, however, the case in which the scalar fluctuation
field is significantly anisotropic when the power-law scaling slightly shallower than
k−17/3 emerges in the scalar variance spectrum. There is a peculiar tendency that,
at Sc = 1/1024, Eθ(k) increases significantly with decreasing k for k 6 7. This
tendency is partially described by the shape of the energy spectrum at Reλ ≈ 106.
Figure 1(b) shows Eu(k) and multiplied energy spectrum k−4Eu(k) at Reλ≈ 106. Note
that Batchelor et al. (1959) theoretically derived Eθ(k)= (χ/3κ3)k−4Eu(k) for Sc� 1.
Here, k−4Eu(k) is an increasing function with decreasing k for k 6 7, as similarly
observed in Eθ(k). Therefore, for Sc � 1, the scalar variance spectrum Eθ(k) can
be related to the multiplied energy spectrum k−4Eu(k). Incidentally, we find that the
velocity-scalar cospectrum shows the power-law scaling slightly shallower than k−11/3

in the inertial-diffusive range at low Schmidt numbers and Reλ≈ 106 (data not shown).
The k−11/3 power-law scaling was theoretically derived by O’Gorman & Pullin (2005).
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Run ν Sc N3 1t Peλθ S∂θ/∂x3 F∂θ/∂x3 gθ a kmaxηB Tav

A1 0.01 1 2563 0.01 5.98 1.08 5.05 0.981 0.206 5.05 222
A2i 0.01 1/2 2563 0.009 3.44 0.873 4.25 0.816 0.370 7.15 218
A4i 0.01 1/4 2563 0.0045 2.53 0.622 3.60 0.650 0.621 10.1 126
A8i 0.01 1/8 2563 0.0023 1.55 0.403 3.23 0.539 0.842 14.3 83.2
A16i 0.01 1/16 2563 0.0011 0.736 0.231 3.07 0.496 0.952 20.2 269
A32i 0.01 1/32 2563 5.7× 10−4 0.403 0.121 3.01 0.475 0.987 28.6 186
A64i 0.01 1/64 2563 2.8× 10−4 0.180 0.0598 3.00 0.471 0.997 40.4 89.4
A128i 0.01 1/128 2563 1.4× 10−4 0.0942 0.0439 3.01 0.477 0.999 57.1 35.2
A256i 0.01 1/256 2563 7.1× 10−5 0.0465 0.0201 2.99 0.474 0.9998 80.2 19.9
A2 0.01 2 2563 0.01 10.1 1.23 6.01 1.07 0.123 3.57 213
A4 0.01 4 2563 0.01 16.5 1.30 6.96 1.11 0.0846 2.53 300
A8 0.01 8 2563 0.01 27.2 1.27 7.76 1.10 0.0548 1.79 213
A16 0.01 16 2563 0.01 42.3 1.13 8.11 1.08 0.0367 1.27 213
A32 0.01 32 5123 0.003 65.9 1.02 8.83 1.05 0.0211 1.79 67.7
A64 0.01 64 5123 0.003 102 0.835 8.97 1.01 0.00768 1.27 67.7
A128 0.01 128 10243 0.001 156 0.646 9.22 1.05 0.0190 1.79 11.6
A256 0.01 256 10243 0.001 242 0.524 9.53 1.03 0.00971 1.24 13.5
B1 0.003 1 2563 0.01 17.9 1.52 8.87 1.13 0.0724 2.06 309
B2i 0.003 1/2 2563 0.01 11.2 1.45 7.68 1.10 0.0993 2.90 309
B4i 0.003 1/4 2563 0.01 7.13 1.29 6.41 1.03 0.151 4.10 309
B8i 0.003 1/8 2563 0.0076 4.30 1.07 5.26 0.879 0.267 5.81 241
B16i 0.003 1/16 2563 0.0038 2.91 0.830 4.35 0.712 0.491 8.20 149
B32i 0.003 1/32 2563 0.0019 1.75 0.588 3.62 0.585 0.757 11.6 67.3
B64i 0.003 1/64 2563 9.5× 10−4 0.928 0.404 3.27 0.521 0.918 16.4 54.7
B128i 0.003 1/128 2563 4.7× 10−4 0.534 0.269 3.12 0.499 0.977 23.1 137
B256i 0.003 1/256 2563 2.4× 10−4 0.250 0.174 3.04 0.495 0.994 32.8 115
B512i 0.003 1/512 2563 1.2× 10−4 0.133 0.142 3.04 0.487 0.998 46.4 40.4
B1024i 0.003 1/1024 2563 5.9× 10−5 0.0652 0.129 3.02 0.492 0.9996 64.5 28.7
B2 0.003 2 2563 0.01 27.7 1.43 9.53 1.11 0.0512 1.45 309
B4 0.003 4 5123 0.005 43.0 1.36 10.8 1.09 0.0373 2.05 161
B8 0.003 8 5123 0.005 65.8 1.14 10.9 1.07 0.0252 1.46 160
B16 0.003 16 10243 0.002 101 0.972 11.5 1.05 0.0197 2.06 30.9
B32 0.003 32 10243 0.002 153 0.759 11.4 1.04 0.0133 1.46 36.5

