ON THE NUMBER OF COUNTABLE MODELS OF A COUNTABLE NSOP1 THEORY WITHOUT WEIGHT ω

BYUNGHAN KIM

Abstract. In this article, we prove that if a countable non- \aleph_0 -categorical NSOP₁ theory with nonforking existence has finitely many countable models, then there is a finite tuple whose own preweight is ω . This result is an extension of a theorem of the author on any supersimple theory.

§1. Introduction. In this article, T always is a complete theory in a language \mathcal{L} , and recall that $I(\omega, T)$ denotes the number of nonisomorphic countable models of T. We extend the following theorem of the author for supersimple theories to the context of NSOP₁ theories.

FACT 1.1 ([6]). If T is countable and supersimple, then $I(\omega, T)$ is either 1 or infinite.

As it is well known, Fact 1.1 is an extension of Lachlan's result in [8] for superstable theories. Later, Pillay pointed out that the following described in [3] is implicit in the proof of Lachlan's result.

FACT 1.2. Assume countable T is stable and $1 < I(\omega, T) < \omega$. Then there is a finite tuple whose own preweight is ω .

The author indeed proved the same Fact 1.2 for simple theories, which directly implies Fact 1.1 since a supersimple theory cannot have a type of finite tuple whose weight is ω .

Our main theorem in this note is the extension of Fact 1.2 for NSOP₁ theories.

THEOREM 1.3. Assume countable T is $NSOP_1$ holding nonforking existence. If $1 < I(\omega, T) < \omega$, then there is a finite tuple whose own preweight is ω .

Now we recall basic facts and terminology for this note. As usual we work in a large saturated model. Unless said otherwise, a, b, c, \ldots are *finite* tuples, A, B, C, \ldots are small sets, and M, N, \ldots are elementary submodels from the saturated model. That $a \equiv_A b$ means a, b have the same type over A; and for tuples a_i $(i < \kappa)$, $a_{<j}$ denotes $\{a_i \mid i < j\}$. The following (until Fact 1.6) can be found in the literature on simple theories, for example, in [7].

DEFINITION 1.4. (1) A formula $\varphi(x, a_0)$ divides over A if there is an Aindiscernible sequence $\langle a_i | i < \omega \rangle$ such that $\{\varphi(x, a_i) | i < \omega\}$ is

© 2019, Association for Symbolic Logic 0022-4812/19/8403-0013 DOI:10.1017/jsl.2019.47

1168

Received September 18, 2018.

²⁰¹⁰ Mathematics Subject Classification. 03C45, 03C50.

Key words and phrases. NSOP1 theories, semi-isolation, preweight.

inconsistent. A formula *forks* over A if the formula implies some finite disjunction of formulas, each of which divides over A. A type divides/forks over A if the type implies a formula which divides/forks over A. We write $A \downarrow_B C$ if for any finite $a \in A$, $\operatorname{tp}(a/BC)$ does not fork over B.

- (2) We say T is *stable* if nonforking holds uniqueness over models: For any $M \subseteq A$ and $p(x) \in S(M)$, there is a unique extension $q(x) \in S(A)$ of p which does not fork over M.
- (3) We say T is *simple* if nonforking satisfies local character: For any a and A, there is A₀ ⊆ A with |A| ≤ |T| such that a ↓_{A₀} A. Any stable theory is simple. We say T is *supersimple* if for any a and A, there is finite A₀ ⊆ A such that a ↓_{A₀} A; and T is *superstable* if T is stable and supersimple.
- (4) An A-indiscernible sequence (a_i | i < ω) is said to be Morley over A (or A-Morley) if a_i ↓_A a_{<i} for each i < ω.

FACT 1.5. The following hold in any T.

- (1) (Extension) If $a \downarrow_A B$ then for any C there is $a' \equiv_{AB} a$ such that $a' \downarrow_A BC$.
- (2) (Base monotonicity) If $A \downarrow_B CD$ then $A \downarrow_{BC} D$.
- (3) (Left transitivity) If B ↓_C D and A ↓_{BC} D, then AB ↓_C D. Hence for a sequence ⟨c_i | i < κ⟩, if c_i ↓_A c_{<i} holds for each i < κ, then c_{≥i} ↓_A c_{<i} for all i < κ.

