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SUMMARY
In this paper we study the problem of passive walking for a
compass-gait biped with gait asymmetries. In particular, we
identify and classify bifurcations leading to chaos caused
by the gait asymmetries because of unequal leg masses.
We present bifurcation diagrams showing step period versus
the ratio of leg masses at various walking slopes. The cell
mapping method is used to find stable limit cycles as the
parameters are varied. It is found that a variety of bifurcation
diagrams can be grouped into six stages that consist of three
expanding and three contracting stages. The analysis of each
stage shows that marginally stable limit cycles exhibit period-
doubling, period-remerging, and saddle-node bifurcations.
We also show qualitative changes regarding chaos, i.e.,
generation and extinction of chaos follow cyclic patterns in
passive dynamic walking.

KEYWORDS: Passive dynamic walking; Bifurcations and
chaos; Gait asymmetries; Six stages of bifurcations;
Composite hybrid systems.

1. Introduction
Passive dynamic walking refers to the property that a suitably
designed biped can exhibit stable walking on a downhill slope
without any actuation18 and is of great theoretical interest
because of its several particular features. For example,
passive walking is perfectly efficient since no external energy
(other than gravity) needs to be supplied. Natural human
walking is partly dependent on passive mechanism during
the swing phase.19, 20 Passive dynamic walking also exhibits
period-doubling bifurcations leading to a chaotic regime as
the ground slope is varied.9

We are here interested in bifurcations and chaos obtained
from changing parameters in the dynamic equations of
passive walking. Goswami et al.10 used three parameters such
as ground slope, leg masses, and positions of leg masses of a
compass-gait biped. Changes in leg parameters were equally
applied to both legs so that the biped showed symmetric
walking until period-doubling bifurcations take place. After
the bifurcations, no two steps are identical, but the irregular
steps are periodically repeated. As the periodicity doubles,
the walking gaits become more complicated and eventually
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exhibit chaos where no steps are identical although the biped
still walks stably. Since then, the same phenomenon has
been observed from various walking models with different
bifurcation parameters. Garcia et al.7 showed that a simpli-
fied walking model exhibits the same bifurcations in passive
walking by plotting stance leg angles with increase in ground
slopes. Aoi and Tsuchiya1 used the simplest walking model
driven by open loop sinusoidal inputs. Angular velocity of the
input phase was used as one of the bifurcation parameters,
and the authors1 plotted phase of the oscillator at impact.
Asano and Luo2 used an underactuated biped with a torso
and semicircular feet driven by the pseudo virtual passive
dynamic walking method. Various outputs, including step
periods, were plotted in terms of torso length as a bifurcation
parameter. All the above studies on different systems have
verified the occurrence of period-doubling bifurcations and
chaotic attractors. In addition, Howell and Baillieul14 found
not only period-doubling but also saddle-node bifurcations
in a torso-driven biped with increase in torso lengths.

Bifurcations and chaos are of importance for further
studies on passive dynamic walking. Suzuki and Furuta28

investigated a chaos control to enlarge basins of attraction
of passive walking using the so-called OGY (Ott–Grebogi–
Yorke) method.23, 25 Kruz and Stergiou17 showed that hip
actuation by a torsional spring can drive a passive dynamic
walker from chaotic to periodic gaits. Recently, Asano
and Luo3 studied walking efficiency related to bifurcations.
Harata et al.12 showed that the gait efficiency can be improved
by changing the periodic gaits from period-2 to period-1 gaits
using delayed feedback control.

All the above studies on bifurcations and chaos in passive
or semi-passive dynamic walking have used symmetric
models with two identical legs. A study of gait asymmetries
could enhance our understanding of bipedal locomotion in
both robots and humans, for instance, a better understanding
of asymmetric walking for people with prosthetic limbs,
injuries, surgical procedures, or disabilities that introduce
asymmetries. Some control authority could be developed
based on the results to compensate for disparities in legs and
to generate balanced and symmetric walking gaits from gait
asymmetries. Ephanov and Hurmuzlu5 showed that swing
phase control can generate normal gaits of planar five-link
biped with gait asymmetries.