TABLE 2. Parameters and scalar statistics of DNS with various values of Sc for ν = 0.01
(series-A) and 0.003 (series-B). Here, ν is the kinematic viscosity, Sc is the Schmidt
number, N3 is the number of numerical grid points, 1t is the time increment, Peλθ is
the Péclet number based on the Taylor microscale of scalar fluctuation (2.15), S∂θ/∂x3 is
the scalar derivative skewness (3.1), F∂θ/∂x3 is the scalar derivative flatness (3.2), gθ is
the ratio of parallel-to-perpendicular scalar-gradient variances (3.3), a is the anisotropy
parameter (3.4), kmaxηB is the spatial resolution, Tav is the time period for computing
statistics in the unit of large-eddy turnover time, TL.

Figure 2 shows the visualisations of the instantaneous enstrophy and scalar
fluctuation fields with three different Schmidt numbers (Sc = 1, 1/64, 1/1024), at
Reλ ≈ 106. We find an interesting feature that scalar fluctuation structures visualised
by cyan isosurfaces become larger for decreasing Sc. At the lowest Schmidt number
(Sc = 1/1024), anomalous large-scale anisotropic scalar structures emerge from the
isotropic turbulent velocity field (figure 2c). These structures are elongated along
the direction of the mean scalar gradient, and their size is significantly large
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Run ν Sc N3 1t Peλθ S∂θ/∂x3 F∂θ/∂x3 gθ a kmaxηB Tav

C1 8× 10−4 1 5123 0.005 34.6 1.59 12.4 1.11 0.0450 1.53 203
C2i 8× 10−4 1/2 5123 0.005 22.8 1.70 11.6 1.12 0.0575 2.16 203
C4i 8× 10−4 1/4 5123 0.005 15.0 1.67 10.1 1.11 0.0768 3.05 314
C8i 8× 10−4 1/8 5123 0.003 9.68 1.52 8.40 1.06 0.107 4.32 129
C16i 8× 10−4 1/16 5123 0.003 6.50 1.30 6.81 0.962 0.170 6.09 129
C32i 8× 10−4 1/32 5123 0.0018 3.94 1.05 5.37 0.815 0.320 8.63 85.0
C64i 8× 10−4 1/64 5123 8.9× 10−4 2.50 0.798 4.31 0.663 0.573 12.2 69.8
C128i 8× 10−4 1/128 5123 4.4× 10−4 1.66 0.562 3.60 0.561 0.815 17.3 25.5
C256i 8× 10−4 1/256 5123 2.2× 10−4 0.912 0.366 3.23 0.502 0.941 24.4 19.6
C512i 8× 10−4 1/512 5123 1.1× 10−4 0.440 0.257 3.13 0.500 0.984 34.1 27.4
C1024i 8× 10−4 1/1024 5123 5.5× 10−5 0.200 0.184 3.09 0.499 0.996 47.5 12.2
C2048i 8× 10−4 1/2048 5123 2.8× 10−5 0.154 0.121 3.03 0.464 0.999 63.3 12.9
C4096i 8× 10−4 1/4096 5123 1.4× 10−5 0.0742 0.130 3.04 0.498 0.9996 82.6 8.37
C2 8× 10−4 2 10243 0.002 54.5 1.46 13.7 1.09 0.0337 2.15 38.8
C4 8× 10−4 4 10243 0.002 79.9 1.22 13.7 1.07 0.0251 1.53 38.8
D1 3× 10−4 1 10243 0.002 57.0 1.57 15.6 1.09 0.0338 1.45 26.8
D2i 3× 10−4 1/2 10243 0.002 38.5 1.79 15.2 1.11 0.0434 2.06 35.0
D4i 3× 10−4 1/4 10243 0.002 26.1 1.85 13.8 1.12 0.0530 2.93 32.9
D8i 3× 10−4 1/8 10243 0.002 17.6 1.78 11.8 1.10 0.0650 4.13 39.1
D16i 3× 10−4 1/16 10243 0.0012 13.7 1.61 9.62 1.07 0.0877 5.83 119
D32i 3× 10−4 1/32 10243 0.0012 9.94 1.37 7.56 0.988 0.133 8.27 131
D64i 3× 10−4 1/64 10243 5.9× 10−4 6.15 1.15 5.96 0.881 0.239 11.3 55.8
D128i 3× 10−4 1/128 10243 3× 10−4 3.77 0.888 4.65 0.736 0.447 15.6 29.8
D256i 3× 10−4 1/256 10243 1.5× 10−4 2.64 0.684 3.96 0.611 0.674 20.8 18.7
D512i 3× 10−4 1/512 10243 7.4× 10−5 1.75 0.507 3.51 0.554 0.839 25.3 11.8
D1024i 3× 10−4 1/1024 10243 3.7× 10−5 1.06 0.345 3.20 0.464 0.951 35.6 4.19

