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ON THE PHASE TRANSITION CURVE
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Abstract

We consider a family of directed exponential random graph models parametrized by edges
and outward stars. Much of the important statistical content of such models is given by
the normalization constant of the models, and, in particular, an appropriately scaled limit
of the normalization, which is called the free energy. We derive precise asymptotics
for the normalization constant for finite graphs. We use this to derive a formula for the
free energy. The limit is analytic everywhere except along a curve corresponding to a
first-order phase transition. We examine unusual behavior of the model along the phase
transition curve.
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1. Introduction

Probabilistic ensembles with one or more adjustable parameters are often used to model
complex networks, including social networks, biological networks, and the internet; see [9],
[10], [16], and [19]. One of the standard complex network models are the exponential random
graph models (ERGMs), originally studied by Besag [4]. We refer the reader to [24], [26], and
[28] for the history and a review of recent developments.

Much of the statistical content of such models can be described by the probability normal-
ization. An appropriately scaled limit of the normalization, which is called the free energy,
is useful for understanding properties of large graphs sampled from ERGMs. The term free
energy comes from an analogous quantity in statistical physics; see Section 1.3. In that setting,
the free energy is used to draw phase diagrams corresponding (for example) to the familiar solid,
liquid, and vapor phases of matter [11]. In the random graph setting, it has recently been used
to understand asymptotic behavior of ERGMs, including singular behavior, e.g. ill-posedness
of parameter fitting problems [6].

The study of the free energy in ERGMs dates to Park and Newman [21], [22], who used
mean-field and other nonrigorous approximations. For early research, see also the references
in [13]. The first rigorous study appeared in Chatterjee and Diaconis [6], who used a large
deviation approach [7]. Radin and Yin [23] used the work of Chatterjee and Diaconis to
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Phase transition curve 273

formalize the notion of phases for ERGMs, explicitly computing phase diagrams for a family
of two-parameter models. A similar three-parameter family was studied by Yin [30].

We consider a family of directed exponential random graphs parametrized by edges and
outward directed p-stars. Versions of this model in which edges and outward directed p-stars
are held fixed, instead of controlled by a parameter, were studied in [2]. Such models are
standard and important in the literature of social networks; see, e.g. [14] and [17] and the
references therein. Many complex networks have directed structures. Examples include email
networks and social networks. In email networks, just because user Bob’s email address appears
in user Alice’s address book does not necessarily mean that the reverse is also true, although
it often is; see, e.g. [20]. In social networks, when two users Alice and Bob interact as peers,
one expects that messages will be exchanged between them in both directions. However, if
user Alice sends messages to user Bob, who is a celebrity or news source, it is likely that user
Bob will not send messages in return; see, e.g. [8]. In this paper we consider the statistics of
edges and outward directed p-stars for two main reasons. First, this is the model that is more
analytically tractable than the more general directed ERGMs, and the main results we obtain in
this paper rely on the special properties of this model. Second, our directed ERGM with edge
and outward directed p-stars has a nice microeconomic interpretation, which can be viewed as
the long-run equilibrium of a game in which the players are maximizing their own utilities. We
will describe this in more detail in Section 1.2.

For directed graphs, the results of Chatterjee and Diaconis [6] and Radin and Yin [23]
do not directly apply, as the large deviation techniques they used have been developed only
for undirected graphs. Instead of adapting these techniques to the directed case, we use more
direct methods which lead to more precise asymptotics. In particular, we are able to completely
characterize the phase behavior of our models. The phase diagram we obtain, with a first-order
phase transition and a critical point, is nearly identical to that found in the undirected case [23].
But because our asymptotics are more precise, we can go beyond results of the type in [23] by
studying the phase transition curve itself.

The limitation of our model is that it concerns the edge and outward directed p-stars, rather
than the more general statistics in the more general directed ERGMs. Our method and results
cannot be applied to the undirected ERGM either. It would certainly be very interesting
mathematically to pursue the similar results as obtained in this paper for the more general
directed ERGMs or undirected ERGMs, although it might be a huge challenge and an open
problem in terms of mathematics. We study our particular model because of its analytical
tractability and exact solvability. At least for this special model, we can study and understand
the precise asymptotics rigorously and completely.

1.1. The model

We consider the following ERGM. Fix p ≥ 2. For a directed graph X on n nodes and real
parameters β1, β2, define

Pn,β1,β2(X) ∼ exp

(
β1E(X)+ p!β2

np−1 S(X)

)
, (1)

where E(X) := ∑
i,j Xij and S(X) := (1/p!)∑i,j1,...,jp

Xij1Xij2 · · ·Xijp are, respectively,
the number of directed edges and outward directed p-stars in X, and ‘∼’ denotes equality up
to a normalization constant. We consider only directed graphs without duplicate edges, though
loops will be allowed.

The following reformulation of (1) will be useful. A simple directed graph X on n nodes is
given by its adjacency matrix X = (Xij )1≤i, j≤n with each Xij ∈ {0, 1}. Here, Xij = 1 means
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there is a directed edge from node i to node j ; otherwise,Xij = 0. Note that we allowXii = 0
or 1, corresponding to the absence or presence, respectively, of a loop at node i. Define

e(X) = n−2
∑

1≤i, j≤n
Xij , s(X) = n−p−1

∑
1≤i, j1,j2,...,jp≤n

Xij1Xij2 · · ·Xijp .

Observe that
e(X) = n−2E(X), s(X) = p! n−p−1S(X).

(Note that we have allowed loops to contribute to p-stars; this is a minor point because the
number of loops is of lower order than the number of directed edges.) We think of e(X) and
s(X) as homomorphism densities. That is, e(X) is the probability that a random function from
a directed edge into X is a homomorphism, i.e. an edge-preserving map between the vertex
sets. Similarly, s(X) is the probability that a random function from an outward directed p-star
into X is a homomorphism. See [6] for more details. With this notation, we rewrite (1) as

Pn,β1,β2(X) = Zn(β1, β2)
−1 exp[n2(β1e(X)+ β2s(X))], (2)

with Zn(β1, β2) the normalization constant. We will study

ψn(β1, β2) = n−2 logZn(β1, β2)

as well as its limit
ψ(β1, β2) := lim

n→∞ψn(β1, β2).

We refer to ψ(β1, β2) as the free energy. It is important for understanding the structure and
statistical properties of the model. In particular, first-order partial derivatives of ψ with respect
to β1 and β2 correspond to the limiting edge and star densities in the model. Similarly, second-
order partial derivatives correspond to the limiting edge and star variances. Consequently,
singularities of ψ(β1, β2) correspond to singular behavior in the model as the parameters
vary. For instance, a singularity in a first-order partial derivative of ψ corresponds to a jump
discontinuity of the limiting edge/star densities as β1, β2 vary across the singularity.

We find below that the first derivative of ψ is singular along a certain curve in the (β1, β2)

plane. This curve has an endpoint, at which the second derivative of ψ is singular. A similar
singularity has been found in the undirected version of the model; see [23]. Our results are
novel because, in contrast with the undirected case, we are able to obtain sharp asymptotics
for ψn and its partial derivatives at finite n. This allows us to make precise statements about the
nature of the singularity in the model. In particular, we can describe the scaling of edge and star
variances along the singularity. We explore this in detail in Sections 1.3 and 1.4 by using an
analogy with the grand canonical ensemble in statistical physics, an exponential family similar
to (2). See also [23] for a similar discussion.

1.2. Network formation

In this section we consider a microeconomic model of network formation that will be seen
to converge in the long-run to the directed ERGM model that we propose. Similar network
formation models in economics literature which convergence to the equilibrium of ERGMs can
be found in, e.g. [3], [5], and [17].

Consider n players and if there is a link from player i to player j , we have Xij = 1 and 0
otherwise. For simplicity, we assume that Xii = 0 always. The link from player i to player j
can be interpreted as an email message, or the invitation to an event in a social network. Note
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that an email message may not get replied to, and an invitation may not get accepted. Thus, it
fits into the directed network setting. For player i, we define his/her utility function as

ui(X) =
n∑
j=1

β1Xij +
∑

1≤j1, j2,...,jp

β2

np−1Xij1 · · ·Xijp .

In this setting, player i will have an incentive β1 to form a link to any other player j and will have
an incentive β2/n

p−1 to form links simultaneously to p players j1, . . . , jp. We suppose that β1
is positive and β2 is negative. That means there is a positive incentive to invite/message your
friends, but there is a negative incentive to invite/message p friends or more simultaneously.
That can be explained as the incentive to be sociable but not overly sociable.

Over a long period of time, we assume that at each (discrete) time, a player i updates Xij ,
j 	= i, to maximize his/her utility, and before player i updates the links, he/she receives an
idiosyncratic shock to his/her preferences that the econometrician cannot observe. The shocks
are assumed to be independent and identically distributed (i.i.d.) logistic shocks among players
and across time, which is a standard assumption in economics and statistics; see, e.g. [27].
Under these assumptions, the network formation process evolves according to a Markov chain
which is irreducible and aperiodic and, hence, as time goes to ∞ it converges to an equilibrium
with a stationary distribution. In the absence of random shocks, the network formation process
will converge to a Nash network as time goes to ∞, where a Nash network is a network in which
a player has no profitable deviations from his/her current linking strategy. The random shock
models unobservables that could influence the utility of additional links; see, e.g. [17]. As time
evolves, the network will converge to an equilibrium (see, e.g. [5] and [17], and the derivations
follow the same arguments as in Appendix A of [17]) in which the stationary probability of
observing a particular network configuration X is given precisely by

Zn(β1, β2)
−1 exp

[
β1

∑
i,j

Xij + β2

np−1

∑
i,j1,...,jp

Xij1 · · ·Xijp
]
,

which is the directed ERGM model we defined in (2), where the exponent

β1

∑
i,j

Xij + β2

np−1

∑
i,j1,...,jp

Xij1 · · ·Xijp

is known as the potential function in the economics literature, which is the combined utility
of n players.

