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Abstract

Let p be an odd prime. We construct a p-group P of nilpotency class two, rank seven and exponent p, such
that Aut(P) induces NGL(7,p)(G2(p)) = Z(GL(7, p))G2(p) on the Frattini quotient P/Φ(P). The constructed
group P is the smallest p-group with these properties, having order p14, and when p = 3 our construction
gives two nonisomorphic p-groups. To show that P satisfies the specified properties, we study the action
of G2(q) on the octonion algebra over Fq, for each power q of p, and explore the reducibility of the exterior
square of each irreducible seven-dimensional Fq[G2(q)]-module.
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1. Introduction

The topic of this paper is the problem of representing groups on p-groups. The
traditional version involves linear representations on vector spaces, that is, on
elementary abelian p-groups; here we study a nonabelian analogue. As in the
traditional case, it is natural to consider simple groups, since this may lead to an
understanding of the problem for finite groups in general. In this paper, we begin a
programme to study the nonabelian analogue for the exceptional groups of Lie type;
the classical groups of Lie type were studied in [2]. The groups of type G2 are the
nontwisted exceptional groups of lowest Lie rank, and so we focus first on those. These
groups are also interesting from a purely algebraic point of view, being automorphism
groups of octonion algebras. To describe our goal more precisely, we require some
definitions.
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322 J. Bamberg et al. [2]

Let P be a finite p-group. The Frattini subgroup Φ(P) is a characteristic subgroup
of P, and therefore there is a natural homomorphism θ from Aut(P) to Aut(P/Φ(P)),
the automorphism group of the Frattini quotient P/Φ(P) of P. We also know from
Burnside’s basis theorem that P/Φ(P) can be identified with the vector space Fd

p, where
d is the rank of P, that is, the minimum size of a generating set for P. Therefore, the
group A(P) induced by Aut(P) on P/Φ(P), that is, the image of θ, can be identified with
a subgroup of the general linear group GL(d, p). In fact, this identification preserves
the linear action of the group on P/Φ(P) � Fd

p.
Bryant and Kovács [5] proved that if H is any subgroup of GL(d, p), with d > 1,

then there exists a p-group P of rank d such that A(P) = H. From the proof of their
result, we see that both the class and exponent of the group P are roughly |GL(d, p)|
(depending on both d and p), and the order of P is not explicit, but must be enormous.
Bamberg et al. [2] were inspired to investigate the necessity of the large exponent
and class of the groups constructed in [5]. They showed that if H satisfies a few
extra conditions, then there exists a p-group P with A(P) = H, such that P has rank
d; nilpotency class two, three or four; exponent p; and order at most pd4/2. Here,
H is a maximal subgroup of GL(d, p) that does not contain SL(d, p), where d > 1
and p > 3. The proof of the existence of P in this case also requires that H lies in a
particular subset of the Aschbacher classes of GL(d, p), where the Aschbacher classes
of a classical group describe its subgroups, via Aschbacher’s theorem [1]. Bamberg
et al. also showed that there are cases with p = 3 where there exists a corresponding
p-group of nilpotency class two.

In odd characteristic, the natural representation of a finite Chevalley group of type
G2 is on a seven-dimensional vector space, and hence we can consider G2(p) (for p
odd) as a subgroup of GL(7, p). We determine below a relatively small nonabelian
counterpart to this representation. The class, exponent and order of the p-group P
shown to exist in the theorem below are drastically lower than the bounds that can be
deduced from [5]. Moreover, P is the smallest p-group of the given nilpotency class,
rank and exponent whose associated induced group is Z(GL(7, p))G2(p).

Theorem 1.1. Let p be an odd prime. There exists a p-group P of nilpotency class two,
rank seven, exponent p and order p14, such that A(P) = Z(GL(7, p))G2(p). If p = 3,
then there exist two such p-groups that are nonisomorphic.

As we show in this paper, Z(GL(7, p))G2(p) is the normaliser of G2(p) in GL(7, p).
This normaliser is not a maximal subgroup of the general linear group, and hence it
does not satisfy the conditions required by Bamberg et al. The methodology required
to prove Theorem 1.1 is therefore different from that used in [2], and depends upon
realising G2(p) as the automorphism group of the octonion algebra over Fp. This
elementary approach highlights the connection between the groups of type G2 and this
algebra, and emphasises the uniqueness of these groups among the other groups of
Lie type. In a sequel paper (‘On p-groups with automorphism groups related to the
exceptional Chevalley groups’, submitted for publication), the second author proves
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similar results for each family of nontwisted exceptional groups, using a more Lie-
theoretic approach.