TABLE 3. Parameters and scalar statistics of DNS with various values of Sc for ν = 8×
10−4 (series-C) and 3 × 10−4 (series-D). The description of the parameters and statistics
shown is found in the caption of table 2.

(cf. Schumacher, Sreenivasan & Yeung 2005). This size is visually evident by
comparison with the size of the red cube at the right-hand bottom corner, one
side of which is Lu (figure 2c). Quantitative evidence for this is shown in figure 3
in terms of the variations of Lθ/Lu and λθ/Lu with respect to Peλθ . In accordance
with our visualisation (figure 2), the scalar characteristic length scales Lθ and λθ
increase compared to Lu with decreasing Peλθ . For Reλ≈ 106, Lθ/Lu and λθ/Lu reach
approximately 6 and 2.5, respectively, at Peλθ = 1.06. Overall, similar variations of
Lθ/Lu and λθ/Lu with respect to Peλθ are confirmed for all the Reynolds numbers
shown (Reλ ≈ 7, 29, 63, 106). Note that, as seen in figure 2, we confirm a similar
change of a scalar fluctuation field for decreasing Sc and Peλθ at Reλ ≈ 7, 29,
63. Moreover, it is worth mentioning that no spontaneous formation of large-scale
anisotropic scalar structures is identified when applying a white Gaussian scalar
source (see Watanabe & Gotoh (2004), for details) instead of the uniform mean scalar
gradient. This implies that the mean gradient is one of the key ingredients for the
generation and sustenance of the large-scale anisotropic scalar structures (figure 2c).

Here, the formation mechanism of the large-scale scalar structures when Sc� 1 is
explained as follows. First, blobs of mean scalar with amplitude of O(Γ Lf ), where
Lf = 2π/kf and kf is the characteristic wavenumber of the forcing, are convected in
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FIGURE 1. (a) Time-averaged scalar variance spectra Eθ (k) with three different Schmidt
numbers at Reλ ≈ 106. The red, blue and black curves correspond to Sc = 1, 1/64 and
1/1024, respectively. (b) Time-averaged energy spectra kαEu(k), at Reλ ≈ 106. The red
and black curves correspond to α = 0 and α = −4, respectively. The dashed black, red
and blue lines denote the k−5/3, k−17/3 and k2 power-law slopes, respectively.

the direction parallel to the mean scalar gradient by the velocity fluctuations of the
scale Lu=O(Lf ). Once the convected scalar blobs meet, they quickly merge into larger
blobs due to the large diffusivity with the time scale of L2

f /κ (�Lu/u′=TL). Note that
the fluid blobs do not merge due to the incompressibility. The convection and merging
process of the scalar continue successively and selectively in the direction parallel to
the mean scalar gradient, resulting in the formation of large-scale anisotropic scalar
structures elongated in the direction of the mean gradient (figure 2c).