In the following sections, we introduce a compass-gait
biped with different leg masses and derive the equations
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Fig. 1. A compass-gait biped and its one complete cycle of bipedal
walking.

of motion. We then present a concept of composite hybrid
systems that is a prerequisite for the analysis of asymmetric
walking. The effects of gait asymmetries on passive walking
are then investigated by computing bifurcation diagrams
showing step periods versus two bifurcation parameters,
which are the ground slope and the ratio of leg masses.

2. Model Description

2.1. Compass-gait bipeds with asymmetries
The compass-gait biped10 shown in Fig. 1 is used in this
paper to investigate gait asymmetries. This two-degree-of-
freedom biped has a hip joint connecting two straight legs
and walks passively in the sagittal plane. There are no knees
or a torso. A hip mass, mH , is at the hip joint and two leg
masses, mL and mR , are at the centers of left and right legs
whose length is equal to l. Asymmetric walking is embodied
by making one leg slightly longer or heavier than the other.
In this paper, we primarily focus on bipeds with equal leg
lengths but different leg masses. However, we have observed
similar results to those presented here for the compass-gait
biped with unequal leg lengths.

The movement of a compass-gait biped is divided into
a swing phase and an impact phase. Since there is no
external force, the total energy of the biped is conserved
between impacts. The impact phase describes the instant
when the swing leg strikes the ground after passing the
stance leg. When the two legs are overlapped during the
swing phase, the swing leg also scuffs the ground, but we
ignore this touchdown in simulation. Knees or nonzero feet
are required to avoid the scuffing in practice. We make
standard assumptions that the impact is perfectly inelastic
and there is no slipping at the stance foot/ground contact.16

In passive walking the loss of kinetic energy because of
impact is compensated by the increment of potential energy
gained from the change in the reference frame after impact.

2.2. Equations of motions
The equations of motion during the swing phase can be
derived from the Lagrangian dynamics. We choose two leg
angles θ

L
and θ

R
as generalized coordinates for the compass-

gait biped. These angles are with respect to the vertical to
level ground. It is important to note that gait asymmetry
requires two distinct equations of motions: one for movement

with a left stance leg and the other for movement with a
right stance leg. Gait asymmetry causes each movement to
generate different trajectories, and thus the two equations of
motions are alternately solved. Since the biped walks in the
sagittal plane, we cannot distinguish between left and right
legs. We designate the stance leg of the first step as the left
leg, which becomes the swing leg of the second step. The
dynamic equations26 for the compass-gait biped with a left
stance leg are described by

[
M11 M12

M21 M22

]
q̈ +

[
0 C12

C21 0

]
q̇ +

[
G1

G2

]
= 0, (1)

where q = [q
L
, q

R
]T = [θ

L
(t), θ

R
(t)]T , and
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+ m
L
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R
)/4,
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R
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L
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R
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R
/4,
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R
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R
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R
) sin(q

L
)/2,
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R

sin(q
R
)/2.

The other dynamic equations with a right stance leg can be
derived in a similar way.

Impact dynamics are governed by the conservation of
angular momentum. Two distinct impact maps are also
required because of the different masses of the impacting
legs. One of the equations of motions is given as

q̇+ = R
L
(q−)q̇−, (2)

where superscripts − and + denote variables just prior to and
just after impact, respectively. The impact map9 with a left
stance leg is described by

R
L
(q−) =

[
r+

11 r+
12

r+
21 r+

22

]−1 [
r−

11 r−
12

r−
21 0

]
, (3)

where
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H
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R
− 2m

L
cos(q−

L
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R
))/4,
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L
− q−

R
))/4,

r+
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L
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R
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L
/4,
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R
) cos(q−

L
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R
))/4,

r−
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R
/4,

r−
21 = −l2m

L
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Another impact map with a right stance leg can be similarly
derived.
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Fig. 2. Hybrid flows of a composite hybrid system. One walking
cycle is represented by two continuous trajectories and two discrete
jumps combining two distinct switching surfaces.

3. Methods

3.1. Hybrid flows of composite hybrid systems
One walking step has two phases: a continuous swing phase
and a discrete impact phase. This type of a dynamic system
is said to be a hybrid system. Let q

L
, q̇

L
, q

R
, q̇

R
be state

variables denoted by x ∈ �4, then state equations of each
phase are given by ẋ = f (x) and x+ = h(x−), respectively.
f (·) and h(·) with a left stance leg can be derived from Eqs.
(1) and (2).