Our method of proof for Theorem 1.1 is to appeal to a description of groups of
class two and exponent p, as in [6, Sections 2–3], [8, Ch. 9.4] and [15, Section 2]
(see also [2, Section 2]). Such a p-group P is a quotient of the universal p-group of
nilpotency class two, rank d and exponent p, that is, the largest finite group with these
properties. With V := Fd

p, there exists a proper subspace U of A2V , the exterior square
of V , such that P = PU , where

PU := V × A2V/U, (1-1)

equipped with the multiplication defined by

(v,w + U)(v′,w′ + U) := (v + v′,w + w′ + v ∧ v′ + U).

Moreover, the automorphisms induced on the Frattini quotient of P are easy to
understand in that A(P) = NGL(d,p)(U). Conversely, for each proper subspace U of A2V ,
the group PU of class two and exponent p defined in the way above enjoys the property
A(PU) = NGL(d,p)(U). Thus our strategy to exhibit the group P in Theorem 1.1 is to
consider the reducibility of the exterior square A2V of a seven-dimensional module V
for G2(p).

It must be remarked that the stabiliser in GL(d, p) of any subspace of A2V contains
the centre of the general linear group, which acts via scalar multiplication. Hence the
group Z(GL(7, p))G2(p) from Theorem 1.1 is the smallest group containing G2(p) that
we can induce on the Frattini quotient of a p-group of nilpotency class two, rank seven
and exponent p.

The paper is organised as follows. In Section 2 we explore the reducibility of the
exterior square of each irreducible seven-dimensional G2(p)-module in order to find a
suitable subspace U to substitute in (1-1). In particular, we determine the maximum
dimension of such a subspace so as to determine the minimum order of the p-group
PU . These results regarding reducibility are interesting in their own right, and may
be useful in other applications, and hence we explore the more general case of the
Chevalley group G2(q), where q is a power of an odd prime. Some of our results are
even more general, and apply to the larger family of groups G2(F), where F is any
field of characteristic not equal to two. In Section 3 we explore part of the overgroup
structure of G2(q) in GL(7, q). We then use the results of Sections 2–3 to prove
Theorem 1.1 in Section 4. Finally, we conclude in Section 5 with suggestions for
future research.

2. Reducibility of the exterior square of an irreducible seven-dimensional
G2(q)-module

In this section we explore the reducibility of the exterior square of each irreducible
seven-dimensional G2(q)-module, with q an odd prime power. We note that this
reducibility was investigated in [16, Ch. 9.3.2]. Here, we consider a totally different
approach that also yields results in the more general case of the group G2(F), where F
is any field of characteristic not equal to two.
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Lemma 2.1 [17, Ch. 4.3.2]. Let O be the eight-dimensional octonion algebra over F,
with basis {1, i0, i1, . . . , i6} and multiplication defined in terms of basis vectors as:

(i) 1e = e1 = e for each e ∈ {1, i0, i1, . . . , i6};
(ii) i2t = −1 for each t ∈ Z/7Z; and
(iii) itit+1 = it+3, it+1it+3 = it, and it+3it = it+1 for each t ∈ Z/7Z, with subscripts

interpreted modulo 7.

Then G2(F) := Aut(O), with G2(F) = G2(q) if F is the finite field of order q.

This octonion algebra is an eight-dimensional analogue of the two-dimensional
algebra of the complex numbers over the reals and the four-dimensional quaternion
algebra. It follows from the definition of multiplication in O that itis = −isit for
all distinct s, t ∈ Z/7Z. Furthermore, 1 is the unique multiplicative identity of O.
The elements of O are called octonions, and the real octonions (respectively, the
imaginary octonions) are the elements of 〈1〉 (respectively, of O := 〈i0, i1, . . . , i6〉).
If x = b1 +

∑6
t=0 atit is an octonion, with b, a0, a1, . . . , a6 ∈ F, then the real part of

x is Re(x) := b1, its imaginary part is Im(x) :=
∑6

t=0 atit ∈ O, and its conjugate is
x := b1 −

∑6
t=0 atit. The function Re (respectively, Im) is the natural F-linear projection

map from O = 〈1〉 ⊕ O to 〈1〉 (respectively, to O).
The following result and its proof are given by Wilson [17, pages 119 and 121].

