
TECHNICAL ARTICLE

Convolution and deconvolutional treatment on sample transparency
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Exact and approximate mathematical models for the effects of sample transparency on the powder
diffraction intensity data are examined. Application of the formula based on the first-order approxi-
mation about the deviation angle is justified for realistic measurement and computing systems. The
effects of sample transparency are expressed by double convolution formulas applying two different
scale transforms, including three parameters, goniometer radius R, penetration depth μ−1, and thick-
ness of the sample t. The deconvolutional treatment automatically recovers the lost intensity and
corrects the peak shift and asymmetric deformation of peak profile caused by the sample transparency.
© The Author(s), 2022. Published by Cambridge University Press on behalf of International Centre
for Diffraction Data. [doi:10.1017/S0885715622000021]
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I. INTRODUCTION

Approximate mathematical formula about the sample
transparency aberration of samples with finite thickness has
already been reported (Ida and Kimura, 1999). However, the
effects of finite thickness have not yet been incorporated to
the deconvolutional treatment proposed by the author (Ida
and Toraya, 2002; Ida et al., 2018), partly because it was tech-
nically difficult to be implemented within the limitation of the
standard numerical computing system (IEEE 754).

Another issue about the sample transparency effect is the
appropriateness of the approximation. In contrast to the
approximations used for other instrumental aberrations in
Bragg–Brentano geometry, the axial-divergence and equato-
rial aberrations are treated as second-order approximations
about the deviations, the formula about the sample transpar-
ency aberration is based on the first-order approximation.
The author has suggested that even the second-order approx-
imation about the equatorial aberration may cause detectable
discrepancy in the data collected with a realistic measurement
system, and proposed a numerical method based on the exact
geometrical relation (Ida, 2020).

In this study, the author examines how the first-order
approximation is justified for the treatment of sample transpar-
ency effects. The double convolution formulas for the sample
transparency aberration, and the difficulties in numerical cal-
culations, are discussed. A practical method for the deconvo-
lutional treatment about the sample transparency aberration is
also presented. The method is applied to simulated data, calcu-
lated by a whole pattern convolution process with realistic
parameters for a measurement system.

II. THEORETICAL

A. Deviation in diffraction angles

Symbols of instrumental parameters related to the sample
transparency aberration are shown in Figure 1. R is the goni-
ometer radius and t is the thickness of the specimen. The pen-
etration depth of the source X-ray is assumed to be μ−1, which
is identical to the reciprocal of the linear attenuation coeffi-
cient μ of the powder specimen. It is assumed that the center
of the specimen face is exactly located at the rotation axis of
the goniometer G, and the reflection point P is located at the
depth of −z (height of z).

Note that the apparent diffraction angle, or the goniometer
angle, is denoted by the capital Greek letter 2Θ, while the true
diffraction angle at the reflection point P is denoted by the
lowercase Greek letter 2θ in this article.

The difference of the apparent and true diffraction angles
Δ2Θ≡ 2Θ− 2θ is exactly expressed by a function of the
apparent diffraction angle 2Θ, goniometer radius R and the
depth −z,

f (z; 2Q, R) = 2Q− 2 arctan tanQ− z

R cosQ

( )
(1)

The first-order approximation of the function expressed
by Eq. (1) is simply given by

f (z; 2Q, R) ≈ 2z cosQ
R

(2)

B. Sample transparency aberration function

The intensity of the diffracted beam reflected at the depth
−z is expressed by

g(z; 2u, m) = 2m
sin u

exp
2mz
sin u

( )
(3)
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Note that the function g(z; 2θ, μ) expressed by Eq. (3) can
be regarded as the density function normalized to the case of
hypothetical infinite thickness, t→∞, on the assumption
2θ≈ 2Θ. Integration for z∈ (−∞, 0] of the function g(z;
2θ, μ) should give the unity, and the loss of intensity caused
by the finite thickness t would straightforwardly be simulated
by the integration within the finite range, z∈ [−t, 0].