3.2. Dependences of scalar derivative statistics on Sc and Peλθ
In figure 4, we show the well known scalar derivative statistics: the scalar derivative
skewness and flatness, both of which have been investigated in the literature
(Sreenivasan & Tavoularis 1980; Budwig et al. 1985; Sreenivasan 1991; Holzer
& Siggia 1994; Tong & Warhaft 1994; Mydlarski & Warhaft 1998; Warhaft 2000;
Yeung et al. 2002; Schumacher et al. 2003; Yeung et al. 2004, 2005; Donzis &
Yeung 2010; Yeung & Sreenivasan 2014). In the present study, we compute the
instantaneous skewness and flatness of ∂θ/∂x3, respectively, as

S∂θ/∂x3(t)=

〈(
∂θ

∂x3
−

〈
∂θ

∂x3

〉)3
〉/〈(

∂θ

∂x3
−

〈
∂θ

∂x3

〉)2
〉3/2

, (3.1)

F∂θ/∂x3(t)=

〈(
∂θ

∂x3
−

〈
∂θ

∂x3

〉)4
〉/〈(

∂θ

∂x3
−

〈
∂θ

∂x3

〉)2
〉2

. (3.2)

In all the parameter cases, we confirm that both S∂θ/∂x3(t) and F∂θ/∂x3(t) fluctuate
around their most probable values beyond the initial transient period of time.
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FIGURE 2. Visualisations of instantaneous flow fields of passive scalar turbulence with a
uniform mean scalar gradient. Yellow isosurfaces denote high enstrophy. Cyan isosurfaces
denote scalar fluctuation (θ < 0). Here, Reλ≈ 106. One side of the small red cube placed
in the bottom right-hand corner of the periodic domain is the integral length scale Lu of
velocity fluctuation. (a) Run D1, Sc = 1 and Peλθ = 57.0; (b) run D64i, Sc = 1/64 and
Peλθ = 6.15; (c) run D1024i, Sc= 1/1024 and Peλθ = 1.06.

Figures 4(a1) and 4(b1) demonstrate the dependences of S∂θ/∂x3 and F∂θ/∂x3 on Sc,
respectively, alongside the published data by Yeung et al. (2002, 2004). Our data
and the published data of multiple Reλ demonstrate a qualitatively similar tendency.
As Sc is increased from a very low value, S∂θ/∂x3 first monotonically increases, and
then decreases after reaching a peak (figure 4a1). Another important observation
from figure 4(a1) is that, at Sc = 1, S∂θ/∂x3 takes almost the same value (≈1.5) at
Reλ, greater than or equal to 29. This observation is relevant to the persistence of
non-zero derivative skewness of a passive scalar (Sreenivasan 1991; Tong & Warhaft
1994; Mydlarski & Warhaft 1998). The experiments of grid turbulence under a mean
temperature gradient (Tong & Warhaft 1994; Mydlarski & Warhaft 1998) demonstrated
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FIGURE 3. The Peλθ -dependences of Lθ/Lu (a) and λθ/Lu (b). Blue circles, black squares,
green diamonds and red hexagons indicate the data for Reλ ≈ 7, 29, 63 and 106,
respectively. Horizontal error bars denote the temporal standard deviations of Peλθ (t) and
vertical error bars denote those of Lθ (t)/Lu (a) and λθ (t)/Lu (b). Both Lθ/Lu and λθ/Lu
show near constancy in the low Péclet number range because the scalar structures stop
growing in size due to the domain size limit.
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FIGURE 4. Skewness (a1,a2) and flatness (b1,b2) of scalar derivative ∂θ/∂x3 as functions
of Sc (a1,b1) and Peλθ (a2,b2). Blue circles, black squares, green diamonds and red
hexagons indicate the data for Reλ ≈ 7, 29, 63 and 106, respectively. (a1,b1) Open blue
inverted triangles, Reλ ≈ 8 from Yeung et al. (2004); open black triangles, Reλ ≈ 38 from
Yeung et al. (2002). (a2) Here, S∂θ/∂x3 becomes maximal at Peλθ ≈ 20 at each Reynolds
number. Horizontal and vertical error bars denote the temporal standard deviations of the
corresponding quantities.

that the temperature derivative skewness takes a constant value of approximately 1.4
over a broad range of Reynolds number (up to Reλ ≈ 731), with the Prandtl number
(or Sc) being of order unity. F∂θ/∂x3 is, on the other hand, a monotonically increasing
function of Sc for each Reynolds number (figure 4b1). The increase rate in F∂θ/∂x3 is
observed to grow with increasing Reλ.
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Next, we compare plots of S∂θ/∂x3 with respect to Sc and Peλθ (figures 4a1 and 4a2).
Although the variations of S∂θ/∂x3 with respect to Sc do not collapse for different Reλ
(figure 4a1), when plotted with respect to Peλθ the variations collapse well in the
low Peλθ range (figure 4a2). We also confirm the dependence of F∂θ/∂x3 on Peλθ
(figure 4b2). At much higher Peλθ than unity, the plots with respect to Peλθ for
different Reλ do not collapse onto each other (see figure 4b2). In other words, the
spatio-temporal intermittency of scalar fluctuations is sensitive to Reλ for Peλθ � 1.
The good agreement of plots for the four different Reλ in the low Peλθ range is
due to the decoupling effect between velocity and scalar fluctuation fields, which is
assessed in terms of mixed spectral skewness in § 3.4.