Proposition 2.2. The group G2(F) stabilises O (as a subspace of the algebra O).

Proof. If we identify 〈1〉 with F, then we can define a bilinear form β : O × O→ F
by (x, y)β := Re(xy), and G2(F) preserves this form. Since G2(F) is the automorphism
group of O, it fixes 1 ∈ O, and hence it stabilises 〈1〉. Therefore, G2(F) stabilises the
orthogonal complement 〈1〉⊥ of 〈1〉 with respect to β, which is O. �

Lemma 2.3. Let f : O2 →O be the map defined by (x, y) f := Im(xy) for x, y ∈ O. Then
the following statements hold.

(i) There exists a unique linear map f̃ : A2O→ O defined by (x ∧ y) f̃ := (x, y) f for
all x, y ∈ O.

(ii) The map f̃ is an F[G2(F)]-homomorphism.
(iii) The group G2(F) stabilises the subspace ker f̃ of A2O (as a vector space), which

has dimension 14.

Proof. (i) It is clear that f is bilinear, and it follows from the octonion multiplication
rules that the square of an imaginary octonion is real, which means that f is alternating.
Thus by the universal property of the exterior square, there exists a unique linear map
f̃ : A2O→ O such that (x ∧ y) f̃ = (x, y) f for all x, y ∈ O.

(ii) For distinct basis vectors is and it, we have (is ∧ it) f̃ = isit, since this product is
imaginary. As G2(F) acts linearly on O by Proposition 2.2, the image (isit)g = igs igt is
also imaginary for each g ∈ G2(F). The group G2(F) also acts linearly on A2O, with
(x ∧ y)g := xg ∧ yg for all x, y ∈ O and g ∈ G2(F). Therefore,

((is ∧ it) f̃ )g = (isit)g = igs igt = (igs ∧ igt ) f̃ = ((is ∧ it)g) f̃ .
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Since A2O is spanned by the wedge products is ∧ it, it follows that the linear map f̃ is
an F[G2(F)]-homomorphism.

(iii) As f̃ is an F[G]-homomorphism by part (ii), G2(F) stabilises ker f̃ . Moreover,
it follows from the definition of multiplication in O that, for each t ∈ Z/7Z, we have
(it+1 ∧ it+3) f̃ = Im(it) = it. The image of f̃ is therefore equal to O, with dimension
seven. We also have dim(A2O) =

(
dim(O)

2

)
= 21, and hence dim(ker f̃ ) = 21 − 7 = 14. �

We have shown that when char(F) , 2, the group G2(F) stabilises a 14-dimensional
subspace of A2O corresponding to the alternating bilinear map given by (x, y) f =

Im(xy) for x, y ∈ O. Gow [7] proves a stronger result when F is such that O is a
division algebra, namely, that G2(F) stabilises a 14-dimensional subspace of A2O

corresponding to each alternating bilinear map from O2 to O. However, our proof
of Lemma 2.3 holds even when O is a split algebra.

Definition 2.4 [4, Ch. 1.8.2]. Let G be a group, and let W1 and W2 be F[G]-modules.
Then W1 and W2 are quasiequivalent if W1 � Wα

2 for some α ∈ Aut(G), where Wα
2

is the F[G]-module obtained by twisting W2 by α. Specifically, if W2 affords the
representation ρ, then Wα

2 affords the representation ρα, where (g)ρα := (gα)ρ for each
g ∈ G.

We now focus on the case where F is the finite field Fq, with q a power of an odd
prime p, so that G2(F) = G2(q).

Lemma 2.5. Up to isomorphism and twisting by field automorphisms, there are three
distinct irreducible Fq[G2(q)]-modules of dimension at most 21. These G2(q)-modules
are all absolutely irreducible, and have respective dimensions 1, 7 and 7 if p = 3,
and 1, 7 and 14 otherwise. Furthermore, all irreducible Fq[G2(q)]-modules of
fixed dimension d 6 21 are quasiequivalent, and the images of the afforded Fq-
representations are all conjugate in GL(d, q).