For econometricians, it is crucial to understand how to estimate the parameters β1, β2 from
real-world data. Note that the normalizing constant Zn(β1, β2) and, hence, ψn(β1, β2) depend
on the parameters β1, β2 to be estimated, which brings a challenge to the maximum likelihood
estimation method. The Markov chain Monte Carlo (MCMC) method has been proposed for
the estimation; see, e.g. [25]. But the MCMC method becomes computationally expensive for
large networks of size n. The alternative approach developed in recent years is the variational
inference, by directly computing and analyzing the constant ψn(β1, β2) as n → ∞, see,
e.g. [18], which will be the focus for the rest of this paper.

1.3. The grand canonical ensemble and phase transitions

To explain how our results fit into the phase diagram framework of [23], we compare our
model (2) with the grand canonical ensemble from statistical physics, which describes the
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statistical properties of matter in thermal equilibrium [12]. We consider the grand canonical
ensemble defined by, for Y ⊂ [−n/2, n/2]d with d = 2 or 3,

Pn,β,μ(Y ) = Zn(β, μ)
−1 exp(nd [βμN (Y )− βE(Y )]),

where μ is the chemical potential, and β = 1/(kBT ) with T denoting temperature and kB
Boltzmann’s constant. Here Zn(β, μ) is the normalization constant. Each element of Y
represents a particle, with N (Y ) = |Y |/nd the density of Y , and E(Y ) the energy per volume
of Y . A standard fact in statistical physics is that average physical properties of the model can
be obtained from

ψn(β, μ) := n−d logZn(β, μ).

In particular, the average and variance of N (Y ) and E(Y ), or, more generally, all of their
moments, can be obtained by differentiating ψn(β, μ) with respect to β or μ. Usually, n is
very large and it is appropriate to consider

ψ(β,μ) := lim
n→∞ψn(β, μ),

which exists under appropriate conditions on E . One utility of this limit is that

lim
n→∞

∂i+j

∂βi∂μj
ψn(β, μ) = ∂i+j

∂βi∂μj
lim
n→∞ψn(β, μ) = ∂i+j

∂βi∂μj
ψ(β, μ) (3)

whenever i, j are such that the derivative on the right-hand side exists [29]. This means that,
in the limit n → ∞, moments of N (Y ) and E(Y ) can be computed directly from ψ(β,μ),
provided the appropriate partial derivatives of ψ(β,μ) exist.

The limitψ(β,μ) is key to understanding phases of matter. In particular, when E is suitably
chosen,ψ(β,μ) is analytic except along two curves with an endpoint. These curves correspond
to the physical transitions between solid, liquid, and vapor phases, colloquially known as
freezing, melting, boiling and sublimating. The endpoint of these curves is called the critical
point [11]. See Figure 1(a). These transitions are first order, meaning the first derivative of
the free energy has a jump discontinuity across the transition curve. On the phase transition
curve there are coexisting phases of high and low density, and, thus, a nonvanishing variance
of N (Y ) and E(Y ) in the limit n → ∞.

Unfortunately, rigorous analysis of ψ(β,μ) is difficult. Though the statements in the
previous paragraph are widely believed and supported by numerical experiments, proofs are
possible only in very special cases [15]. On the other hand, analysis of the ERGM free energy
ψ(β1, β2) is relatively tractable. Indeed, we show thatψ(β1, β2) exhibits behavior very similar
to what is conjectured for the grand canonical free energy ψ(β,μ).

1.4. Singularities of the ERGM free energy

We show that ψ(β1, β2) is analytic except along a certain curve, which we call the phase
transition curve. The curve has an endpoint, which we call the critical point. We prove that
on the phase transition curve, but away from the critical point, the first-order partial derivatives
of ψ(β1, β2) have a jump discontinuity. Moreover, at the critical point, the first-order partial
derivatives of ψ(β1, β2) are continuous but the second-order derivatives diverge. Precisely the
same behavior is believed to occur on the liquid–vapor transition curve in the grand canonical
ensemble. See Figure 1.
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Figure 1: Simple phase diagrams in (a) the grand canonical ensemble, and (b) the ERGM model.
The critical point is labeled with a ‘∗’.

To understand these singularities better, consider the following. Just as in (3),

lim
n→∞

∂

∂βi
ψn(β1, β2) = ∂

∂βi
ψ(β1, β2), i ∈ {1, 2},

lim
n→∞

∂2

∂βi∂βj
ψn(β1, β2) = ∂2

∂βi∂βj
ψ(β1, β2), i, j ∈ {1, 2},

(4)

if the derivatives on the right-hand side exist. The commuting of limits follows from very general
arguments ofYang and Lee [29]. Though their proof is written in the statistical mechanics setting
of Section 1.3, their arguments go through without any difficulties in our case. See also [23]
for remarks on this issue in the undirected graph setting.

Next, from simple computations,

∂

∂β1
ψn(β1, β2) = En[e(X)], ∂

∂β2
ψn(β1, β2) = En[s(X)],

∂2

∂β2
1

ψn(β1, β2) = n2 varn(e(X)),
∂2

∂β2
2

ψn(β1, β2) = n2 varn(s(X)),

∂

∂β1∂β2
ψn(β1, β2) = ∂

∂β2∂β1
ψn(β1, β2) = n2 covn(e(X), s(X)).

(5)

Thus, a jump discontinuity in ∂ψ(β1, β2)/∂β1 (respectively, ∂ψ(β1, β2)/∂β2) along the transi-
tion curve implies a jump in the average value of e(X) (respectively, s(X)) across the curve in
the limit n → ∞. Similarly, at the critical point, divergence of ∂2ψ(β1, β2)/∂β

2
1 (respectively,

∂2ψ(β1, β2)/∂β
2
2 ) implies that the variance of e(X) (respectively, s(X)) decays more slowly

than n−2. Away from the transition curve, all partial derivatives of ψ(β1, β2) of all orders exist
and are finite, so, in particular, the variance of e(X) and s(X) decays at least as fast as n−2.
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More detailed statements would require an analysis ofψn(β1, β2) for finite n; this is much more
difficult to study than the limit ψ(β1, β2). See [6] and [23] for an analysis of the free energy in
the undirected version of the model.

In the context of social networks (Section 1.2), the quantities computed in (5) reveal the
statistics of the network at its long-run equilibrium. For instance, En[e(X)] denotes the average
number of outward links from an average player. The existence of phase transitions tells us
that as the direct benefit, β1 and β2, that a player receives in his/her utility vary smoothly, many
important statistics of the network, and, hence, the network structure at its long-run equilibrium,
may vary nonsmoothly.

Our results rely on new and precise asymptotics for ψn(β1, β2) and its partial derivatives.
We use our asymptotics to calculateψ(β1, β2) and the scaling of the variance/covariance of e(X)
and s(X) on the phase transition curve. The formula for ψ(β1, β2) resembles the analogous
free energy in the undirected version of the model. However, the behavior of our model along
the phase transition curve is qualitatively different from the undirected case; see the discussion
after Theorem 6 below.

To the best of the authors’ knowledge, the study of scaling on the transition curve has not
been carried out before, in either the directed or undirected versions of the model. (This is
because the scaling cannot be computed from ψ(β1, β2) alone, as (4) does not hold along the
phase transition curve.) We find that the variances of e(X) and s(X) vanish on the transition
curve as n → ∞, while the edge probability between fixed nodes is a Bernoulli random variable
whose parameter is a convex combination of the expected values of e(X) just above and below
the curve. Combining these results, we show below that large graphs do not resenble Erdős–
Rényi random graphs with a binary distributed parameter; that is, the first-order phase transition
does not correspond to phase coexistence in the usual sense. This is unexpected in light of the
statistical physics analogy above. See the discussion below Theorem 7.

The remainder of this paper is organized as follows. Our main results are stated in Section 2.
The results are obtained by estimates, stated in Section 3, which allow for a precise computation
of ψn(β1, β2) and derivatives thereof. All proofs are in Section 4.

2. Notation and results

Our main results rely on the following trick. Observe that we can rewrite

e(X) = n−2
n∑
i=1

( n∑
j=1

Xij

)
, s(X) = n−p−1

n∑
i=1

( n∑
j=1

Xij

)p
,

where
∑n
j=1Xij , i = 1, . . . , n, are independent random variables. Thus, we can calculate

Zn(β1, β2), and, hence, also ψn(β1, β2), as ‘one-dimensional’ objects. See Proposition 1
below for details. Our analysis will depend heavily on the function

�(x) := β1x + β2x
p − x log x − (1 − x) log(1 − x).

It is easy to see that � is analytic in (0, 1) and continuous on [0, 1]. Note that � is essentially
identical to the function of the same name studied in [23]: after multiplying β1 and β2 by 2,
the functions differ only by a constant. This allows us to use results from [23] relating to �.

Our first result is the following formula for the free energy.

Theorem 1. For any β1, β2 as n → ∞, we have

ψn(β1, β2) = max
x∈[0,1] �(x)+O(n−1 log n).
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In particular, letting n → ∞, we obtain

ψ(β1, β2) = max
x∈[0,1] �(x).

Essentially the same formula holds in the undirected case [23]. Thus, the phase diagram for our
model is the same as in the undirected version, after multiplying β1 and β2 by 2. The following
result from [23] can be used to characterize the curve along which ψ(β1, β2) is singular.