In the case of walking with gait asymmetry it is necessary
to distinguish two terms, cycle and step. One walking cycle
with gait asymmetry consists of two steps as shown in Fig. 1.
Therefore, its dynamics requires four state equations, which
are as follows:

HL :

{
ẋ = f

L
(x), x /∈ �L,

x+
L

= h
L
(x−

L
), x ∈ �L,

(4)

HR :

{
ẋ = f

R
(x), x /∈ �R,

x+
R

= h
R
(x−

R
), x ∈ �R.

(5)

The two hybrid systems HL and HR for left and right stance
legs represent a composite hybrid system. �L and �R are
switching surfaces where a swing leg is in contact with the
ground.

Fig. 2 illustrates hybrid flows of a four-dimensional
composite hybrid system or asymmetric walking trajectories
of a compass-gait biped. The continuous flow φ(x, t) is a
solution to the continuous dynamics f (x), and two discrete
flows from h(x−) combine the two switching surfaces. A
trajectory starting at an initial condition x0 ∈ �L returns to
�L at x−

L just before the right swing leg hits the ground. After
touchdown, the trajectory instantaneously jumps to x+

L ∈ �R

at which the second step starts. In a similar fashion, the
trajectory returns to �L again completing one walking cycle
at x+

R that will be an initial condition for the next walking
cycle. If a biped has symmetric legs, then both switching
surfaces are equivalent and one walking step is equal to one
walking cycle.

3.2. Poincaré map method
We consider two hyperplanes �̃L and �̃R that are three
dimensional and transversal to the flow φ(x, t) of continuous
solutions. When a biped walks on a slope that has a fixed
angle of inclination, one leg angle is dependent on the other
leg angle if both legs are on the switching surface. Thus,
these hyperplanes are induced by subtracting one dimension
corresponding to a leg angle from the switching surfaces
�L and �R . Let xi ∈ �3 denote a state variable x on �̃L

after completing i cycles. If we select a hyperplane �̃L as
a Poincaré section on which a closed orbit hits every cycle,
then the Poincaré map P is a mapping from �̃L to �̃R to �̃L

again, and can be defined by

xi+1 = P (xi), (6)

where P : �̃L → �̃L.27 P is obtained by using the state
variable xi numerically updated from Eqs. (4) and (5) for
every other hyperplane.

A walking cycle satisfying x∗ = P k(x∗) is called a period-
k motion, which means xi+k = xi , and the hybrid flows form
a limit cycle. k is said to be the periodicity of the limit cycle,
which has k fixed points on the Poincaré section. The stability
of the limit cycle is determined by using the Jacobian of the
Poincaré map near the fixed points.7, 10 If the eigenvalues of
the linearization lie in the unit circle, then the closed orbit is
locally asymptotically stable.

We use the Newton–Raphson algorithm to find the period-
k fixed points. The following iterative process makes a good
initial guess rapidly converge to either stable or unstable fixed
points.24

xi+k = xi − (DxH (xi))
−1 · H (xi), (7)

where H (xi) = P k(xi) − xi and Dx is the Jacobian of a
function.

3.3. Cell mapping method
We use the cell mapping method15 to find stable limit
cycles of composite hybrid systems and their periodicities. A
feasible region F ⊂ �̃L containing a given initial condition
x0 as a starting point of the cell mapping process is minced
into a large number of small cell cubes. x0 is the location of
the cell cube placed at the center of F . Va(·) indicates the
value of the cell cube that contains its state variable. Before
mapping, all Va(·) are initialized to −1 indicating that all
cell cubes are virgin cells except for one that contains x0.
We set Va(x0) = 0. The mapping process starts from x0 and
proceeds forward using Poincaré mapping such as

x0 → P (x0) → P 2(x0) → · · · → P i(x0). (8)

At each step in generating this sequence, we need to consider
the following:

1. If a cell cube containing a newly generated P i(x0) is a
virgin cell, which means Va(P i(x0)) = −1, then we set
Va(P i(x0)) = i, and carry out the next mapping.

2. In case a newly generated P i(x0) is outside of F , the
original cell mapping method puts it into a sink cell
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and terminates the sequence. We, however, ignore this
mapping and go on to next mapping since the state variable
comes back into F as long as the flow is stable.