3.3. Peλθ -dependence of small-scale anisotropy of scalar fluctuations
In order to evaluate the degree of small-scale anisotropy of scalar fluctuations, we
compute the ratio of parallel-to-perpendicular scalar-gradient variances, gθ(t), defined
as

gθ(t)= 2
〈
∂θ

∂x3

∂θ

∂x3

〉/[〈
∂θ

∂x1

∂θ

∂x1

〉
+

〈
∂θ

∂x2

∂θ

∂x2

〉]
. (3.3)

Such a quantity has also been studied in the literature (Tong & Warhaft 1994;
Mydlarski & Warhaft 1998; Yeung & Sreenivasan 2014; Hill 2017).

We also use the anisotropy parameter a(t) proposed by Hill (2017), defined as

a(t)=
F(t)+

κ

κT(t)

1+
κ

κT(t)

, (3.4)

where F(t) is defined as

F(t)=
gθ(t)− 1
gθ(t)+ 2

, (3.5)

and κ/κT(t) is calculated using the eddy diffusivity κT(t)= χ(t)/2Γ 2 by

κ

κT(t)
=

2κΓ 2

χ(t)
= Γ 2

/〈
∂θ

∂xi

∂θ

∂xi

〉
=
∂Θ

∂x3

∂Θ

∂x3

/〈
∂θ

∂xi

∂θ

∂xi

〉
. (3.6)

Both gθ(t) and F(t) relate to the small-scale anisotropy of scalar fluctuations,
whereas κ/κT(t) measures the macroscopic effect of the mean scalar gradient on
scalar fluctuations. If small-scale scalar fluctuations become statistically isotropic,
then gθ = 1 and F = 0 (note, however, that the opposite is not necessarily the
case). The eddy diffusivity, κT(t), measures the strength of scalar mixing. The
enhancement of mixing a passive scalar, therefore, results in the increase of κT(t)
relative to κ , i.e., the decrease of κ/κT(t). One may expect that, when κ/κT(t)
is small, small-scale scalar fluctuations are isotropised due to the effective scalar
mixing by the background isotropic flow. When κ/κT(t) is large, on the other hand,
small-scale gradients of scalar field do not develop but the strong molecular diffusion
is balanced by the scalar excitations due to velocity fluctuations in the direction
of the mean scalar gradient, wherein large-scale anisotropic scalar structures are
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FIGURE 5. The Peλθ -dependences of (a) gθ , (b) F, (c) κ/κT and (d) a. Blue circles, black
squares, green diamonds and red hexagons indicate data for Reλ ≈ 7, 29, 63 and 106,
respectively. Horizontal and vertical error bars denote the temporal standard deviations
of the corresponding quantities. (c) The black dashed line shows κ/κT ∝ Pe−2

λθ
(see

appendix A for the derivation of the power-law scaling).

formed (figure 2c). Here, F(t) and κ/κT(t) are contained in the anisotropic parameter
a(t) (3.4), where a(t) is a measure of the ratio of the second-order coefficient (with a
minus sign) to the zero-order coefficient in the Legendre expansion of shell-summed
scalar variance spectral density (see Hill (2017), for details). When κ/κT(t)� |F(t)|
and κ/κT(t)� 1, both numerator and denominator of a(t) are approximately equal to
κ/κT(t), which yields a(t) ≈ 1; in other words, the second-order contribution in the
Legendre expansion becomes almost as significant as the zero-order one. The scalar
fluctuation field accordingly becomes an axisymmetric field that is highly affected by
the mean scalar gradient (Hill 2017).

Figure 5 illustrates Peλθ -dependences of time-averaged values of the quantities
introduced above (i.e., gθ , F, κ/κT , a). The plots of gθ and F for the four different
Reλ collapse well onto a single curve when arranged in terms of Peλθ (see figures 5a
and 5b). There is a zero-crossing point of the curve of F at Peλθ ≈ 7. Below Peλθ ≈ 7,
the scalar gradient fluctuations in the direction of the mean scalar gradient (i.e.,
vertical direction) become weaker than those in the directions perpendicular to it
(horizontal directions), whereas those in the vertical direction become stronger than
those in the horizontal directions above Peλθ ≈ 7. Above Peλθ ≈ 20, where gθ and F
take their local maximal values, the dissipation-scale scalar fluctuations become less
anisotropic with increasing Peλθ , irrespective of Reλ. As Peλθ increases, the effect
of turbulent scalar mixing becomes more significant. Consequently, turbulent scalar
mixing isotropises scalar fluctuations at dissipative scales.