Replacement of 2θ in Eq. (3) to 2Θ, application of the
first-order approximation given by Eq. (2), and the general for-
mula for the instrumental aberration function (e.g., Ida, 2020),

v(D2Q) =
∫0
−t
d(D2Q− f (z; 2Q, R))g(z; 2u, m) dz (4)

where δ(x) is the Dirac delta function, give the first-order
approximate formula for the sample transparency aberration
function as has been already reported (Ida and Kimura, 1999),

v(D2Q) ≈
1
g
exp

D2Q
g

( )
, [−u , D2Q , 0]

0, [elsewhere]

⎧⎨
⎩ (5)

g ;
sin 2Q
2mR

(6)

u ;
2t cosQ

R
(7)

Note that the function expressed by Eqs (5)–(7) is not nor-
malized for the finite thickness t, and the integration of ω
(Δ2Θ) about Δ2Θ should still give the relative intensity
reduced by the finite thickness. The value γ expressed by
Eq. (6) is regarded as decay width, and the value expressed
by Eq. (7) is regarded as truncation width, and both the
expressions are scaled on 2Θ.

The author would like to emphasize that it is not difficult
to evaluate the exact values of the sample transparency
aberration function ω(Δ2Θ) by a numerical method without

application of any order of approximation or the replacement
of 2θ by 2Θ, as shown in one of the previous studies (Ida, 2020).

Figure 2 compares the values of the aberration function
based on the first-order approximation, given by Eqs (5)–
(7), and the results of numerical calculation based on the
exact geometrical relation given by Eq. (1), as expressed by
100-bin histogram of 10 000 sample values for the case R =
150 mm, t = 0.5 mm, μ−1 = 3 mm, and 2Q = 20◦. The pene-
tration depth of μ−1 = 3 mm is a realistic value for loosely
packed powder of organic compounds. It is not difficult to
increase the number of bins and sampling points in numerical
calculation. It is confirmed that the first-order approximation
and simplification does not cause any detectable deviation
from the exact values, in this particular case.

C. Cumulants of the sample transparency aberration

function

It is much easier to evaluate the cumulants of the exact
aberration function than the function itself, as it has been
shown in the previous study on the equatorial aberration in
the continuous-scan integration data with a silicon strip
X-ray detector (CSI-SSXD; Ida, 2020). In the case of equato-
rial aberration in the CSI-SSXD data, 4 × 4 point two-
dimensional Gauss–Legendre quadrature has given accurate
values of cumulants about the exact formula. Evaluation of
the cumulants of sample transparency aberration may appear
easier than that of equatorial aberration, because it can be
evaluated by one-dimensional integral.

The k-th power average sk of the exact sample transpar-
ency aberration is calculated by the following equations:

sk = 1
2

1− exp − 2mt
sinQ

( )[ ]

×
∑N−1

j=0

Wjf
k
j

sinQ
sin uj

j
(( sinQ/ sin uj)−1)
j (8)

Figure 1. Instrumental parameters related to the sample transparency aberration.
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fj = 2Q− 2uj (9)

sin uj = 1+ 1− ln jj
2mR

( )
tanQ

[ ]−2
{ }−1/2

(10)

jj =
1
2

(1− Xj) exp − 2mt
sinQ

( )
+ 1+ Xj

[ ]
(11)

where {Xj} and {Wj} ( j = 0, . . ., N− 1) are abscissa and
weights of the N-term Gauss–Legendre quadrature. The for-
mulas of Eqs (8) and (11) assume that Xj∈ (− 1, 1) and∑N−1

j=0 Wj = 2, similarly to the way applied in most of numer-
ical libraries (e.g., Abramowitz and Stegun, 1964; Press et al.,
2007). The first to fourth cumulants, κk (k = 1, 2, 3, 4), are cal-
culated by

k1 = s1
s0

(12)

k2 = s2
s0

− s21
s20

(13)

k3 = s3
s0

− 3s2s1
s20

+ 2s31
s30

(14)

k4 = s4
s0

− 4s3s1
s20

− 3s22
s20

+ 12s2s21
s30

− 6s41
s40

(15)

The reduced cumulants k(1/k)k defined by

k(1/k)k ; sign(kk)|kk|1/k (16)

sign(x) ;
1, [x . 0]
0, [x = 0]
−1, [x , 0]

⎧⎨
⎩ (17)

makes the comparison of different-order cumulants easier, as
in the case of the comparison of the arithmetic mean (first-

order cumulant) and the standard deviation (square root of
the second-order cumulant).