3. Va(P i(x0)) ≥ 0 indicates that the current cell cube has
encountered one of the previous sequences, and the current
sequence has converged to a limit cycle. Now, this process
is terminated. Suppose that the number of the cycle at this
moment is n, the periodicity k of the limit cycle is given
by

k = n − Va(P n(x0)). (9)

When it comes to practical considerations, the accuracy
of convergence can be improved by reducing the size of
cell cubes, but the smaller size of cell cubes yields larger
computation time. As for the feasible region F , it is hard to
choose sufficiently largeF such that x∗ ∈ F in the beginning.
If a flow does not come back toF in an appropriate number of
cycles, then x0 should be placed at the current state variable
and another mapping process resumes in Fnew ⊂ �̃L until
the flow converges to a fixed point.

In the following section, we investigate bifurcation
diagrams. In order to plot them, we need to find all fixed
points as system parameters are varied. The current fixed
point can be used as an initial condition to find next one
based on the inference that if changes in parameters of the
system are sufficiently small, then a fixed point of a limit
cycle can still remain in the basin of attraction. The changes
will lead the current fixed point to another one incorporated
in a new limit cycle as system dynamics evolves.

4. Bifurcation Diagrams
We consider a compass-gait biped with different leg masses.
Thus, bifurcation diagrams can be drawn by two bifurcation
parameters, the ground slope and the ratio of leg masses. As
parameters of equations of motions are varied, bifurcations
may occur in the qualitative structure of the solutions.11 In
bipedal locomotion, the bifurcations are observed from some
properties of walking cycles such as step period, walking
speed, double-support angles between two legs, and so on.
As seen in the previous studies, changes in the ground
slope give rise to period-doubling bifurcations leading to
chaos. Variations in leg masses also cause bifurcations, and
thus mass ratio rm = m

R
/m

L
can be another bifurcation

parameter. rm = 1 means that both legs are the same.

4.1. Previous studies on passive walking with
symmetric legs
Our numerical simulations for passive walking with two
identical legs also verified the appearance of the period-
doubling bifurcations in passive walking with increase in the
ground slopes.8 System parameters were set to m

H
= 10 kg,

m
L

= m
R

= 5 kg, and l = 1 m, which appeared in Goswami
et al.8 Figs. 3 and 4 represent bifurcation diagrams showing
periods of each step in terms of the ground slope. In Fig. 3,
solid lines are stable gaits, and dotted lines are unstable gaits
obtained using the Newton–Raphson algorithm. Lines 1 and
2 indicate the unstable period-1 gaits, and Line 3 indicates
the unstable period-2 gait. There are also unstable period-4
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Fig. 3. Symmetric walking at various ground slopes.
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Fig. 4. A magnified diagram showing the inside of gray box in
Fig. 3.

and period-8 gaits that are clearly seen as the solid lines in
Fig. 4. Stable gaits exist in the shallow slopes in contrast to
the range of the unstable gaits. According to our simulation
results, the lowest slope at which the stable passive walking
exists is 0.03o, and the highest slope is 5.20o.

Fig. 4 shows the route to chaos through period-doubling
bifurcations. The diagram starts from the stable period-2 gait
since the first period-doubling bifurcation already occurred
at the 4.38oslope. As the slope increases, the stable period-2
gait turns into the unstable period-2 gait above 4.92o, and
simultaneously gives rise to the new stable period-4 gait.
Now there exist four gaits that include one stable period-4
gait and three unstable gaits such as two unstable period-1
gaits and one unstable period-2 gait. In a similar manner,
the stable period-4 gait turns into the unstable period-4 gait
above 5.01o and the new stable period-8 gait simultaneously
takes place. This process is repeated until chaos occurs. We
could not numerically find unstable period-16 gaits using the
Newton–Raphson algorithm.
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Fig. 5. Asymmetric walking at a 1.20oslope.

4.2. Bifurcation diagrams in gait asymmetries
We performed numerical simulations for a compass-gait
biped with asymmetric legs. All parameters except for rm

were fixed as follows: m
H

= 10 kg, mleg = m
L
+ m

R
= 10

kg, l = 1 m. Although rm is varied, the total mass of the
system is constant at 20 kg since the sum of the two leg
masses was fixed. As for the cell mapping method, the length
of one side of a small cell cube was set to 10−8 and the feasible
region was composed of 100 × 100 × 100 cubes.