Proof. Let G be the linear algebraic group associated with G2(q), and let K be
the algebraic closure of the field Fq. Lübeck [14, Appendix A.49] shows that,
up to isomorphism and twisting by field automorphisms, there are three distinct
irreducible K[G]-modules of dimension at most 21, with the same dimensions as the
required Fq[G2(q)]-modules. As G2(q) is simply connected, we have G2(q) < G, and
a theorem of Steinberg [9, page 17] implies that the irreducible K[G2(q)]-modules
of dimension at most 21 are the restrictions to G2(q) of the aforementioned K[G]-
modules. Another theorem of Steinberg [9, page 42] implies that Fq is a splitting
field for G2(q). Therefore, the irreducible Fq[G2(q)]-modules of dimension at most 21
are all absolutely irreducible, and they can be identified with the K[G2(q)]-modules
by extending the scalars [10, Corollary 9.8]. Finally, when p = 3, the two distinct
irreducible Fq[G2(q)]-modules of dimension seven are equivalent up to twisting by the
exceptional graph automorphism of G2(q) [9, pages 188–189]. The quasiequivalence
result therefore follows from Definition 2.4. Finally, since G2(q) is simple, each
irreducible G2(q)-module is either faithful or trivial. Hence the conjugacy result
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follows from the fact that faithful modules are quasiequivalent if and only if the
afforded representations have conjugate images [4, Lemma 1.8.6]. �

When q = p, the modules of Lemma 2.5 are those distinct up to isomorphism, as
G2(p) has no nontrivial field automorphisms.

Proposition 2.6. Let V be a faithful seven-dimensional Fq[G2(q)]-module. Then V is
irreducible. In particular, O is an irreducible Fq[G2(q)]-module.

Proof. Suppose that V is reducible. Then we have from Lemma 2.5 that each
Fq[G2(q)]-composition factor of V is the unique one-dimensional Fq[G2(q)]-module,
that is, the trivial irreducible module. Since G2(q) is perfect, the trivial module has
no nontrivial self-extensions. This implies that G2(q) acts trivially on V , contradicting
faithfulness. �

For a corresponding result when F is an infinite field, see [11, Proposition 4].

Theorem 2.7. Let V be an irreducible seven-dimensional Fq[G2(q)]-module. Then
the Fq[G2(q)]-module A2V contains a submodule of dimension 14, but no proper
submodule of higher dimension.

Proof. Let U be a proper submodule of A2V with the highest possible dimension.
Then U is a maximal submodule of A2V , and thus the correspondence theorem
implies that the quotient W := A2V/U is an irreducible Fq[G2(q)]-module. Suppose
that dim(W) = 1, so that W � Fq. Then W is trivial, as G2(q) is nonabelian and simple.
Additionally, the map β : V × V →W defined by (x, y)β := x ∧ y + U for x, y ∈ V is an
alternating bilinear form on V . Since U is G2(q)-invariant and W is trivial, if g ∈G2(q),
then

(xg, yg)β = xg ∧ yg + U = (x ∧ y)g + U = (x ∧ y + U)g = x ∧ y + U = (x, y)β.

Thus G2(q) preserves β, which is clearly nonzero as U is a proper subspace of
A2V . The radical of β is therefore a proper G2(q)-invariant subspace of V , which
is irreducible, and hence β is nondegenerate. However, for V to admit a nondegenerate
alternating form, it must have even dimension [12, Proposition 2.4.1]. This is a
contradiction, and thus dim(W) , 1.

We therefore have from Lemma 2.5 that W has dimension seven if p = 3,
and dimension seven or 14 if p > 3. Since dim(U) = dim(A2V) − dim(W), with
dim(A2V) =

(
dim(V)

2

)
= 21, the dimension of U is 14 if p = 3, and seven or 14 if p > 3.

Thus we are done if p = 3. For p > 3 in general, we know from Proposition 2.6 that
O is an irreducible Fq[G2(q)]-module of dimension seven. Hence O � Vα for some
α ∈ Aut(G2(q)) by Lemma 2.5, and this implies that A2O � A2(Vα). It is easy to see that
A2(Vα) and (A2V)α are equal as Fq[G2(q)]-modules, and that G2(q) stabilises the same
subspaces of A2V and (A2V)α, which are equal as vector spaces. Since G2(q) stabilises
a 14-dimensional subspace of A2O by Lemma 2.3(iii), it follows that dim(U) = 14. �
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3. Overgroups of G2(q) in GL(7, q)