Theorem 2. (Radin and Yin [23].) There is a certain curve in the (β1, β2)-plane with the
endpoint

(βc1, β
c
2) =

(
log(p − 1)− p

p − 1
,
pp−1

(p − 1)p

)
,

such that off the curve and at the endpoint, � has a unique global maximizer x∗ ∈ (0, 1),
while on the curve away from the endpoint, � has two global maximizers, x∗

1 and x∗
2 , with

0 < x∗
1 < (p − 1)/p < x∗

2 < 1.

The curve in Theorem 2 will be called the phase transition curve and written β2 = q(β1).
The endpoint will be called the critical point. Though our free energy ψ(β1, β2) is essentially
the same as its undirected counterpart, the behavior of our model on the phase transition curve
is qualitatively different from the undirected version, as we will see below.

It is not possible to write an explicit equation for the phase transition curve in general; see [23]
for a graph obtained numerically. However, in [23] it was shown that q(β1) is continuous and
decreasing in β1, with limβ1→−∞ |q(β1)+β1| = 0. We have the following more precise result.

Theorem 3. (i) It holds that q(β1) is differentiable for β1 < βc1 with

q ′(β1) = − x∗
1 − x∗

2

(x∗
1 )
p − (x∗

2 )
p
< 0.

In particular,

lim
β1→βc1

q ′(β1) = − pp−2

(p − 1)p−1 and lim
β1→−∞ q

′(β1) = −1.

(ii) It holds that q(β1) is convex in β1.

When p = 2, along the line β1 + β2 = 0 the function � is symmetric around 1
2 . It follows

that x∗
1 + x∗

2 = 1 along this line, so Theorem 3 implies that �(β1) = −β1. See Figure 2(a).
In the following theorems we obtain the scaling of the variance and covariance of e(X)

and s(X). See [23] for computations of these quantities off the phase transition curve in
the undirected graph case. Here we compute the scaling of the variance and covariance
at all (β1, β2), including on the phase transition curve and at the critical point. On the
transition curve, we use precise asymptotics for partial derivatives of ψn(β1, β2) to obtain the
scalings. We emphasize that such asymptotics cannot be obtained directly from large deviations
techniques of the type used in [6] and [23].

Theorem 4. Off the phase transition curve,

lim
n→∞

∂2

∂β2
1

ψn(β1, β2) = ∂2

∂β2
1

lim
n→∞ψn(β1, β2) = 1

|�′′(x∗)| .
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Figure 2: (a) The graph of the phase transition curve β2 = q(β1) when p = 2, with the critical point
labeled by ∗. (b)–(d) Scaling of the variance of e(X), (b) off the phase transition curve, (c) on the phase
transition curve away from the critical point, and (d) at the critical point. For (b)–(d) we use p = 2 and
(β1, β2) values of (− 3

2 ,
3
2 ), (−2, 2) and (− 5

2 ,
5
2 ), respectively. The straight lines are obtained from the

scaling in Theorem 4, and the squares are obtained by Monte Carlo simulation.

On the phase transition curve except at the critical point,

lim
n→∞

1

n

∂2

∂β2
1

ψn(β1, β2) = (x∗
1 − x∗

2 )
2
√
x∗

1 (1 − x∗
1 )|�′′(x∗

1 )|
√
x∗

2 (1 − x∗
2 )|�′′(x∗

2 )|

×
(√
x∗

1 (1 − x∗
1 )|�′′(x∗

1 )| +
√
x∗

2 (1 − x∗
2 )|�′′(x∗

2 )|
)−2

.
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At the critical point,

lim
n→∞

1

n1/2

∂2

∂β2
1

ψn(β1, β2) = �(3/4)

�(1/4)

2
√

6(p − 1)

p5/2
.

Theorem 5. Off the phase transition curve,

lim
n→∞

∂2

∂β2
2

ψn(β1, β2) = ∂2

∂β2
2

lim
n→∞ψn(β1, β2) = p2(x∗)2p−2

|�′′(x∗)| .

On the transition curve except at the critical point,

lim
n→∞

1

n

∂2

∂β2
2

ψn(β1, β2) = ((x∗
1 )
p − (x∗

2 )
p)2

√
x∗

1 (1 − x∗
1 )|�′′(x∗

1 )|
√
x∗

2 (1 − x∗
2 )|�′′(x∗

2 )|

×
(√
x∗

1 (1 − x∗
1 )|�′′(x∗

1 )| +
√
x∗

2 (1 − x∗
2 )|�′′(x∗

2 )|
)−2

.

At the critical point,

lim
n→∞

1

n1/2

∂2

∂β2
2

ψn(β1, β2) = 2
√

6�(3/4)

�(1/4)

(p − 1)2p−1

p2p−3/2 .

Theorem 6. Off the phase transition curve,

lim
n→∞

∂2

∂β1∂β2
ψn(β1, β2) = ∂2

∂β1∂β2
lim
n→∞ψn(β1, β2) = p(x∗)p−1

|�′′(x∗)| .

On the transition curve except at the critical point,

lim
n→∞

1

n

∂2

∂β1∂β2
ψn(β1, β2)

= ((x∗
1 )
p − (x∗

2 )
p)(x∗

1 − x∗
2 )

√
x∗

1 (1 − x∗
1 )|�′′(x∗

1 )|
√
x∗

2 (1 − x∗
2 )|�′′(x∗

2 )|

×
(√
x∗

1 (1 − x∗
1 )|�′′(x∗

1 )| +
√
x∗

2 (1 − x∗
2 )|�′′(x∗

2 )|
)−2

.

At the critical point,

lim
n→∞

1

n1/2

∂2

∂β1∂β2
ψn(β1, β2) = 2

√
6�(3/4)

�(1/4)

(p − 1)p

pp+1/2 .

See Figure 2 for a comparison of these results with Monte Carlo simulation. By Theorems 4
and 5, and (5), the variances of e(X) and s(X) are of order n−2 off the transition curve, of order
n−1 on the phase transition curve away from the critical point, and of order n−3/2 at the critical
point. In particular, the variances of e(X) and s(X) vanish on the transition curve as n → ∞.

Theorem 7. Off the phase transition curve and at the critical point,

lim
n→∞ Pn(X12 = 1) = x∗.

On the phase transition curve except at the critical point,

lim
n→∞ Pn(X12 = 1) = αx∗

1 + (1 − α)x∗
2 ,
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where

α :=
√
x∗

2 (1 − x∗
2 )|�′′(x∗

2 )|√
x∗

1 (1 − x∗
1 )|�′′(x∗

1 )| + √
x∗

2 (1 − x∗
2 )|�′′(x∗

2 )|
. (6)

To put our results in perspective, we compare with the undirected case. Since the behavior
of the directed and undirected models off the phase transition curve is similar, our discussion
focuses on the models on the phase transition curve.

In the undirected case (see Theorem 3.4 of [23]), on the phase transition curve away from
the critical point, for large n a typical graph looks like a sample from G(n, p∗), where p∗ is
a distribution on the two global maximizers x∗

1 < x∗
2 of �. This distribution was not specified

in [23]. However, it is easy to check that the proof of Theorem 7 goes through for undirected
graphs. In particular, since α ∈ (0, 1) and x∗

1 < x∗
2 , the distribution of p∗ is nontrivial (i.e.

not deterministic), which indicates phase coexistence. Since, for large n, a graph looks like a
sample from eitherG(n, x∗

1 ) orG(n, x∗
2 ), both with positive probability, the variances of e(X)

and s(X) do not vanish. This is expected along first-order phase transitions, as discussed in
Section 1.4.

The situation in our directed graph model is qualitatively different. Let G(n, p) be the
directed Erdős–Rényi graph on n nodes, in which there is a directed edge between each ordered
pair of nodes with probability p. Along the phase transition curve, since the variances of
e(X) and s(X) vanish as n → ∞, a typical large graph in our model does not behave like
G(n, p∗) with p∗ sampled from a nontrivial distribution on x∗

1 and x∗
2 . Thus, there is no phase

coexistence in the sense described above. We do not have a more precise result about graph
structure along the transition curve, but we suspect the following is true. For large n, on the
phase transition curve away from the critical point, a typical graph is ‘bipodal’: there is a node
set of size approximately equal to αn in which each node has an outward edge to any other
node with probability approximately equal to x∗

1 , and another node set of size approximately
equal to (1 − α)n in which each node has an outward edge to any other node with probability
approximately equal to x∗

2 . Indeed, a similar result was obtained for a closely related model [2].
See also [1].

Finally, we obtain the asymptotics of the joint distribution of two directed edges, e.g. X12
and X34, or X12 and X13.

Theorem 8. (i) Off the phase transition curve and at the critical point,

lim
n→∞ Pn(X12 = 1, X34 = 1) = (x∗)2.

On the phase transition curve except at the critical point,

lim
n→∞ Pn(X12 = 1, X34 = 1) = (αx∗

1 + (1 − α)x∗
2 )

2,

where α is defined in (6).

(ii) Off the phase transition curve and at the critical point,

lim
n→∞ Pn(X12 = 1, X13 = 1) = (x∗)2.

On the phase transition curve except at the critical point,

lim
n→∞ Pn(X12 = 1, X13 = 1) = α(x∗

1 )
2 + (1 − α)(x∗

2 )
2,

where α is defined in (6).
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Remark 1. (i) The result in Theorem 8(i) holds for any limn→∞ Pn(X1i = 1, Xjk = 1) as
long as j 	= 1 and i 	= 1, k 	= j .

(ii) The formulas for limn→∞ Pn(X12 = 1, X34 = 0), limn→∞ Pn(X12 = 1, X13 = 0), and so
on follow directly from Theorem 7 and Theorem 8.