We calculated walking periods that elapse between
Poincaré sections and the moduli of the eigenvalues of the
Jacobian of Poincaré maps as a function of rm. Figs. 5
and 6 show bifurcation diagrams plotted in the logarithmic
x-axis at 1.20◦ and 2.04◦ slopes, respectively. The vertical
axes indicate walking periods. Instead of plotting a cycle
period, we divided it into two-step periods for left and right
stance legs. We chose �̃L as the Poincaré section and thus
the trajectory hits �̃L at every two steps. Thus, in view of
step periods, period-1 gaits look like period-2 gaits. Lines 1
and 2 indicate likewise unstable period-1 gaits.

Fig. 5 clearly shows saddle-node bifurcations. At ln rm =
0, a stable period-1 gait and an unstable period-1 gait are
exhibited. As ln rm increases, the former becomes less stable
and the latter becomes less unstable because of the following
reason: When we look at the magnitudes of the eigenvalues
of the Jacobian of the Poincaré map, the maximum modulus
of the stable gait begins to increase toward the boundary of
the unit circle, but those of the unstable gait, already being
out of the unit circle, decreases toward the unit circle. Both
gaits come together at ln rm = 0.3887 where a saddle-node
is located. There exist no gaits beyond 0.3887. As ln rm

decreases in the opposite direction, bifurcations symmetric
about ln rm = 0 take place. This symmetric property means
that the walking gaits are invariant even if both leg masses
are exchanged with each other.

In addition to the saddle-node bifurcations, Fig. 6 shows
period doubling and period remerging,4 like retro-doubling
bifurcations satisfying the Feigenbaum constant6 in passive
walking.7, 21 At ln rm = 0.0000 to 0.1432, a period-1 gait
appears. Two-step periods are equal at ln rm = 0, but they
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Fig. 6. Asymmetric walking at a 2.04oslope.

diverge when two legs have different masses that causes the
so-called limping walk, so that one leg moves for longer
time than the other one because of the gait asymmetry. A
period-2 gait appears when ln rm is greater than 0.1432,
and the periodicity is doubled as ln rm increases until chaos
appears. We note that changes in the periodicities of both legs
are exactly concurrent. As ln rm increases farther, chaotic
attractors are suddenly contracted and expanded making
windows of chaos, which is called the interior crisis,22 and
period remerging occurs to make the trajectories converge
into a period-1 gait. These walking gaits are terminated at
ln rm = 0.5412 where a saddle-node is located. The biped no
longer walks stably beyond this point and falls over.

4.3. Cyclic streams of bifurcation diagrams
We continued to examine bifurcation diagrams of
asymmetric legs by changing slopes from 0.03◦ to 5.20◦. As
results, we discovered cyclic streams of bifurcations within
these ranges, and each slope had its own bifurcation diagram
that could be classified as one of the six distinct stages
according to their shape of stable walking gaits as shown in
Table I. The six stages are named from A to F, respectively,
and there are two sets of six stages since they are cyclic. The
first set of six stages denoted by 1 comes to an end at a 2.95◦
slope, after which the second set of six stages denoted by 2
starts. The bottom right corner indicates the magnification of
the diagrams. In A1, for instance, 0.3 means that the diagram
was reduced to 30% of its original size. The gray dotted lines
that cross the center of the diagrams indicate ln rm = 0, i.e.,
walking gaits with symmetric legs.

The bifurcation diagram of the symmetric legs can be
reconstructed out of the diagrams of the asymmetric legs
by extracting the points on the gray dotted lines. If all these
points were put together, the resulting diagram would be
identical with the diagram of stable gaits as given in Fig. 3
that looks like one of the diagrams in stage D. Stable period-1
gaits appear from A1 to D2 at ln rm = 0 with increase in
slopes. Then stable period-2 gaits appear in E2 at ln rm = 0.
They are still period-1 gaits in a composite hybrid system,
but period-2 gaits for a biped with symmetric legs that
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Table I. Six stages of bifurcation diagrams.

has only one switching surface. In this way, period-4 gaits
appear in stage F2. As the slope increases, the diagram in F2
moves to the right-hand side, which causes period-doubling
bifurcations at ln rm = 0. Finally, this process comes to an
end at a 5.20◦ slope without period-remerging bifurcations.

In the following section, we describe the features of each
stage. It is known that period-doubling gaits take place at the
moment when the eigenvalues of the Jacobian of the Poincaré
map hit the boundary of the unit circle. Thus, we examine
each stage by focusing on the stability of stable walking gaits
using the eigenvalues.