The k-th power average s(A)k of the approximate sample
transparency aberration function ω(Δ2Θ) given by Eq. (5) is
calculated by the following recursion formula:

s(A)k = −(−u)k exp(−u/g)− gk s(A)k−1,

(k = 1, 2, . . .)
(18)

s(A)0 = 1− exp(−u/g) (19)

where γ and u are given by Eqs (6) and (7).
Figure 3 plots the values of the integrated intensity of the

exact and approximate aberration functions, s0 and s
(A)
0 , calcu-

lated for the case R = 150 mm, t = 0.5 mm, μ−1 = 0.1 mm, and
2Q = 20◦. The approximate value s(A)0 is directly calculated
by Eq. (19), and it results in s(A)0 = 1.0000 in this case, even
though the value is still slightly smaller than unity. The
exact value s0 calculated by numerical integral based on the
exact formula, slowly approaches to the value 1.0003 on
increasing the number of sampling points for numerical inte-
gration. It may be emphasized that the difference between
s(A)0 and s0 is practically negligible.

One may think it should be strange that the exact value s0
converges to the value larger than unity, but it would be
explained as follows. The value s0 is defined as it is normal-
ized for the hypothetical case of 2θ = 2Θ, as defined by
Eq. (8), to avoid introducing further complexity. The true dif-
fraction angle 2θ is always higher than 2Θ, as can be seen in
Figure 1. Since the total path length is proportional to 1/sinθ,
the real path length should be shorter than the value calculated
on the assumption of 2θ = 2Θ. Shorter path length naturally
results in stronger intensity.

The slow convergence on increasing the number of sam-
pling points N looks unfavorable from the point of view of
computing efficiency. It also suggests that the Gauss–
Legendre quadrature may not be effective to improve the accu-
racy of the calculation.

Figure 2. Numerical and approximate sample transparency aberration functions for the case R = 150 mm, t = 0.5 mm, μ−1 = 3 mm, and 2Q = 20◦. The
numerically evaluated function is displayed as the 100-bin histogram for 10 000 sample values.
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It is naturally expected that the accuracy and efficiency of
the calculation depend on the assumed values of parameters.
What should be concerned is the penetration depth μ−1,
because it should be about 1 mm for organic materials, and
about 0.01 mm for inorganic material including heavy ele-
ments, while the values of the goniometer radius R and the
specimen thickness t do not change significantly, in a realistic
measurement system. Figure 4 plots the reduced fourth-order
cumulants k(1/4)4 , calculated for the case R = 150 mm, t = 0.5
mm, and 2Q = 20◦, on variation of the penetration depth
μ−1, and different number of sampling points N for the
numerical integral.

Evaluation of higher order cumulants generally becomes
more difficult in computation, while higher order cumulants
are less significant in practical analyses. The numerically eval-
uated values of k(1/4)4 for the number of sampling points N = 8

and N = 16 are clearly wrong, as can be seen in Figure 4. The
values obtained for N = 32 is practically correct in this case,
but it will be difficult to determine the number N to optimize
both the accuracy and computing efficiency in general cases.

The values of k(1/4)4 calculated by the approximate for-
mula are slightly deviated from the exact values. The most sig-
nificant difference appears at μ−1≈ 2.1 mm in Figure 4, where
k(1/4)4 changes the signal from positive to negative on extend-
ing the penetration depth. However, the difference along the
horizontal axis μ−1 should have a wider allowable range,
because it is practically difficult to evaluate the exact value
of the penetration depth of the specimen experimentally, or
to prepare a powder specimen with high homogeneity of linear
attenuation coefficient μ.

It is concluded that the use of the formula derived from
the first-order approximation is more reasonable and secure

Figure 3. Numerical and approximate values of the integrated intensity of sample transparency aberration functions for the case R = 150 mm, t = 0.5 mm, μ−1 =
0.1 mm, and 2Q = 20◦.

Figure 4. Approximate and numerical values of k(1/4)4 for the case R = 150 mm, t = 0.5 mm, and 2Q = 20◦ on variation of the penetration depth μ−1.
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for treating the sample transparency aberration, because it is
difficult to achieve both high accuracy and efficiency on the
numerical calculation based on the exact geometrical
relation.