(iii) From the results in Theorem 8, we see that two distinct edges are asymptotically independent
off the phase transition curve and at the critical point, and if two directed edges do not share
the same root, then they are asymptotically independent even at the critical point.

3. Key estimates

First we have the following formula for the normalization Zn(β1, β2).

Proposition 1. Let W be a binomial random variable with parameters n and 1
2 :

P(W = i) = 2−n
(
n

i

)
.

Then

Zn(β1, β2) = 2n
2
(

E

[
exp

(
β1W + β2

np−1W
p

)])n
.

Next we approximate the expectation in Proposition 1 in terms of an integral.

Proposition 2. LetW be a binomial random variable with parameters n and 1
2 . Then, for any

r < 1,

E

[
Wk exp

(
β1W + β2

np−1W
p

)]

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
(1 +O(n1/2−r ))nk2−n

√
n

2π

∫ 1

0

√
x2k

x(1 − x)
en�(x) dx, (β1, β2) 	= (βc1, β

c
2),

(1 +O(n1/4−r ))nk2−n
√
n

2π

∫ 1

0

√
x2k

x(1 − x)
en�(x) dx, (β1, β2) = (βc1, β

c
2).

Finally, we provide a technical lemma for computing the integral in Proposition 2.

Proposition 3. Let f be an analytic function in (0, 1)with Taylor expansion at c ∈ (0, 1) given
by

f (x) = d0(c)+ d1(c)(x − c)+ d2(c)(x − c)2 + · · · dj (c) := f (j)(c)

j ! .

For c ∈ (0, 1), define

bk(c) = �k(c)

k! , αk(c) = �

(
k

2

)
|b2(c)|−k/2, γk(c) = 1

2
�

(
k

4

)
|b4(c)|−k/4.

Assume that f (x) en�(x) ∈ L1[0, 1] for each n. Then as n → ∞, we have the following.

(i) Off the phase transition curve,∫ 1

0
f (x) en�(x) dx = en�(c) [n−1/2d0α1 + n−3/2
+O(n−5/2)],
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where

 := d2α3 + d1b3α5 + d0b4α5 + 1

2d0b
2
3α7

with c = x∗ the unique maximizer of �, and dj = dj (c), bj = bj (c), αj = αj (c).

(ii) On the phase transition curve except at the critical point,∫ 1

0
f (x) en�(x) dx = en�(c) [n−1/2(d0(c1)α1(c1)+ d0(c2)α1(c2))+O(n−3/2)],

where c1 and c2 are the maximizers of �.

(iii) At the critical point,∫ 1

0
f (x) en�(x) dx = en�(c)[n−1/4d0γ1 + n−3/4�+O(n−5/4)],

where
� := d2γ3 + d1b5γ7 + d0b6γ7 + 1

2d0b
2
5γ11

with c = x∗ the unique maximizer of �, and dj = dj (c), bj = bj (c), γj = γj (c).

Note that this strategy allows for a relatively precise computation of Zn(β1, β2). Unfortu-
nately, arbitrary precision cannot be achieved, due to the error inherent in the sum to integral
approximation of Proposition 2.

4. Proofs

Before turning to the proofs of the theorems of Section 2, we will prove the estimates from
Section 3. The following result will be needed in almost all of our proofs.

Proposition 4. Off the phase transition curve,

�′(x∗) = 0, �′′(x∗) < 0.

On the phase transition curve except at the critical point,

�′(x∗
1 ) = �′(x∗

2 ) = 0, �′′(x∗
1 ) < 0, �′′(x∗

2 ) < 0.

At the critical point,

�′(x∗) = �′′(x∗) = �′′′(x∗) = 0, �(4)(x∗) = −p5

(p − 1)2
< 0.

Proof. It is straightforward to compute that

�′(x) = β1 + pβ2x
p−1 − log

(
x

1 − x

)
,

�′′(x) = p(p − 1)β2x
p−2 − 1

x
− 1

1 − x
,

�′′′(x) = p(p − 1)(p − 2)β2x
p−3 + 1

x2 − 1

(1 − x)2
,

�(4)(x) = p(p − 1)(p − 2)(p − 3)β2x
p−4 − 2

x3 − 2

(1 − x)3
.

Since limx→0+ �′(x) = +∞ and limx→1− �′(x) = −∞, the maximum is achieved at a local
maximum, and we have �′(x∗) = 0.
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We first show that �′′(x∗) < 0 off the critical point (where x∗ denotes either x∗
1 or x∗

2 if
we are on the phase transition curve). Following the proof of Proposition 3.2 of [23], we first
analyze the properties of �′′(x). We can write �′′(x) as

�′′(x) = xp−2p(p − 1)

[
β2 − 1

p(p − 1)xp−1(1 − x)

]
.

Consider the function

m(x) := 1

p(p − 1)xp−1(1 − x)
.

It is easy to observe that m(x) ≥ pp−1/(p − 1)p and the equality holds if and only if x =
(p − 1)/p.

(i) If β2 < pp−1/(p − 1)p, �′′(x) < 0 on [0, 1] and, in particular, �′′(x∗) < 0.

(ii) If β2 > pp−1/(p − 1)p, there exist 0 < x1 < (p − 1)/p < x2 < 1 so that �′′(x) < 0
on 0 < x < x1, �′′(x) > 0 on x1 < x < x2, and �′′(x) < 0 on x2 < x < 1. Moreover,
�′′(x1) = �′′(x2) = 0. If �′(x1) ≥ 0, �(x) has a unique local and, hence, global maximizer
x∗ > x2; if �′(x2) ≤ 0, �(x) has a unique local and, hence, global maximizer x∗ < x1.
Finally, if �′(x1) < 0 < �′(x2) then �(x) has two local maximizers x∗

1 and x∗
2 so that

x∗
1 < x1 < (p − 1)/p < x2 < x∗

2 . Since �′′ vanishes only at x1 and x2, we have proved
that �′′(x∗) < 0.

(iii) If β2 = pp−1/(p − 1)p, �′′(x) ≤ 0 on [0, 1] and �′′(x) = 0 if and only if x = (p − 1)/p
by the properties of m(x). Therefore, �′′(x∗) = 0 if and only if x∗ = (p − 1)/p. Since
�′(x∗) = 0, x∗ = (p − 1)/p if and only if

β1 = −p pp−1

(p − 1)p

(
p − 1

p

)p−1

+ log

(
(p − 1)/p

1 − (p − 1)/p

)
= βc1 .

Hence, �′′(x∗) < 0 off the critical point and �′′(x∗) = 0 at the critical point.

Furthermore, at the critical point (β1, β2) = (βc1, β
c
2), we can compute

�′′′(x∗) = p(p − 1)(p − 2)
pp−1

(p − 1)p
(p − 1)p−3

pp−3 + p2

(p − 1)2
− p2 = 0.

Moreover,

�(4)(x∗) = p(p−1)(p−2)(p−3)
pp−1

(p − 1)p
(p − 1)p−4

pp−4 − 2p3

(p − 1)3
−2p3 = −p5

(p − 1)2
< 0.

This completes the proof. �
The next three proofs are for the results in Section 3.

Proof of Proposition 1. Let Y = (Yij )1≤i, j≤n be an n× nmatrix of i.i.d. Bernoulli random
variables:

P(Yij = 0) = 1
2 = P(Yij = 1).

For i = 1, . . . , n, define

Wi =
n∑
j=1

Yij .
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Then

Zn(β1, β2) = 2n
2
E[exp(n2(β1e(Y )+ β2s(Y )))]

= 2n
2
E

[
exp

( n∑
i=1

β1Wi + β2

np−1W
p
i

)]

= 2n
2
E

[ n∏
i=1

exp

(
β1Wi + β2

np−1W
p
i

)]

= 2n
2

n∏
i=1

E

[
exp

(
β1Wi + β2

np−1W
p
i

)]

= 2n
2
(

E

[
exp

(
β1W + β2

np−1W
p

)])n
. �

Proof of Proposition 2. We will prove only the k = 0 case, as the other cases are easy
extensions. Observe that

E

[
exp

(
β1W + β2

np−1W
p

)]
= 2−n

n∑
i=1

(
n

i

)
exp

(
β1i + β2

np−1 i
p

)
.

Using the fact that, for all n ≥ 1,

n log n− n+ 1
2 log n ≤ log n! ≤ n log n− n+ 1

2 log n+ 1,

we obtain(
n

i

)
≤ exp

(
n

[
− i

n
log

i

n
−

(
1 − i

n

)
log

(
1 − i

n

)
+ 1

2n
log

n

i(n− i)
+ 1

n

])
. (7)

Define

An =
{
i ∈ {1, . . . , n} : i

n
∈ (ε, 1 − ε)

}
,

where ε > 0 will be specified momentarily. From (7), for any ε ∈ (0, 1), we have

max
i∈{1,...,n}\An

(
n

i

)
exp

(
β1i + β2

np−1 i
p

)
≤ e ·

(
1 − 1

n

)−1/2

sup
x∈[0,1]\(ε,1−ε)

en�(x)

≤ 3 sup
x∈[0,1]\(ε,1−ε)

en�(x). (8)

Since �′(x) → ∞ as x → 0 and �′(x) → −∞ as x → 1, the optimizer x∗ is in (0, 1) and we
may choose ε > 0 such that, for some δ > 0,

sup
x∈[0,1]\(ε,1−ε)

�(x) < �(x∗)− δ.