In figures 5(a) and 5(b), we find that gθ and F approach the values of 0.5 and
−0.2, respectively, in the limit of Peλθ→ 0. In this limit, S∂θ/∂x3 and F∂θ/∂x3 approach,
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respectively, the values of 0 and 3 (see figures 4a2 and 4b2). Hence, the probability
density function (p.d.f.) of ∂θ/∂x3 becomes approximately Gaussian; this is also the
case for the p.d.f.s of ∂θ/∂x1 and ∂θ/∂x2 (figure not shown). At very low Peλθ , the
anisotropy of scalar fluctuation measured by gθ and F is maximal, which arises solely
from the kinematic constraint on the velocity correlation function under the negligible
effect of the convective term (see § 3.4). As Peλθ increases, the convective term affects
the anisotropy in a way that makes the p.d.f. of ∂θ/∂x3 positively skewed for moderate
Peλθ and tends to recover its symmetry for high Peλθ (figure 4a2). It should be stressed
that the second-order moment of fluctuation gives the width of the p.d.f., while the
skewness, the third-order moment, measures the asymmetry of the p.d.f. Therefore, the
anisotropy of the scalar gradients can exist even when their skewness is zero. Indeed,
the fluctuations of the scalar gradients at very low Peλθ correspond to the anisotropic
state with zero skewness, symmetric (almost Gaussian) p.d.f.s with different widths,
while those at large Peλθ lead to nearly symmetric (non-Gaussian) p.d.f.s with almost
the same widths, suggesting a nearly isotropic state.

Figure 5(c) shows the Peλθ -dependence of κ/κT . Similarly to gθ and F, the plots of
κ/κT for the four different Reλ are found to collapse well onto a single curve. Here,
κ/κT increases drastically with decreasing Peλθ . The increasing behaviour follows
κ/κT ∝ Pe−2

λθ
in the range of Peλθ . 1, where F becomes a close to the asymptotic

value of −0.2 (figure 5b). Note that the power law κ/κT ∝ Pe−2
λθ

can be derived
with dimensional analysis (see appendix A). The slope observed above Peλθ ≈ 5 is
shallower, which is attributed to the scalar transport by the velocity field. Finally,
we note that the plots of the anisotropy parameter a for the four different Reλ also
collapse well onto a single curve (see figure 5d). The effect of κ/κT in a becomes
more manifest for decreasing Peλθ . As Peλθ is decreased below Peλθ ≈ 5, κ/κT

becomes significantly larger than |F| (i.e., κ/κT � |F|); consequently, a approaches
unity so that the second-order Legendre contribution is almost as significant as the
zero-order one.

Based on figure 5, it is reasonable to consider that the variations of gθ , F, κ/κT and
a are characterised by universal functions of Peλθ , and thus we conclude that Peλθ is a
key parameter to determine the degree of small-scale anisotropy of scalar fluctuations
under a uniform mean scalar gradient.

3.4. Asymptotic behaviour of scalar fluctuations as Peλθ → 0

Having found in figure 5(a) that the value of gθ approaches 0.5 as Peλθ → 0, we
further investigate the asymptotic behaviour of scalar fluctuations. Figure 6 shows
mixed spectral skewness Sθ(t), computed as

Sθ(t)=
2
15

∫
∞

0
k2Tθ(k, t) dk

(ε(t)/15ν)1/2(χ(t)/6κ)
, (3.7)

where Tθ(k, t) is the scalar-variance transfer function appearing in the spectral
equation for the scalar variance (see Watanabe & Gotoh (2004, 2007), for details).
Here, Sθ(t) is a measure of the degree of interaction between velocity and scalar
fluctuation fields (Kerr 1985; Briard & Gomez 2016). Irrespective of the value of
Reλ, −Sθ approaches zero with decreasing Peλθ , where the effect of turbulent scalar
mixing becomes insignificant (figure 6).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

41
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.419


Péclet-number dependence of passive scalar fluctuations 898 A4-15

0.04 0.1 1 5 10 20 40 100 200

Pe¬œ

0.5

0.4

0.3

0.2

0.1

0

-Sœ

Re¬ £ 7
Re¬ £ 29
Re¬ £ 63
Re¬ £ 106

FIGURE 6. Time-averaged mixed spectral skewness −Sθ as a function of Peλθ . Blue
circles, black squares, green diamonds and red hexagons indicate data for Reλ ≈ 7, 29,
63 and 106, respectively. Horizontal error bars denote the temporal standard deviations of
Peλθ (t) and vertical error bars denote those of −Sθ (t).