5. Six Stages of Bifurcations

5.1. Stage A
Bifurcation diagrams begin to expand from stage A where
no bubbles appear until the next stage B as shown in Table I.
The ranges of stage A1 and A2 are from 0.03◦ to 1.75◦ and
2.96◦ to 3.55◦ slopes, respectively. As seen in the Section 4.2,
saddle-node bifurcations were observed, and thus the tips of
diagrams are connected with unstable gaits in not only A1 but
also in B1 and C1 where the diagrams of these three stages
expand. As for the saddle-node bifurcations in A2, we could
not have enough information from numerical simulations.

The diagram of stage A expands with increase in the slope.
In case of stage A1 there are no changes in periodicities of
stable gaits, but the stability of the system is getting worse
because the eigenvalues are approaching the boundary of
the unit circle as shown in Figs. 7(a) and (b). The arrows
illustrate the direction of the movement of the eigenvalues as
the slopes increase. The upper diagram shows step periods
in terms of ln rm, and the lower diagram indicates moduli of
the eigenvalues ranging from zero to one since only stable
gaits were plotted. The moduli of unstable gaits are always
bigger than one. The moduli of the eigenvalues begin to swell
around midpoints between ln rm = 0 and both tips as shown
in Fig. 7(b), and Fig. 7(c) finally shows that bubbles are
formed at the place where the peak of the hump touches one.
A2 in Table I already shows stable period-2 gaits because of
period-doubling bifurcations, but there is no occurrence of
bifurcations until increasing slopes make bubbles.

5.2. Stage B
Once bubbles have been formed, child bubbles are formed
inside the bubbles, and then grandchild bubbles are
consecutively formed in the child bubbles while diagrams
are expanding with increasing slopes. Stage B is described
by this spawning before chaos appears in the next stage C.
The ranges of stages B1 and B2 are from 1.76◦ to 2.01◦ and
3.56◦ to 3.69◦ slopes, respectively.

In Fig. 7(c), the most fragile regions are located at around
rm = 0.75 and 1.31 where the first bubbles appeared as
results of successions of two different types of bifurcations.

Fig. 7. Bifurcation diagrams at different slopes and the corresponding magnitudes of the eigenvalues of the Jacobian of the Poincaré map
in stages A and B: (a) 1.20◦ slope, (b) 1.52◦ slope, (c) 1.76◦ slope, (d) 1.84◦ slope, (e) 1.92◦ slope, (f) 1.98◦ slope, (g) 3.60◦ slope, (h)
3.64◦ slope, and (i) 3.68◦ slope.
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Fig. 8. Transitions from stage C1 to D1: (a) 2.02◦ slope, (b) 2.09◦
slope, and (c) 2.10◦ slope.

One is period-doubling bifurcations, and the other is period-
remerging bifurcations. Bier and Bountis4 called them the
period-bubbling bifurcation as a whole. After bubbles are
formed, they grow and get stabilized since the eigenvalues
of the interiors of the bubbles return back toward zero as
shown in Fig. 7(d). With increasing slopes, new humps come
out from the fully stabilized eigenvalues, and they are rising
again as shown in Fig. 7(e). Finally, the humps yield child
bubbles and period-4 gaits shown in Fig. 7(f). In this way
consecutive child bubbles are created by new born humps
from the parent bubbles. As for the movement of the humps,
only one dominant eigenvalue goes back and forth along the
real axis.

It is observed that the first bubble in B1 gives birth to one
child bubble, but those in B2 simultaneously bears two child
bubbles formed in each branch of the first bubble because
two humps of eigenvalues rise at the same time from the
bottom as shown in Figs. 7(g), (h), and (i).

5.3. Stage C
Chaos appears in stage C as shown in C1 and C2 of Table I.
The ranges of stages C1 and C2 are from 2.02◦ to 2.09◦ and
3.70◦ to 3.74◦ slopes, respectively. Bifurcation diagrams are
still expanding and being filled with chaos with increase in
slopes. Walking gaits are stable in chaos, but we are not able
to analyze the stability using eigenvalues, since there are no
more fixed points on the Poincaré section. In fact, it is hard
to tell the difference between high periodic gaits and chaos
based on numerical results. The Lyapunov exponent is used
to numerically analyze the chaotic attractor,13 but we did not
go further to analyze the chaos.