In this section we establish results about certain overgroups of G2(q) in GL(7, q)
that we will use in Section 4 to prove Theorem 1.1. Although this theorem only
applies to the case where q is an odd prime, we consider here the general case with
q a power of an odd prime. We let G := G2(q) < GL(7, q) be the image of a fixed
irreducible seven-dimensional Fq-representation of G2(q). We know from Lemma 2.5
that this representation is absolutely irreducible, and that all such representations
are quasiequivalent. Furthermore, G preserves a nondegenerate orthogonal form
β. Let GO(7, q) (respectively, CGO(7, q)) be the group of isometries (respectively,
similarities) of β. In addition, let SO(7, q) := GO(7, q) ∩ SL(7, q), and let Ω(7, q) :=
(SO(7, q))′. Bray et al. [4, Table 8.40] show that G is a maximal subgroup of Ω(7, q),
and that G lies in the Aschbacher class of GO(7, q) denoted by S, consisting of the
maximal subgroups that are absolutely irreducible, not of geometric type and, modulo
a central subgroup, almost simple. Note that G is perfect, as it is nonabelian and
simple.

Lemma 3.1. Let Z := Z(GL(7, q)) and Z0 := Z(SL(7, q)). Then:

(i) the only maximal subgroup of SL(7, q) that contains G is Z0SO(7, q);
(ii) if G 6 X 6 SL(7, q) and Ω(7, q) 66 X, then X 6 Z0G; and
(iii) the group ZG is the normaliser of G in GL(7, q), and also the normaliser of Z0G

in GL(7, q).

Proof. (i) Bray et al. [4, Tables 8.35–8.36] list the maximal subgroups of SL(7, q), as
follows:

(a) groups that are images of reducible representations;
(b) groups H whose perfect core H∞ is the image of a representation that is not

absolutely irreducible;
(c) groups H such that a conjugate of H∞ in GL(7, q) is defined over a subfield of

Fq of prime index;
(d) groups isomorphic to Z0 × PSU(3, 3), when q is prime and q ≡ 1 mod 4;
(e) groups isomorphic to 71+2

+ o Sp(2, 7), when either q is prime and q ≡ 1 mod 7, or
q is a cube of a prime and q ≡ 2, 4 mod 7;

(f) groups isomorphic to (q − 1)6 o S 7, when q > 5;
(g) groups isomorphic to (q0 − 1, 7) × SU(7, q0) that preserve a unitary form up to

scalars, when q = q2
0; and

(h) groups isomorphic to Z0SO(7, q) that preserve an orthogonal form up to scalars.

Since G is an S-subgroup of GO(7, q), no conjugate of G in GL(d, q) is defined over a
proper subfield of Fq [4, Definition 2.1.3]. Additionally, G is the image of an absolutely
irreducible representation. As G is perfect, all of these properties must hold for each
group H containing G, and for the perfect core H∞ of H. Hence G does not lie in any
of the groups in (a)–(c). We also see by considering orders that none of the groups
in (d)–(f) can contain G. Furthermore, by [4, Lemma 1.8.8], G does not preserve any
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Figure 1. Overgroups of G2(q) in GL(7, q), for an odd prime power q. Double edges indicate maximal
containment, and subgroups connected by dashed edges are equal when q . 1 mod 7.

unitary form up to scalars, and does not preserve any bilinear form up to scalars other
than the scalar multiples of β. Thus G does not lie in any group in (g). The groups in (h)
preserve distinct orthogonal forms up to scalars, and it follows that the only maximal
subgroup of SL(7, q) that can contain G is Z0SO(7, q). This group does indeed contain
Ω(7, q) and therefore G. Note that |Z0| = (q − 1, 7), and thus Z0SO(7, q) = SO(7, q)
when q . 1 mod 7.

(iii) The outer automorphisms of G consist of the field automorphisms, as well
as the exceptional graph automorphism when q is a power of 3. None of these
automorphisms leaves any irreducible seven-dimensional Fq[G]-module invariant, and
so by Clifford theory, these automorphisms are not realised in GL(7, q). Hence
NGL(7,q)(G) = CGL(7,q)(G)G, which is equal to ZG by Schur’s lemma. As G = (ZG)′ =

(Z0G)′, we also have NGL(7,q)(G) = NGL(7,q)(Z0G).
(ii) Suppose that X 6 SL(7, q) is such that G 6 X and Ω(7, q) 66 X. By part (i),

X 6 Z0SO(7, q), and so X ∩ Ω(7, q) is normal in X. Since G is maximal in Ω(7, q), we
have G = X ∩Ω(7, q). Thus

X 6 NGL(7,q)(G) ∩ (Z0SO(7, q)) = (ZG) ∩ (Z0SO(7, q)) 6 (ZG) ∩ SL(7, q),

where we have used part (iii). Applying Dedekind’s identity gives X 6 Z0G. �

Figure 1 summarises what we have proved about the overgroups of G in GL(7, q).
Note that Ω(7, q) is a maximal subgroup of SO(7, q), with index two [4, Table 1.3].