Based on this behaviour of mixed spectral skewness, we next consider the
asymptotic condition in Fourier space in the limit of Peλθ → 0,

κk2θ̂ (k, t)≈−Γ û3(k, t), (3.8)

where the time-derivative term and convective term are negligibly small. In order to
assess its validity, we introduce the residual function, ∆̂(k, t), as

∆̂(k, t)= θ̂ (k, t)+
Γ

κk2
û3(k, t), (3.9)

and consider the asymptotic behaviour of the spectrum E∆(k, t) of this function,

E∆(k, t)=
∫ 2π

0
dψ
∫ π

0
dφk2 sin φ∆̂(k, t)∆̂(−k, t), (3.10)

in comparison with Eθ(k, t). If E∆(k, t)�Eθ(k, t), then (3.8) holds. Figure 7 shows the
variation of the magnitude relationship between E∆(k) and Eθ(k) with respect to Peλθ ,
for Reλ≈ 69. At moderate Peλθ , E∆(k) is not negligible (see figures 7a and 7b) so that
(3.8) is not applicable. As Peλθ is further decreased, E∆(k) tends to become smaller
relative to Eθ(k). As for run C4096i (figure 7d), in particular, E∆(k) is approximately
two to three orders of magnitude smaller than Eθ(k) at any wavenumber, meaning that
(3.8) is valid. Note that such a tendency with respect to Peλθ is found for the other
Reynolds numbers. The result above is numerical evidence for justifying that (3.8) is
the asymptotic condition in the limit of Peλθ → 0.

Using (3.8), in the following, we analytically derive the asymptotic value of gθ =0.5
as Peλθ → 0, as found in figure 5(a). Here, we may compute gθ as

gθ =
∫∫∫

k2
3|θ̂ |

2(k, t) dk
/∫∫∫

k2
1|θ̂ |

2(k, t) dk. (3.11)
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FIGURE 7. Comparisons between Eθ (k) and E∆(k) at Reλ≈ 69 and four different Schmidt
numbers. (a) Run C1, Sc= 1 and Peλθ = 34.6; (b) run C16i, Sc= 1/16 and Peλθ = 6.50;
(c) run C256i, Sc = 1/256 and Peλθ = 0.912; (d) run C4096i, Sc = 1/4096 and Peλθ =
0.0742.

We calculate the numerator in (3.11) using (3.8) as∫∫∫
k2

3|θ̂ (k, t)|2 dk ≈
Γ 2

κ2

∫∫∫
k2

3

k4
|û3|

2(k) dk

=
Γ 2

κ2

∫∫∫
k2

3

k4
P33(k)Q∗u(k) dk

=
8π

15
Γ 2

κ2

∫
Q∗u(k) dk, (3.12)

where Q∗u(k, t) = Eu(k, t)/(4πk2) is the orientation-averaged energy spectral density.
Similarly to (3.12), we obtain the value of the denominator in (3.11) as∫∫∫

k2
1|θ̂ (k, t)|2 dk ≈ (16π/15)(Γ 2/κ2)

∫
Q∗u(k) dk. Thus, we find that gθ ≈ (8π/15)

(Γ 2/κ2)
∫

Q∗u(k) dk/(16π/15)(Γ 2/κ2)
∫

Q∗u(k) dk= 0.5.

4. Summary and discussion
In the present paper, we have shown that the degree of small-scale anisotropy

of scalar fluctuations, which are convected by homogeneous isotropic turbulence
under a uniform mean scalar gradient, can be well characterised by Peλθ (figure 5).
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We have also demonstrated that large-scale anisotropic scalar structures, which
elongate along the direction of the mean scalar gradient, emerge irrespective of Reλ,
as long as Peλθ is sufficiently low (figure 2c). Despite the anisotropy, the isotropic
part of the scalar variance spectrum has a power-law scaling slightly shallower
than k−17/3. The convection of small-scale scalar fluctuations by the isotropic flow
becomes significantly weaker with decreasing Peλθ below Peλθ ≈ 20, as observed in
the behaviour of mixed spectral skewness (figure 6).