Thus, supx∈[0,1]\(ε,1−ε) en�(x) ≤ en(�(x
∗)−δ), and using this with (8) yields

∑
i∈{1,...,n}\An

(
n

i

)
exp

(
β1i + β2

np−1 i
p

)
= O(en(�(x

∗)−δ)).
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For i ∈ An, Stirling’s formula allows us to write(
n

i

)
= (1 +O(n−1))

1√
2π

√
n

i(n− i)
exp

(
n

[
− i

n
log

i

n
−

(
1 − i

n

)
log

(
1 − i

n

)])
.

The last two displays yield

E

[
exp

(
β1W + β2

np−1W
p

)]

= 2−n
( n∑
i=1

(
n

i

)
exp

(
β1i + β2

np−1 i
p

))

= 2−n
(
O(en(�(x

∗)−δ))+
∑
i∈An

(
n

i

)
exp

(
β1i + β2

np−1 i
p

))

= 2−n
(
O(en(�(x

∗)−δ))+ (1 +O(n−1))
1√

2πn

∑
i∈An

√
1

(i/n)(1 − i/n)
en�(i/n)

)
. (9)

We will approximate the sum in (9) by an integral. Consider first the case off the transition
curve. Thus, there is a unique maximizer x∗ of �, and �′(x∗) = 0, �′′(x∗) < 0. Let q ∈ ( 1

3 ,
1
2 )

and define

Bn =
{
i ∈ {1, . . . , n} : i

n
∈ (x∗ − n−q, x∗ + n−q)

}
.

For any j ∈ An, note that∣∣∣∣1

n

√
1

(j/n)(1 − j/n)
en�(j/n) −

∫ j/n+1/n

j/n

√
1

x(1 − x)
en�(x) dx

∣∣∣∣
≤ 1

n
max

x,y∈[j/n, j/n+1/n]

∣∣∣∣
√

1

x(1 − x)
en�(x) −

√
1

y(1 − y)
en�(y)

∣∣∣∣
≤ 1

n
max

x∈[j/n, j/n+1/n]

√
1

x(1 − x)
max

x,y∈[j/n, j/n+1/n] |e
n�(x) − en�(y)|

+ 1

n
en�(x

∗) max
x,y∈[j/n, j/n+1/n]

∣∣∣∣
√

1

x(1 − x)
−

√
1

y(1 − y)

∣∣∣∣
= O(n−1) max

x,y∈[j/n, j/n+1/n] |e
n�(x) − en�(y)| +O(n−2) en�(x

∗). (10)

Fix j ∈ An and let x, y ∈ [j/n, j/n+ 1/n]. Note that, for all x,

|ex − 1| ≤ e|x| − 1.

We use this, the fact that �′′(x∗) < 0, and the mean value theorem to write

|en�(x) − en�(y)| = en�(x
∗) en(�(y)−�(x∗))|en(�(x)−�(y)) − 1|

= en�(x
∗) exp

(
n
�′′(x∗)

2
(y − x∗)2 + n

�′′′(ξ)
6

(y − x∗)3
)

×
∣∣∣∣exp

(
n�′(y)(x − y)+ n�′′(ν)

2
(x − y)2

)
− 1

∣∣∣∣
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= en�(x
∗) exp

(
n
�′′(x∗)

2
(y − x∗)2 + n

�′′′(ξ)
6

(y − x∗)3
)

×
∣∣∣∣exp

(
n�′′(ζ )(y − x∗)(x − y)+ n�′′(ν)

2
(x − y)2

)
− 1

∣∣∣∣
≤ en�(x

∗) exp

(
n
−|�′′(x∗)|

2
(y − x∗)2 + n

�′′′(ξ)
6

(y − x∗)3
)

×
(

exp

(
n|�′′(ζ )||y − x∗||x − y| + n|�′′(ν)|

2
(x − y)2

)
− 1

)
, (11)

where ξ and ζ are between y and x∗, and ν is between y and x. Observe that

exp

(
n
−|�′′(x∗)|

2
(y − x∗)2 + n

�′′′(ξ)
6

(y − x∗)3
)

=

⎧⎪⎨
⎪⎩
O

(
exp

(
−|�′′(x∗)|

2
n1−2q

))
(1 +O(n)), j /∈ Bn,

1 +O(n1−3q), j ∈ Bn,
and that

exp

(
n|�′′(ζ )||y − x∗||x − y| + n|�′′(ν)|

2
(x − y)2

)
− 1 =

{
O(1), j /∈ Bn,
O(n−q), j ∈ Bn.

Let t = 1 − 2q > 0 and ω ∈ (0, |�′′(x∗)|/2). From the last three displays, we see that

max
x,y∈[j/n, j/n+1/n] |e

n�(x) − en�(y)| =
{

en�(x
∗)O(exp(−ωnt )), j /∈ Bn,

en�(x
∗)O(n−q), j ∈ Bn,

and so, from (10),∣∣∣∣1

n

√
1

(j/n)(1 − j/n)
en�(j/n) −

∫ j/n+1/n

j/n

√
1

x(1 − x)
en�(x) dx

∣∣∣∣
=

{
en�(x

∗)O(exp(−ωnt )), j /∈ Bn,
en�(x

∗)O(n−1−q), j ∈ Bn. (12)

Observe that
|Bn| = O(n1−q), |An \ Bn| = O(n). (13)

Now, from (12), for any r < 1,∣∣∣∣1

n

∑
i∈An

√
1

(i/n)(1 − i/n)
en�(i/n) −

∫ 1

0

√
1

x(1 − x)
en�(x) dx

∣∣∣∣
≤ en�(x

∗)(|Bn|O(n−1−q)+ |An \ Bn|O(exp(−ωnt )))

+
∫

[0,1]\[ε+1/n, 1−ε−1/n]

√
1

x(1 − x)
en�(x) dx

≤ en�(x
∗)(O(n−2q)+O(n exp(−ωnt )))+O(en(�(x

∗)−δ))
≤ en�(x

∗)O(n−r ). (14)

https://doi.org/10.1017/apr.2018.13 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2018.13


Phase transition curve 289

Now, by (14) and Proposition 3,

∣∣∣∣1

n

∑
i∈An

√
1

(i/n)(1 − i/n)
en�(i/n) −

∫ 1

0

√
1

x(1 − x)
en�(x) dx

∣∣∣∣
(∫ 1

0

√
1

x(1 − x)
en�(x) dx

)−1

= O(n1/2−r ).

Thus,

1

n

∑
i∈An

√
1

(i/n)(1 − i/n)
en�(i/n) = (1 +O(n1/2−r ))

∫ 1

0

√
1

x(1 − x)
en�(x) dx.

Now, from (9), we conclude that

E

[
exp

(
β1W + β2

np−1W
p

)]
= (1 +O(n1/2−r ))2−n

√
n

2π

∫ 1

0

√
1

x(1 − x)
en�(x) dx.

Next, consider (β1, β2) on the transition curve away from the critical point. By Theorem 2,
there are two maximizers of �, say x∗

1 and x∗
2 . Defining

Bn =
{
i ∈ {1, . . . , n} : i

n
∈ (x∗

1 − n−q, x∗
1 + n−q) ∪ (x∗

2 − n−q, x∗
2 + n−q)

}
,

it is not difficult to see that the arguments above can be repeated to obtain the same result.
Finally, consider the case at the critical point. Here, (10) still holds, but (11) needs to

be modified, as follows. By Proposition 4, we have �′(x∗) = �′′(x∗) = �′′′(x∗) = 0 and
�(4)(x∗) < 0, so by the mean value theorem, we have

|en�(x) − en�(y)|
= en�(x

∗) en(�(y)−�(x∗))|en(�(x)−�(y)) − 1|

= en�(x
∗) exp

(
n
�(4)(x∗)

4! (y − x∗)4 + n
�(5)(ξ)

5! (y − x∗)5
)

×
∣∣∣∣exp

(
n�′(y)(x − y)+ n�′′(ν)

2
(x − y)2

)
− 1

∣∣∣∣
= en�(x

∗) exp

(
n
�(4)(x∗)

4! (y − x∗)4 + n
�(5)(ξ)

5! (y − x∗)5
)

×
∣∣∣∣exp

(
n�(4)(ζ )(v − x∗)(u− x∗)(y − x∗)(x − y)+ n�′′(ν)

2
(x − y)2

)
− 1

∣∣∣∣
≤ en�(x

∗) exp

(
n
−|�(4)(x∗)|

4! (y − x∗)4 + n
�(5)(ξ)

5! (y − x∗)5
)

×
(

exp

(
n|�(4)(ζ )||v − x∗||u− x∗||y − x∗||x − y| + n|�′′(ν)|

2
(x − y)2

)
− 1

)
,

where u, v, ξ , and ζ are between y and x∗, and ν is between y and x. Let Bn be defined as in
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the analysis of the case off the critical curve. Let q ∈ ( 1
5 ,

1
4 ) and note that

exp

(
n
−|�(4)(x∗)|

4! (y − x∗)4 + n
�(5)(ξ)

5! (y − x∗)5
)

=

⎧⎪⎨
⎪⎩
O

(
exp

(−|�(4)(x∗)|
4! n1−4q

))
(1 +O(n)), j /∈ Bn,

1 +O(n1−5q), j ∈ Bn,
and that

exp

(
n|�(4)(ζ )||v − x∗||u− x∗||y − x∗||x − y| + n|�′′(ν)|

2
(x − y)2

)
− 1

=
{
O(1), j /∈ Bn,
O(n−3q), j ∈ Bn.

Let ω ∈ (0, |�(4)(x∗)|/4!) and t = 1 − 4q > 0. From the last three displays, we see that

max
x,y∈[j/n, j/n+1/n] |e

n�(x) − en�(y)| =
{

en�(x
∗)O(exp(−ωnt )), j /∈ Bn,

en�(x
∗)O(n−3q), j ∈ Bn.