4. Proof of the main theorem

In this section we use the results of Sections 2–3 to prove Theorem 1.1. We retain
the notation established at the start of Section 3, but with q equal to an odd prime p. In
addition, let V be the module that affords an absolutely irreducible seven-dimensional
representation with image G = G2(p) 6 GL(7, p), and let Z := Z(GL(7, p)) (note that
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this representation is unique when p > 3). By Lemma 2.5 and Proposition 2.6, V can
in fact be any faithful seven-dimensional Fp[G2(p)]-module.

Proof of Theorem 1.1. By Theorem 2.7, G stabilises a proper 14-dimensional
subspace U of A2V , but no proper subspace of a higher dimension. Since the centre
of the special linear group SL(7, p) acts via scalar multiplication, J := Z(SL(7, p))G
also stabilises U. However, Ω(7, p) acts irreducibly on A2V [13, Table 1]. Thus no
subgroup of SL(7, p) that contains Ω(7, p) stabilises U, and hence J is the stabiliser of
U in SL(7, p) by Lemma 3.1(ii).

Now let H be the stabiliser of U in GL(7, p). Then J = H ∩ SL(7, p), and
since SL(7, p) is normal in GL(7, p), it follows that J is normal in H. Thus H is
contained in the normaliser of J in GL(7, p), which is ZG by Lemma 3.1(iii). This
normaliser certainly stabilises U, as Z acts via scalar multiplication, and hence H
is this normaliser. As in (1-1), set P := PU . We therefore have that the p-group
P has nilpotency class two, rank seven and exponent p, with A(P) = ZG, and with
|P| = p7+21−14 = p14. As we have chosen the dimension of U to be as high as possible,
this is in fact the smallest order of such a p-group.

Finally, if P1 and P2 are isomorphic p-groups, then the action of A(P1) on
P1/Φ(P1) � V is equivalent to that of A(P2) on P2/Φ(P2) � V . However, we know
from Lemma 2.5 that, when p = 3, there are two distinct isomorphism classes of
irreducible seven-dimensional G-modules, corresponding to two inequivalent actions
of ZG on V . Therefore, when p = 3, there exist two nonisomorphic p-groups with the
specified properties. �

It is easy to see that ZG is not a maximal subgroup of GL(7, p), and hence
Theorem 1.1 is not a consequence of the theory of Bamberg et al. [2]. Note
also that when p = 3, the distinct p-groups of Theorem 1.1 correspond to distinct
14-dimensional subspaces U of A2V . Computations in Magma [3] show, in the case of
each irreducible module V , that A2V contains a unique 14-dimensional submodule U,
with A2V/U � V as G-modules. Lemma 2.5 implies that this isomorphism also holds
when p > 3.

5. Concluding remarks

We have constructed a p-group P, for each odd prime p, whose automorphism
group induces Z(GL(7, p))G2(p) on P/Φ(P). There are several generalisations of this
result that would be of interest. For each p-group Q of nilpotency class two, rank
seven and exponent p, the group A(Q) contains the scalars of GL(7, p). However, we
know from the work of Bryant and Kovács [5] that there exists a p-group R of rank
seven such that A(R) = G2(p). Hence in order to induce precisely G2(p) on the Frattini
quotient of such a p-group, we need to consider p-groups of a higher nilpotency class
and/or exponent. Indeed, in the sequel paper mentioned in Section 1, the second author
uses this approach to construct such a p-group R.
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We would also like to induce a group related to G2(q) for each prime power q,
including q even. One possible approach here would be to study G2(q) as a subgroup
of a general linear group defined over a field of prime order. However, determining
the stabilisers in such a general linear group of the corresponding exterior square’s
G2(q)-submodules is a difficult problem, and the theory of representing linear groups
on nonabelian 2-groups is not yet complete. Note also that when q is even, the
smallest dimension of a nontrivial irreducible Fq[G2(q)]-module is six, and there is
no irreducible module of dimension seven [14, Appendix A.49]. Further exploration
of the reducibility of G2(F)-modules for a general field F would also be an interesting
avenue of research. Finally, the aforementioned sequel paper continues the programme
of study that we have begun in this paper. Namely, this sequel explores each family of
nontwisted exceptional groups via a similar, but more Lie-theoretic, approach.
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