We emphasise that the systematic dependence of anisotropic scalar fluctuation on
a control parameter is found when arranging data in terms of Peλθ , and not Sc, as
shown in figure 5(d). Note that the plots of our data are not better collapsed when
using Peλ = ScReλ rather than Peλθ , suggesting that the use of λθ is essential. Here,
we consider the ratio R of the net convective scalar transport rate to the net diffusive
scalar transport rate, which is formulated based on (2.3) as

R=
(net convective scalar transport rate)
(net diffusive scalar transport rate)

∼
ui∇θ

κ∇2θ
. (4.1)

It should be noted that the gradient and Laplacian operate on the scalar fluctuation
field, not on the velocity field. Since the Batchelor scale does not include any
information about scalar fluctuations, it is reasonable to adopt the scalar Taylor
microscale for characterising the spatial derivatives of scalar field. On the basis of
the derivation of the scalar Taylor microscale, we make the following replacements
in (4.1) as

ui→ u′, ∇θ→
θ ′

λθ
, ∇2θ→

θ ′

λ2
θ

, (4.2a−c)

thereby yielding

R∼
u′θ ′/λθ
κθ ′/λ2

θ

=
u′λθ
κ
= Peλθ . (4.3)

We thus find that, by means of dimensional analysis, the ratio R is transformed into
the Péclet number based on λθ ; λu is irrelevant herein.

In order to obtain a further insight into the role of Peλθ , we express it in terms of
two different time scales as

Peλθ =
λ2
θ/κ

λθ/u′
=
τθ

τuθ
, (4.4)

where τθ = λ
2
θ/κ and τuθ = λθ/u′ are the time scales of scalar diffusion and scalar

convection, respectively, based on λθ . When Peλθ�1 (i.e., τuθ� τθ ), small-scale scalar
fluctuations are effectively convected and smeared out by the velocity field before
diffusing. When Peλθ � 1 (i.e., τuθ � τθ ), on the other hand, the scalar diffusion
process proceeds much more quickly than the scalar transport process. Because of the
action of the rapid scalar diffusion and the uniform mean scalar gradient, large-scale
anisotropic scalar structures emerge opposing the isotropisation due to the transport
by isotropic velocity field. Note that such large-scale anisotropic scalar structures do
not appear when a white Gaussian scalar source is applied as opposed to a uniform
mean scalar gradient. The macroscopic scalar gradient serves as a source of scalar
fluctuations that are convected and diffused to merge into large-scale anisotropic scalar
structures (figure 2c).
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In the present paper, we have investigated anisotropic scalar fluctuation based on
one-point statistics. Having a clear map of variation of small-scale anisotropy of scalar
fluctuations with respect to Peλθ (figure 5d), our analysis will be extended to scale-by-
scale anisotropy of scalar fluctuations using a Legendre polynomial expansion, which
provides the angle dependence of scalar fluctuation at various scales (Gotoh et al.
2011; Hill 2017). We believe that this approach would provide a further insight into
anisotropic scalar fluctuations.
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Appendix A. Derivation of κ/κT ∝ Pe−2
λθ

in the low Péclet number range

Using dimensional analysis, we derive the power law κ/κT ∝ Pe−2
λθ

, which is found
in the low Peλθ range in figure 5(c). We start with the time-averaged balance between
the scalar dissipation rate and the input rate of scalar variance,

χ =−2Γ 〈u3θ〉. (A 1)

Averaging (3.6) over time and then substituting (A 1) into it, we have

κ

κT
=

2κΓ 2

χ
=

2κΓ 2

−2Γ 〈u3θ〉
∼
κΓ

u′θ ′
. (A 2)

When Peλθ is sufficiently low, as discussed in § 3.4, the asymptotic condition (3.8)
holds. This condition, defined in Fourier space, is equivalent to

κ∇2θ(x, t)≈ Γ u3(x, t) (A 3)

in physical space. Manipulating (A 3) using (4.2), we find that

θ ′ ∼
Γ u′λ2

θ

κ
. (A 4)

Then we substitute (A 4) into (A 2), which yields that

κ

κT
∼
κΓ

u′θ ′
∼
κΓ

u′
κ

Γ u′λ2
θ

=

(
κ

u′λθ

)2

= Pe−2
λθ
. (A 5)

It thus follows that
κ

κT
∝ Pe−2

λθ
. (A 6)
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