So, from (10),

∣∣∣∣1

n

√
1

(j/n)(1 − j/n)
en�(j/n) −

∫ j/n+1/n

j/n

√
1

x(1 − x)
en�(x) dx

∣∣∣∣
=

{
en�(x

∗)O(exp(−ωnt )), j /∈ Bn,
en�(x

∗)O(n−1−3q), j ∈ Bn. (15)

Using (13) and (15), for any r < 1,

∣∣∣∣1

n

∑
i∈An

√
1

(i/n)(1 − i/n)
en�(i/n) −

∫ 1

0

√
1

x(1 − x)
en�(x) dx

∣∣∣∣
≤ en�(x

∗)(|Bn|O(n−1−3q)+ |An \ Bn|O(exp(−ωnt )))

+
∫

[0,1]\[ε+1/n, 1−ε−1/n]

√
1

x(1 − x)
en�(x) dx

≤ en�(x
∗)(O(n−4q)+O(exp(−ωnt )))+O(en(�(x

∗)−δ))
≤ en�(x

∗)O(n−r ). (16)

Now, by (16) and Proposition 3,

∣∣∣∣1

n

∑
i∈An

√
1

(i/n)(1 − i/n)
en�(i/n) −

∫ 1

0

√
1

x(1 − x)
en�(x) dx

∣∣∣∣
(∫ 1

0

√
1

x(1 − x)
en�(x) dx

)−1

= O(n1/4−r ).
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Thus,

1

n

∑
i∈An

√
1

(i/n)(1 − i/n)
en�(i/n) = (1 +O(n1/4−r ))

∫ 1

0

√
1

x(1 − x)
en�(x) dx.

Now, from (9), we conclude that

E

[
exp

(
β1W + β2

np−1W
p

)]
= (1 +O(n1/4−r ))2−n

√
n

2π

∫ 1

0

√
1

x(1 − x)
en�(x) dx.

This completes the proof. �
Proof of Proposition 3. We will prove only (i) and (iii), as (ii) is standard.
(i) Note that, for b > 0 and k ∈ N,

∫ ∞

−∞
xk e−bx2

dx =
⎧⎨
⎩

0, k odd,

�

(
k + 1

2

)
b−(k+1)/2 k even.

So, for any δ > 0,∫ δ

−δ
uk e−nbu2

du = n−(k+1)/2
∫ δn1/2

−δn1/2
xk e−bx2

dx

= n−(k+1)/2
(
O(e−bn)+

∫ ∞

−∞
xk e−bx2

dx

)

=
⎧⎨
⎩

0, k odd,

�

(
k + 1

2

)
(nb)−(k+1)/2 +O(e−bn), k even.

Now let c = x∗ and u = x − c, and set 0 < δ < min{c, 1 − c}. We use Taylor expansions
of xk and �(x) at c, and of ex at 0, along with Proposition 4, to compute∫ c+δ

c−δ
f (x) en�(x) dx

=
∫ δ

−δ
[d0 + d1u+ · · · ] en(b0+b1u+b2u

2+··· ) du

= en�(c)
∫ δ

−δ
[d0 + d1u+ · · · ] enb2u

2+nb3u
3+··· du

= en�(c)
∫ δ

−δ
[d0 + d1u+ · · · ][1 + (nb3u

3 + · · · )+ 1
2 (nb3u

3 + · · · )2 + · · · ] enb2u
2

du

= en�(c)[n−1/2d0α1 + n−3/2
+O(n−5/2)],
where the last step is obtained by collecting terms of the same order, and the interchange of
sum and integral is justified by the dominated convergence theorem. Since x∗ = c is the unique
global maximizer of �, we conclude that, for some ε > 0,∫ 1

0
f (x) en�(x) dx =

∫ c+δ

c−δ
f (x) en�(x) dx +O(en(�(c)−ε)).
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It follows that ∫ 1

0
f (x) en�(x) dx = en�(c)[n−1/2d0α1 + n−3/2
+O(n−5/2)].

(iii) Note that, for b > 0 and k ∈ N,

∫ ∞

−∞
xk e−bx4

dx =
⎧⎨
⎩

0, k odd,
1

2
�

(
k + 1

4

)
b−(k+1)/4, k even.

So, for any δ > 0,

∫ δ

−δ
uk e−nbu4

du = n−(k+1)/4
∫ δn1/4

−δn1/4
xk e−bx4

dx

= n−(k+1)/4
(
O(e−bn)+

∫ ∞

−∞
xk e−bx4

dx

)

=
⎧⎨
⎩

0, k odd,
1

2
�

(
k + 1

4

)
(nb)−(k+1)/4 +O(e−bn), k even.

As before, we let c = x∗, u = x − c, set 0 < δ = min{c, 1 − c}, and use Taylor expansions of
xk and �(x) at c, and ex at 0, along with Proposition 4, to write∫ c+δ

c−δ
f (x) en�(x) dx

=
∫ c+δ

c−δ
[d0 + d1u+ · · · ] en(b0+b1u+b2u

2+··· ) du

= en�(c)
∫ c+δ

c−δ
[d0 + d1u+ · · · ] enb4u

4+nb5u
5+··· du

= en�(c)
∫ c+δ

c−δ
[d0 + d1u+ · · · ] [

1 + (nb5u
5 + · · · )+ 1

2 (nb5u
5 + · · · )2 + · · · ] enb4u

4
du

= en�(c) [n−1/4d0γ1 + n−3/4�+O(n−5/4)],
where again the last step is obtained by collecting terms of the same order, and the interchange
of sum and integral is justified by the dominated convergence theorem. As before, since x∗ = c

is the unique global maximizer of �, we conclude that∫ 1

0
f (x) en�(x) dx = en�(c)[n−1/4d0γ1 + n−3/4�+O(n−5/4)]. �

The remainder of the proofs are for the results in Section 2.

Proof of Theorem 1. By Propositions 2 and 3, we have

ψn(β1, β2) = n−2 logZn(β1, β2)

= log 2 + n−1 log E

[
exp

(
β1W + β2

np−1W
p

)]
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= O(n−1 log n)+ 1

n
log

∫ 1

0

√
1

x(1 − x)
en�(x) dx

= O(n−1 log n)+ �(x∗), (17)

as required. �

Proof of Theorem 3. (i) Along the phase transition curve, we have

β1 + pq(β1)(x
∗
1 )
p−1 − log

(
x∗

1

1 − x∗
1

)
= 0, (18)

β1 + pq(β1)(x
∗
2 )
p−1 − log

(
x∗

2

1 − x∗
2

)
= 0, (19)

β1x
∗
1 + q(β1)(x

∗
1 )
p − x∗

1 log x∗
1 − (1 − x∗

1 ) log(1 − x∗
1 )

= β1x
∗
2 + q(β1)(x

∗
2 )
p − x∗

2 log x∗
2 − (1 − x∗

2 ) log(1 − x∗
2 ).

Let x∗
1 < x∗

2 be the two local maximizers of � in the V-shaped region [23] that contains the phase
transition curve except the critical point. By Proposition 4, �′′(x∗

1 ) and �′′(x∗
2 ) are nonzero

away from the critical point. The implicit function theorem implies that x∗
1 and x∗

2 are analytic
functions of both β1 and β2. Differentiating (4) with respect to β1 and using (18) and (19), we
see that

x∗
1 + q ′(β1)(x

∗
1 )
p = x∗

2 + q ′(β1)(x
∗
2 )
p,

which implies that

q ′(β1) = − x∗
1 − x∗

2

(x∗
1 )
p − (x∗

2 )
p
. (20)

As β1 → βc1, x∗
2 − x∗

1 → 0 and both x∗
2 and x∗

1 converge to the common maximizer x∗
c =

(p − 1)/p. Therefore,

lim
β1→βc1

q ′(β1) = − 1

p(x∗
c )
p−1 = − pp−2

(p − 1)p−1 .

Since x∗
1 → 0 and x∗

2 → 1 as β1 → −∞, we obtain limβ1→−∞ q ′(β1) = −1.

(ii) Differentiating q ′(β1) with respect to β1, we obtain

q ′′(β1) = − 1

((x∗
1 )
p − (x∗

2 )
p)2

[(1 − p)(x∗
1 )
p + p(x∗

1 )
p−1x∗

2 − (x∗
2 )
p]∂x

∗
1

∂β1

− 1

((x∗
1 )
p − (x∗

2 )
p)2

[(1 − p)(x∗
2 )
p + p(x∗

2 )
p−1x∗

1 − (x∗
1 )
p]∂x

∗
2

∂β1
. (21)

Differentiating (18) and (19) with respect to β1, we obtain

1 + pq ′(β1)(x
∗
1 )
p−1 +

[
pq(β1)(p − 1)(x∗

1 )
p−2 − 1

x∗
1 (1 − x∗

1 )

]
∂x∗

1

∂β1
= 0, (22)

1 + pq ′(β1)(x
∗
2 )
p−1 +

[
pq(β1)(p − 1)(x∗

2 )
p−2 − 1

x∗
2 (1 − x∗

2 )

]
∂x∗

2

∂β1
= 0. (23)
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Note that, from (20),

1 + pq ′(β1)(x
∗
1 )
p−1 = 1 − p

x∗
1 − x∗

2

(x∗
1 )
p − (x∗

2 )
p
(x∗

1 )
p−1

= 1 − p(x∗
1 )
p−1

(x∗
1 )
p−1 + (x∗

1 )
p−2x∗

2 + · · · + x∗
1 (x

∗
2 )
p−2 + (x∗

2 )
p−1

> 1 − p(x∗
1 )
p−1

(x∗
1 )
p−1 + (x∗

1 )
p−2x∗

1 + · · · + x∗
1 (x

∗
1 )
p−2 + (x∗

1 )
p−1

= 0, (24)

and, analogously,

1 + pq ′(β1)(x
∗
2 )
p−1 = 1 − p

x∗
1 − x∗

2

(x∗
1 )
p − (x∗

2 )
p
(x∗

2 )
p−1 < 0. (25)

Moreover, in Proposition 4, we showed that

�′′(x∗
1 ) = pq(β1)(p − 1)(x∗

1 )
p−2 − 1

x∗
1 (1 − x∗

1 )
< 0, (26)

�′′(x∗
2 ) = pq(β1)(p − 1)(x∗

2 )
p−2 − 1

x∗
2 (1 − x∗

2 )
< 0. (27)

Therefore, from (22)–(27), we conclude that ∂x∗
1/∂β1 > 0 and ∂x∗

2/∂β1 < 0. Finally, by
noting that in (21),

(1 − p)(x∗
1 )
p + p(x∗

1 )
p−1x∗

2 − (x∗
2 )
p < 0, (1 − p)(x∗

2 )
p + p(x∗

2 )
p−1x∗

1 − (x∗
1 )
p > 0,

we conclude that q ′′(β1) > 0. �
In the proofs below, let d(n)m be defined as in Proposition 3 for the function

f (x) = xn√
x(1 − x)

.