D. Convolution of sample transparency aberration

Using the first-order approximation, as described in
Section II.C, it is straightforward to derive the mathematical
formulas for convolution. The approximate formula of the
instrumental function ω(Δ2Θ) given by Eq. (5) can nominally
be expressed by the following formula of convolution of com-
ponent functions ωT(Δ2Θ) and ωS(Δ2Θ) on the 2Θ scale,

v(D2Q) = vT(D2Q)∗ vS(D2Q) (20)

vT(D2Q) =
1
g
exp

D2Q
g

( )
, [D2Q ≤ 0]

0, [D2Q . 0]

⎧⎨
⎩ (21)

vS(D2Q) = d(D2Q)− exp − u

g

( )
d(D2Q+ u) (22)

The function ωT(Δ2Θ) represents the decay effect for infi-
nitely thick sample, and the function ωS(Δ2Θ) represents the
truncation effect caused by the finite thickness of the sample.

As the decay width γ on the 2Θ scale is expressed by Eq.
(6), a scale transform from 2Θ to χT, expressed by

xT =
∫
d2Q
g

= 2mR ln tanQ (23)

should be used for treating the decay effect (e.g., Ida and
Toraya, 2002). The decay effect of the X-ray beam should
be expressed by the convolution with a function wT(χT) on
the χT scale,

wT(xT) = exp (xT), [xT ≤ 0]
0, [xT . 0]

{
(24)

for the intensity values ηT on the χT scale, calculated from the
observed powder scattering intensity values y by the equation,

hT = gy = sin 2Q
2mR

y (25)

The treatment of the effects of the truncation width u on
the 2Θ scale, given by Eq. (7), may also be straightforward.
Using another scale transform from (2Θ, y) to (χS, ηS),
given by

xS =
∫
d2Q
u

= R

t
ln

2
1− tan (Q/2)

− 1

[ ]
(26)

hS = uy exp − uxS
g

( )
(27)

the effect of the finite thickness t of the specimen is expressed
by the convolution with a function wS(χS) on the χS scale,
given by

wS(xS) = d(xS)− d(xS + 1) (28)

The observed X-ray scattering intensity profile expressed
by (2Θ, y) may appear the convolution with the instrumental
function ω(Δ2Θ) given by Eq. (5), or double convolution
with the component functions ωT(Δ2Θ) and ωS(Δ2Θ) given
by Eqs (21) and (22) within a narrow angular range of 2Θ.
But the whole diffraction data cannot be treated as the convo-
lution with an instrumental function ω(Δ2Θ) on the 2Θ scale,
while they can exactly be expressed by the double convolution
with the function wT(χT) given by Eq. (24) on the χT scale and
wS(χS) given by Eq. (28) on the χS scale.

However, the intensity values ηS expressed by Eq. (27)
typically need more than 15 bits for the exponent part of the
floating point number, while 11 bits are allocated for the expo-
nent part in the IEEE 754-1985 64-bit floating point number,
which is commonly used in popular numerical computing sys-
tems. IEEE 754-2005 128-bit floating point number, which is
not popular at this moment, still has only 15 bits for the expo-
nent part. We can use the values of the logarithm lnηS instead
of ηS, but arithmetic operations about the logarithm are likely
to cause confusion for the users of the theory.

In this article, the author would like to show another route
to treat the effect of the finite thickness t of the specimen on
sample transparency aberration. The scale transform about
abscissa, given by Eq. (26), is unchanged. The following
expression about ηS for the intensity scaling is used,

hS = uy (29)
instead of Eq. (27), and a nominal aberration function is then
expressed by

wS(xS) = d(xS)− exp − u

g

( )
d(xS + 1) (30)

Note that the application of the nominal aberration func-
tion wS(χS) expressed by Eq. (30) partly destroys the convolu-
tion relation, similarly to that the intensities y on the 2Θ scale
cannot exactly be the convolution with the function ω(Δ2Θ)
expressed by Eq. (5), in the context for treating whole the
powder diffraction pattern.

Since the convolution with the Dirac delta function is
identical to the identity conversion, or doing nothing, the con-
volution with the function given by Eq. (30) can be imple-
mented as the combination of multiplication, horizontal
shift, and subtraction, even if the treatment may be irregular
in the standard context of convolution.

E. Deconvolutional treatment about sample

transparency aberration

The deconvolutional treatment about the truncation effect
caused by the finite thickness of t of the specimen on sample
transparency aberration is equivalent with the speculation of
hypothetical diffraction profile for the infinitely thick
(t→∞) specimen. The treatment will broaden the apparent
diffraction peak profile. The application of the deconvolu-
tional treatment may appear discouraging for powder diffrac-
tion users, because narrower peak profile is generally more
favorable than broadened peak shape. But the recovery of
lost intensity, appropriate correction of partially shifted peak
locations and partially deformed peak shapes, are expected
to be achieved by the deconvolutional treatment about the
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finite thickness of the specimen. The treatment is still advan-
tageous on combined use of software, where no consideration
of finite thickness of the specimen is incorporated. The formu-
lation of the deconvolutional treatment about the sample trans-
parency aberration for finite thickness is described in this
section.