Fig. 9. Transitions in stage E1.

5.4. Stage D
The previous three stages have been expanding so far with
increasing slopes. Stage D is a turning point at which
bifurcation diagrams begin to contract, and the diagrams of
the following stages E and F also contract. At the end of stage
C, the first born bubbles are full of chaos. A slight increment
of slope causes the extinction of outermost remerged
parts, including chaos, and then bifurcation diagrams are
contracting as slopes increase. Fig. 8 shows the process.
Fig. 8(a) is an incipient diagram of stage C1 where chaos
is distributed over narrow areas. Fig. 8(b) is the last moment
of the stage and filled with chaos. The transition from
Figs. 8(b) to (c) is triggered by a 0.01oslope, and then both
ends in the boxes vanish instantly. Stages D1 and D2 of
Table I seem to have only period-doubled regions because
period remerged parts vanish away.

When it comes to the range of stage, we do not identify
them from here because the three contracting stages exhibit
three distinct changes of bifurcation diagrams. We are
here more concerned with the qualitative changes than the
ranges of stages, which can be divided into two parts by a
disconnection point shown in the following section.

5.5. Stage E
In stage E, shrinking bifurcation diagrams are disconnected
at certain rm and separated into two parts. One is said to
be the survivor that will remain in stage F, and the other is
called the vanisher that will disappear as slopes increase.
After D1, the regions where period-2 gaits exist are
disconnected at around rm = 1.104 at a 2.60o slope as
shown in Fig. 9(c) yielding a disconnected diagram like
E1. The survivor is in the middle part that consists of
period-1 and period-2 gaits, and the vanishers are at both
ends, which include chaos. The disconnection occurs when
a dominant eigenvalue stemmed from the mountainside of
the eigenvalues hits the boundary of the unit circle as shown
in Fig. 9. Stage E2 also has a left part as the survivor and a
right part as the vanisher. The disconnection takes place at
around ln rm = 0 unlike stage E1.

5.6. Stage F
In this last stage among six stages, the vanisher dwindles
away at the edge between the survivor and the vanisher as
slopes increase. At the end of stage F, the vanisher completely
disappears. However, the survivor still remains and is a little
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shrunken as shown in stages F1 and F2 of Table I. We note that
the magnification of F1 is bigger than that of E1. After the ex-
tinction of the vanisher, bifurcation diagrams begin to expand
again with increasing slopes. Expansion and contraction of
bifurcation diagrams were observed after F2, but we were not
able to classify diagrams from 4.96o to 5.20o as six stages.

6. Concluding Remarks
We categorized the bifurcation diagrams in passive walking
with gait asymmetries into six stages in order to explain
the transitions in detail. The process can be summarized
by three qualitative changes. First, bubbles are created by
period-doubling and period-remerging bifurcations leading
to chaos. Second, when the bubbles are full of chaos, period
remerged parts are instantly discarded. Third, period doubled
parts also fade away after being disconnected. These changes
are repeated from stage A2, but the difference is that stage
F2 still has one of the period doubled parts, including chaos
as a survivor.

The first qualitative change corresponds to stage B. Once
chaos appears, it grows in stage C. The second qualitative
change removes some parts of chaos in stage D. The third
qualitative change described in stages E and F also removes
chaos. It should be addressed that the second and the third
changes regarding the extinction of chaos will never be
recognized from a single bifurcation diagram drawn by
one bifurcation parameter. One more bifurcation parameter
shows us many bifurcation diagrams and enables us to
examine the transitions between them.

In summary, we have investigated the effect of gait
asymmetries on passive dynamic walking. For system
modeling, we have proposed the concept of the composite
hybrid systems. The ground slope and the mass ratio of right
leg to left leg are used as two bifurcation parameters to reveal
the consecutive bifurcation diagrams, which can be grouped
into six stages. The first three stages are expanding, and the
other three of them are contracting. We verified that period-
doubling, period-remerging, and saddle-node bifurcations
are exhibited in passive dynamic walking. In addition, we
have discovered that chaos disappears through two qualitative
changes after which the six stages are repeatedly observed.
Furthermore, the same six stages appear even if we use
another bifurcation parameter such as the length ratio of
right leg to left leg instead of the mass ratio.
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