Proof of Theorem 4. Off the phase transition curve, the result follows immediately from
Theorem 1 and [23]. Thus, we prove only the last two displays in Theorem 4.

From the second line of (17), we have

∂2

∂β2
1

ψn(β1, β2) = n−1
{

E[W 2 exp(β1W + (β2/n
p−1)Wp)]

E[exp(β1W + (β2/np−1)Wp)]

−
(

E[W exp(β1W + (β2/n
p−1)Wp)]

E[exp(β1W + (β2/np−1)Wp)]
)2}

. (28)

We use Proposition 2 and Proposition 3 to estimate each of the terms in (28).
We first consider the case on the transition curve excluding the critical point. By Theorem 2,

there are two global maximizers x∗
1 < x∗

2 of �. We write �(x∗
1 ) = �(x∗

2 ) = �(x∗). By Proposi-
tion 3 and Proposition 2, for any r < 1, we have

E

[
Wk exp

(
β1W + β2

np−1W
p

)]

= [1 +O(n1/2−r )]n
k2−n√n√

2π

∫ 1

0

√
x2k

x(1 − x)
en�(x) dx
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= [1 +O(n1/2−r )]n
k2−n√n√

2π

en�(x
∗)

√
n

×
[√

(x∗
1 )

2k/x∗
1 (1 − x∗

1 )√
2π�′′(x∗

1 )
+

√
(x∗

2 )
2k/x∗

2 (1 − x∗
2 )√

2π�′′(x∗
2 )

+O(n−1)

]

= nk2−n en�(x
∗)

2π

[
(x∗

1 )
k√

x∗
1 (1 − x∗

1 )�
′′(x∗

1 )
+ (x∗

2 )
k√

x∗
2 (1 − x∗

2 )�
′′(x∗

2 )
+O(n1/2−r )

]
. (29)

Hence,

∂2

∂β2
1

ψn(β1, β2)

= n−1n2
{[

(x∗
1 )

2√
x∗

1 (1 − x∗
1 )|�′′(x∗

1 )|
+ (x∗

2 )
2√

x∗
2 (1 − x∗

2 )|�′′(x∗
2 )|

]

×
[

1√
x∗

1 (1 − x∗
1 )|�′′(x∗

1 )|
+ 1√

x∗
2 (1 − x∗

2 )|�′′(x∗
2 )|

]−1}

− n−1n2
{(

x∗
1√

x∗
1 (1 − x∗

1 )|�′′(x∗
1 )|

+ x∗
2√

x∗
2 (1 − x∗

2 )|�′′(x∗
2 )|

)2

×
(

1√
x∗

1 (1 − x∗
1 )|�′′(x∗

1 )|
+ 1√

x∗
2 (1 − x∗

2 )|�′′(x∗
2 )|

)−2}
+O(n3/2−r )

= n

{
(x∗

1 − x∗
2 )

2√
x∗

1 (1 − x∗
1 )|�′′(x∗

1 )|
√
x∗

2 (1 − x∗
2 )|�′′(x∗

2 )|

×
(

1√
x∗

1 (1 − x∗
1 )|�′′(x∗

1 )|
+ 1√

x∗
2 (1 − x∗

2 )|�′′(x∗
2 )|

)−2}
+O(n3/2−r )

= n
(x∗

1 − x∗
2 )

2
√
x∗

1 (1 − x∗
1 )|�′′(x∗

1 )|
√
x∗

2 (1 − x∗
2 )|�′′(x∗

2 )|
(
√
x∗

1 (1 − x∗
1 )|�′′(x∗

1 )| + √
x∗

2 (1 − x∗
2 )|�′′(x∗

2 )|)2
+O(n3/2−r ).

Next consider the case at the critical point. By Proposition 3 and Proposition 2, for any r < 1,

E

[
Wk exp

(
β1W + β2

np−1W
p

)]
= [1 +O(n1/4−r )]n

k2−n√n√
2π

∫ 1

0

√
x2k

x(1 − x)
en�(x) dx

= nk2−n√n√
2π

en�(x
∗)[n−1/4d

(k)
0 γ1 + n−3/4�(k) +O(n−r )],

where
�(k) := d

(k)
2 γ3 + d

(k)
1 b5γ7 + d

(k)
0 b6γ7 + 1

2d
(k)
0 b2

5γ11, k = 0, 1, 2.

Then

d
(0)
0 = 1√

x∗(1 − x∗)
, d

(1)
0 = x∗

√
x∗(1 − x∗)

, d
(2)
0 = (x∗)2√

x∗(1 − x∗)
,

d
(0)
1 = x∗ − 1/2

(x∗(1 − x∗))3/2
, d

(1)
1 = x∗/2

(x∗(1 − x∗))3/2
, d

(2)
1 = (3/2)(x∗)2 − (x∗)3

(x∗(1 − x∗))3/2
,

d
(0)
2 = 2(x∗)2 − 2x∗ + 3/4

2(x∗(1 − x∗))5/2
, d

(1)
2 = (x∗)2 − x∗/4

2(x∗(1 − x∗))5/2
, d

(2)
2 = (3/4)(x∗)2

2(x∗(1 − x∗))5/2
.
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It is easy to observe that d(2)0 d
(0)
0 = (d

(1)
0 )2. By differentiating this identity, we obtain d(2)1 d

(0)
0 +

d
(2)
0 d

(0)
1 = 2d(1)1 d

(1)
0 . Therefore, by (28) and (29),

∂2

∂β2
1

ψn(β1, β2) = n−1n2 n
−1/4d

(2)
0 γ1 + n−3/4�(2)

n−1/4d
(0)
0 γ1 + n−3/4�(0)

− n−1n2 (n
−1/4d

(1)
0 γ1 + n−3/4�(1))2

(n−1/4d
(0)
0 γ1 + n−3/4�(0))2

+O(n5/4−r )

= n
n−1γ1[d(2)0 �(0) + d

(0)
0 �(2) − 2d(1)0 �(1)] +O(n−3/2)

n−1/2(d
(0)
0 )2γ 2

1

+O(n5/4−r )

= n1/2

(d
(0)
0 )2γ1

[γ3(d
(2)
0 d

(0)
2 + d

(0)
0 d

(2)
2 − 2d(1)0 d

(1)
2 )]

+ n1/2

(d
(0)
0 )2γ1

[b5γ7(d
(2)
0 d

(0)
1 + d

(0)
0 d

(2)
1 − 2d(1)0 d

(1)
1 )] +O(n5/4−r )

= n1/2γ3

(d
(0)
0 )2γ1

(d
(2)
0 d

(0)
2 + d

(0)
0 d

(2)
2 − 2d(1)0 d

(1)
2 )+O(n5/4−r )

= n1/2 γ3

γ1
+O(n5/4−r )

= n1/2�(3/4)

�(1/4)

1√
�(4)(x∗)/4! +O(n5/4−r )

= n1/2�(3/4)

�(1/4)

2
√

6(p − 1)

p5/2
+O(n5/4−r ),

where we used Proposition 4 in the last line. �
Proof of Theorem 5. We prove only the last two displays in Theorem 5, since the first display

follows immediately from Theorem 1 and the results of [23]. From the second line of (17), we
have

∂2

∂β2
2

ψn(β1, β2) = n−1
{

E[(W 2p/n2(p−1)) exp(β1W + (β2/n
p−1)Wp)]

E[exp(β1W + (β2/np−1)Wp)]

−
(

E[(Wp/np−1) exp(β1W + (β2/n
p−1)Wp)]

E[exp(β1W + (β2/np−1)Wp)]
)2}

.

Consider first the case on the phase transition curve excluding the critical point. Then, similar
to the proof of Theorem 4, for any r < 1,

∂2

∂β2
2

ψn(β1, β2)

= n
((x∗

1 )
p − (x∗

2 )
p)2

√
x∗

1 (1 − x∗
1 )|�′′(x∗

1 )|
√
x∗

2 (1 − x∗
2 )|�′′(x∗

2 )|
(
√
x∗

1 (1 − x∗
1 )|�′′(x∗

1 )| + √
x∗

2 (1 − x∗
2 )|�′′(x∗

2 )|)2
+O(n3/2−r ).