The deconvolutional treatment corresponding to the func-
tion wS(χS) given by Eq. (30) is identical to the convolution
with the function w(−1)

S (xS), given by

w(−1)
S (xS) = d(xS)+

∑1
j=1

exp − u

g
j

( )
d(xS + j) (31)

When the intensity data on the χS scale is given by ηS(χS)
= ζS(χS)*wS(χS), the deconvolutionally treated intensity data
ζS(χS) are then calculated by

zS(xS) = hS(xS)+
∑1
j=1

exp − u

g
j

( )
hS(xS + j) (32)

It may be noted that the deconvolutional treatment on the
linear combination of the Dirac delta functions is identical to
the deconvolution in the original meaning.

The expressions as infinite series in Eqs (31) and (32) may
also appear discouraging, but it is not difficult to implement
automatic termination of iterative addition, on the condition
that the relative intensity of the next term becomes smaller
than a small number, ε = 10−6, for example.

A standard method based on the Fourier and inverse Fourier
transforms can be applied on the deconvolutional treatment
about the decay effect expressed by Eqs (23)–(25), and the
details about the implementation are omitted in this article.

III. SIMULATIONS

A. Convolution about sample transparency aberration

A set of artificial powder diffraction data is synthesized as
the convolution of Cu Kα1 X-ray spectroscopic profile with
the sample transparency aberration.

The artificial diffraction profile of Cu Kα1 X-ray is con-
structed on another scale (e.g., Ida and Toraya, 2002) given by

xX =
∫

d2Q
2 tanQ

= ln sinQ (33)

hX = 2y tanQ (34)

and locating the Lorentzian functions given by

hX = fL(xX − xX,i; w) (35)

fL(x; w) = 1
pw

1+ x

w

( )2[ ]−1

(36)

xX,i = ln sinQi (37)
for peak locations {2Θi}. Note that the peak profile is
unchanged on the χX scale, and half width at half maximum
(HWHM), w, of the Lorentzian function has the common
value on the χX scale, independent of the peak locations
{2Θi}. The value w = 0.000142 is applied here, based on a

doublet model for the Cu Kα X-ray spectroscopic profile
(Deutsch et al., 2004). Lorentzian peaks are located at
2Qi = 10◦, 30◦, . . . , 130◦.

The decay and truncation components of the sample trans-
parency aberration are successively convolved, by the method
described in Section II.D, assuming the values R = 150 mm,
μ−1 = 3 mm, and t = 0.5 mm.

The results of the calculation of convolution are shown in
Figure 5.

The convolution process about the decay component of
the sample transparency aberration on the scale (χT, ηT) gen-
erates the profile for the infinitely thick (t→∞) specimen.
The process about the truncation effect on the (χS, ηS) scale
naturally corresponds to the subtraction of the intensities
expected for the reflection from the phantom specimen at
the depth deeper than the real thickness, that is, −z <−t.

The effect of sample transparency causes significant
asymmetric deformation of the diffraction peak profile at
low diffraction angles as can be seen in Figure 5(b), where
the decay effects of the aberration are dominant, while the sim-
ulated peak profile shows low asymmetry at high diffraction
angles, as shown in Figures 5(c) and 5(d), where the truncation
effects are dominant.

B. Deconvolutional treatments about sample

transparency aberration

The deconvolutional treatments described in Section II.E
are applied to the artificial powder diffraction data synthesized
by the method described in Section III.A.

Figure 6 shows the change of the diffraction intensity pro-
file on the deconvolutional treatments. The deconvolutional
treatment about the truncation effect naturally results in the
profile speculated for the infinitely thick (t→∞) specimen.
The loss of intensity caused by the finite thickness of speci-
men is recovered on this process. Notable changes in the dif-
fraction peak profile are observed on the deconvolutional
treatment about the decay effect of sample transparency. It
corrects the average peak shift and asymmetric deformation
and gives symmetric peak profile located at the correct posi-
tion. The shift-corrected symmetrized peak profile has broad-
ened width as compared with the simulated observed peak
profile, but the shape of the peak may appear rather sharper
than the observed one, as shown in Figures 6(c) and 6(d).

C. Discussions on the symmetrized peak profile

As the symmetrized peak profile shown in Figure 6 appear
extremely sharp, one may think it is analogous to the so-called
super-Lorentzian peak profile, observed for samples with a
broad crystallite size distribution (Ida et al., 2003).
However, the situation is clearly different, because the profile
should be the convolution of the Lorentzian function and a
sharp symmetrized function in this case.

The standard deviation of the truncated exponential func-
tion given by Eq. (21) is unity, and the (excess) kurtosis is
6. Since the deconvolutional treatment does not change the
values of the even order cumulants (Ida et al., 2018), the sym-
metrized instrumental function also has the kurtosis of 6.

The author has proposed (Ida, 2021) a model for a symme-
trized instrumental profile, which may be called as the symmet-
ric Rosin-Rammler type function, the positive side of which is
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identical to the density function of the Rosin-Rammler distribu-
tion (Rosin and Rammler, 1933), expressed by

fSRR(x; g, h) ;
h

2g
|x|
g

( )h−1

exp − |x|
g

( )h
[ ]

(38)

where g is the width parameter, and h is the shape parameter,
and the kurtosis becomes 6 for the value of shape parameter
h≈ 0.85. The primitive function FSRR(x;g, h) is simply given by

FSRR(x; g, h) ;
sign(x)

2
1− exp − |x|

g

( )h
[ ]{ }

(39)

and it is also easy to evaluate the inverse function of the prim-
itive function. Then, an efficient algorithm (Ida, 1998) can be
applied to evaluate the convolution with the Lorentzian
function.

Figure 7 shows truncated exponential and symmetrized
truncated exponential functions, and symmetric Rosin-
Rammler function for the kurtosis of 6. The symmetrized trun-
cated exponential function is numerically evaluated as the
inverse Fourier transform of the complex absolute of the
Fourier transform of the truncated exponential function. It
should be noted that the symmetrized truncated exponential
function cannot be identical to the symmetric Rosin-
Rammler function, but it is difficult to find the difference in
the plotted curves as demonstrated in Figure 7.

Figure 5. Convolution of Cu Kα1 profile and sample transparency aberration for the case R = 150 mm, t = 0.5 mm, and μ−1 = 3 mm. (a) Overall profile, and
individual peak profile located at (b) 2Q = 10◦, (c) 2Q = 70◦, and (d) 2Q = 130◦.
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Figure 6. Deconvolutional treatment about sample transparency aberration.

Figure 7. Truncated exponential (finely broken line), symmetrized truncated exponential (thin solid line), and symmetric Rosin-Rammler type function (coarsely
broken line) with the standard deviation of unity, and the kurtosis of 6.
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The Lorentzian HWHM is estimated at w ≈ 0.035◦, and
the decay parameter γ, which is identical to the standard devi-
ation σ of the truncated exponential function, is estimated at
g = s ≈ 0.439◦ on the 2Θ scale, for the peak located at
2Q = 130◦. Figure 8 shows the peak profile calculated as
the numerical convolution of the Lorentzian and symmetric
Rosin-Rammler type function.

Similarity of the calculated profile shown in Figure 8 and
the deconvolutionally treated profile in Figure 6(d) suggests
that the symmetrized peak profile, mainly affected by the
sample transparency aberration can certainly be modeled by
the function defined as the convolution of the Lorentzian
and the symmetric Rosin-Rammler type function.

Further details about the system of the symmetric model
profile function are described in another article (Ida, 2021).

IV. CONCLUSION

Effects of sample transparency aberration for the finite
thickness of the sample are formulated as the double convolu-
tion on the different scale transforms for the decay and the
truncation effects.

The deconvolutional treatments based on the convolution
formulas automatically recovers the intensity loss and corrects
peak shift and asymmetric deformation of the peak profile.
The treated peak profile is broadened from the observed
peak profile, but it does not necessarily mean disadvantage
on peak profile analysis, because the profile is modeled by
the convolution with a sharp symmetric function with the kur-
tosis of 6.

SUPPLEMENTARY MATERIAL

Python codes for deconvolutional treatments, including
the treatment of sample transparency effect, example data

and configuration files are given, and the assignment of the
files are described in “00demo.pdf”. The supplementary mate-
rial for this article can be found at https://doi.org/10.1017/
S0885715622000021.
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