Now consider the case at the critical point. We have

d
(p)
0 = (x∗)p√

x∗(1 − x∗)
, d

(p)
1 = (p − 1/2)(x∗)p − (p − 1)(x∗)p+1

(x∗(1 − x∗))3/2
,
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and

d
(p)
2 = (p2 − 2p + 3/4)(x∗)p − (2p2 − 5p + 2)(x∗)p+1 + (p2 − 3p + 2)(x∗)p+2

2(x∗(1 − x∗))5/2
.

It is easy to observe that d(2p)0 d
(0)
0 = (d

(p)
0 )2. By differentiating this identity, we obtain

d
(2p)
1 d

(0)
0 + d

(2p)
0 d

(0)
1 = 2d(p)1 d

(p)
0 .

Similar to the proof of Theorem 4, for any r < 1,

∂2

∂β2
1

ψn(β1, β2)

= n
(n−1/4d

(2p)
0 γ1 + n−3/4�(2p))(n−1/4d

(0)
0 γ1 + n−3/4�(0))− (n−1/4d

(p)
0 γ1 + n−3/4�(p))2

(n−1/4d
(0)
0 γ1 + n−3/4�(0))2

+O(n5/4−r )

= n1/2γ3

(d
(0)
0 )2γ1

(d
(2p)
0 d

(0)
2 + d

(0)
0 d

(2p)
2 − 2d(p)0 d

(p)
2 )+O(n5/4−r )

= p2(x∗)2p−2 γ3

γ1
n1/2 +O(n5/4−r )

= n1/2p2
(
p − 1

p

)2p−2
�(3/4)

�(1/4)

2
√

6(p − 1)

p5/2
+O(n5/4−r ). �

Proof of Theorem 6. Again we prove only the last two displays in the theorem. From the
second line of (17), we have

∂2

∂β1∂β2
ψn(β1, β2)

= n−1 E[W(Wp/n(p−1)) exp(β1W + (β2/n
p−1)Wp)]

E[exp(β1W + (β2/np−1)Wp)]
− E[W exp(β1W + (β2/n

p−1)Wp)]E[(Wp/np−1) exp(β1W + (β2/n
p−1)Wp)]

(E[exp(β1W + (β2/np−1)Wp)])2 .

Similar to the proof of Theorem 4, on the phase transition curve excluding the critical point,
for any r < 1,

∂2

∂β2
1

ψn(β1, β2)

= n
((x∗

1 )
p − (x∗

2 )
p)(x∗

1 − x∗
2 )

√
x∗

1 (1 − x∗
1 )|�′′(x∗

1 )|
√
x∗

2 (1 − x∗
2 )|�′′(x∗

2 )|
(
√
x∗

1 (1 − x∗
1 )|�′′(x∗

1 )| + √
x∗

2 (1 − x∗
2 )|�′′(x∗

2 )|)2
+O(n3/2−r ).

Consider now the case at the critical point. It is easy to observe that d(p+1)
0 d

(0)
0 = (d

(1)
0 )(d

(p)
0 ).

By differentiating this identity, we obtain

d
(p+1)
1 d

(0)
0 + d

(p+1)
0 d

(0)
1 = d

(1)
1 d

(p)
0 + d

(1)
0 d

(p)
1 .
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Therefore, similar to the proof of Theorem 4, we obtain, for any r < 1,

∂2

∂β2
1

ψn(β1, β2)

= n
(n−1/4d

(p+1)
0 γ1 + n−3/4�(p+1))(n−1/4d

(0)
0 γ1 + n−3/4�(0))

(n−1/4d
(0)
0 γ1 + n−3/4�(0))2

− n
(n−1/4d

(1)
0 γ1 + n−3/4�(1))(n−1/4d

(p)
0 γ1 + n−3/4�(p))

(n−1/4d
(0)
0 γ1 + n−3/4�(0))2

+O(n5/4−r )

= n
n−1γ1[d(p+1)

0 �(0) + d
(0)
0 �(p+1) − d

(1)
0 �(p) − d

(p)
0 �(1)] +O(n−3/2)

n−1/2(d
(0)
0 )2γ 2

1 +O(n−1)
+O(n5/4−r )

= n1/2γ3

(d
(0)
0 )2γ1

(d
(p+1)
0 d

(0)
2 + d

(0)
0 d

(p+1)
2 − d

(1)
0 d

(p)
2 − d

(p)
0 d

(1)
2 )+O(n5/4−r )

= p(x∗)p−1 γ3

γ1
n1/2 +O(n5/4−r )

= p

(
p − 1

p

)p−1
�(3/4)

�(1/4)

2
√

6(p − 1)

p5/2
n1/2 +O(n5/4−r ). �

Proof of Theorem 7. Observe first that Pn(X12 = 1) = En[X12] = (1/n)En[∑n
j=1X1j ].

Thus, off the transition curve, we have

lim
n→∞ Pn(X12 = 1) = lim

n→∞
1

n
En

[ n∑
j=1

X1j

]

= lim
n→∞

1

n

E[W exp(β1W + (β2/n
p−1)Wp)]

E[exp(β1W + (β2/np−1)Wp)]

= lim
n→∞

(1 +O(n1/2−4q))2−n√n/2π ∫ 1
0

√
x2/x(1 − x) en�(x) dx

(1 +O(n1/2−4q))2−n√n/2π ∫ 1
0

√
1/x(1 − x) en�(x) dx

= lim
n→∞

√
2π(x∗)2/x∗(1 − x∗)|�′′(x∗)|n−1/2 en�(x

∗)√
2π/x∗(1 − x∗)|�′′(x∗)|n−1/2 en�(x∗)

= x∗.

Similarly, at the critical point,

lim
n→∞ Pn(X12 = 1) = lim

n→∞
1

n

E[W exp(β1W + (β2/n
p−1)Wp)]

E[exp(β1W + (β2/np−1)Wp)]

= lim
n→∞

(1 +O(n1/4−4q))2−n√n/2π ∫ 1
0

√
x2/x(1 − x) en�(x) dx

(1 +O(n1/4−4q))2−n√n/2π ∫ 1
0

√
1/x(1 − x) en�(x) dx

= lim
n→∞

en�(x
∗)n−1/4d

(1)
0 γ1

en�(x∗)n−1/4d
(0)
0 γ1

= x∗.
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Finally, on the phase transition curve except at the critical point,

lim
n→∞ Pn(X12 = 1)

= lim
n→∞

1

n

E[W exp(β1W + (β2/n
p−1)Wp)]

E[exp(β1W + (β2/np−1)Wp)]

= lim
n→∞

(

√
2π(x∗

1 )
2/x∗

1 (1 − x∗
1 )|�′′(x∗

1 )| +
√

2π(x∗
2 )

2/x∗
2 (1 − x∗

2 )|�′′(x∗
2 )|)n−1/2 en�(x

∗)

(
√

2π/x∗
1 (1 − x∗

1 )|�′′(x∗
1 )| + √

2π/x∗
2 (1 − x∗

2 )|�′′(x∗
2 )|)n−1/2 en�(x∗)

= x∗
1

√
1/x∗

1 (1 − x∗
1 )|�′′(x∗

1 )| + x∗
2

√
1/x∗

2 (1 − x∗
2 )|�′′(x∗

2 )|√
1/x∗

1 (1 − x∗
1 )|�′′(x∗

1 )| + √
1/x∗

2 (1 − x∗
2 )|�′′(x∗

2 )|
. �

Proof of Theorem 8. (i) The result follow from

lim
n→∞ Pn(X12 = 1, X34 = 1) = lim

n→∞ Pn(X12 = 1) lim
n→∞ Pn(X34 = 1).

(ii) Note that Pn(X12 = X13 = 1) = En[X12X13], and

En[X12X13] = 1

n2 − n

(
En

[( n∑
j=1

X1j

)2]
− En

[ n∑
j=1

X1j

])
.

It follows that off the transition curve, we have

lim
n→∞ Pn(X12 = X13 = 1) = lim

n→∞
1

n2 En

[( n∑
j=1

X1j

)2]

= lim
n→∞

1

n2

E[W 2 exp(β1W + (β2/n
p−1)Wp)]

E[exp(β1W + (β2/np−1)Wp)]

= lim
n→∞

1

n2

(n22−n√n/√2π)
∫ 1

0

√
x4/x(1 − x) en�(x) dx

(2−n√n/√2π)
∫ 1

0

√
1/x(1 − x) en�(x) dx

= (x∗)2.
Similarly, at the critical point,

lim
n→∞ Pn(X12 = X13 = 1) = lim

n→∞
1

n2

E[W 2 exp(β1W + (β2/n
p−1)Wp)]

E[exp(β1W + (β2/np−1)Wp)]

= lim
n→∞

∫ 1
0

√
x4/x(1 − x) en�(x) dx∫ 1

0

√
1/x(1 − x) en�(x) dx

= d
(2)
0 γ1

d
(0)
0 γ1

= (x∗)2.
Finally, on the phase transition curve except at the critical point,

lim
n→∞ Pn(X12 = X13 = 1) = lim

n→∞
1

n2

E[W 2 exp(β1W + (β2/n
p−1)Wp)]

E[exp(β1W + (β2/np−1)Wp)]

= lim
n→∞

∫ 1
0

√
x4/x(1 − x) en�(x) dx∫ 1

0

√
1/x(1 − x) en�(x) dx
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= (x∗
1 )

2/
√
x∗

1 (1 − x∗
1 )�

′′(x∗
1 )+ (x∗

2 )
2/

√
x∗

2 (1 − x∗
2 )�

′′(x∗
2 )

1/
√
x∗

1 (1 − x∗
1 )�

′′(x∗
1 )+ 1/

√
x∗

2 (1 − x∗
2 )�

′′(x∗
2 )

= α(x∗
1 )

2 + (1 − α)(x∗
2 )

2. �
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