FACT 1.6. Assume T is simple. Then the following hold.

- (1) (Existence) For any a and A, we have that $a \downarrow_A A$. Equivalently, for any a_0 and A, there is an A-Morley sequence $\langle a_i \mid i < \omega \rangle$.
- (2) A formula divides over a set iff the formula forks over the set.
- (3) $\varphi(x, a_0)$ divides over A iff for some/any Morley sequence $\langle a_i | i < \omega \rangle$ over A, $\{\varphi(x, a_i) | i < \omega\}$ is inconsistent.
- (4) (Symmetry) For any A, B, C we have $A \downarrow_B C$ iff $C \downarrow_B A$.
- (5) (*Transitivity*) For any $B \subseteq C \subseteq D$, if $A \downarrow_B C$ and $A \downarrow_C D$, then we have $A \downarrow_B D$.
- (6) (*Type-amalgamation over a model*) Assume $A_0 \downarrow_M A_1$, $c_0 \equiv_M c_1$, and $c_i \downarrow_M A_i$ for i = 0, 1. Then there is $c \equiv_{MA_i} c_i$ such that $c \downarrow_M A_1 A_2$.

Recently, Kaplan and Ramsey proved in [4] and [5] that all the properties in Fact 1.6 (except base monotonicity in Fact 1.5) still hold *over models* in NSOP₁ theories with respect to *Kim-independence*. The 1-strong order property (SOP₁) is introduced by Shelah in [10], and a nice criterion for SOP₁ is given in [1] and [4].

DEFINITION 1.7 ([10]).

- (1) We say T has SOP_1 if there are formula $\varphi(x, y)$ and tuples c_α ($\alpha \in 2^{<\omega}$) such that, for each $\beta \in 2^{\omega}$, { $\varphi(x, c_{\beta \upharpoonright m}) \mid m \in \omega$ } is consistent; and { $\varphi(x, c_{\alpha \land \langle 1 \rangle}), \varphi(x, c_{\gamma})$ } is inconsistent whenever $\alpha \land \langle 0 \rangle \leq \gamma \in 2^{<\omega}$, that is, $\alpha \land \langle 0 \rangle$ is an initial segment of γ .
- (2) We say T is $NSOP_1$ if T does not have SOP₁. Any *simple* theory is NSOP₁.

FACT 1.8 ([1,4]). *T* has SOP₁ iff there are a sequence $\langle a_i c_i | i < \omega \rangle$ and a formula $\varphi(x, y)$ such that

- (1) $a_i \equiv_{(ac)_{<i}} c_i$ for each $i < \omega$,
- (2) $\{\varphi(x, a_i) \mid i < \omega\}$ is consistent, while
- (3) $\{\varphi(x, c_i) \mid i < \omega\}$ is k-inconsistent for some k > 2.

DEFINITION 1.9 (Assume T satisfies nonforking existence over A, i.e., for any c, $c \downarrow_A A$). A formula $\varphi(x, a_0)$ Kim-divides over A if there is an A-Morley sequence $\langle a_i \mid i < \omega \rangle$ such that $\{\varphi(x, a_i) \mid i < \omega\}$ is inconsistent. A formula *Kim-forks* over A if the formula implies some finite disjunction of formulas, each of which Kimdivides over A. A type Kim-divides/forks over A if the type implies a formula which Kim-divides/forks over A. We write $B \downarrow_A^K C$ if for any finite $b \in B$, tp(b/AC) does not Kim-fork over B. Obviously $B \downarrow_A C$ implies $B \downarrow_A^K C$. Due to Fact 1.6(3), T is simple then $\downarrow = \downarrow^K$.

An A-indiscernible sequence $\langle b_i | i < \omega \rangle$ is called \downarrow^K -Morley over A (in p(x)) if $b_i \downarrow_A^K b_{<i}$ holds for each $i < \omega$ (and $p(x) = \operatorname{tp}(b_i/A)$).

Note that nonforking existence holds over any model since any type over a model is finitely satisfiable over the model.

FACT 1.10 ([4]). Let T be NSOP₁.

- (1) (*Kim's lemma for* \downarrow^K over a model) $\varphi(x, a_0)$ *Kim-divides over M iff for any* Morley sequence $\langle a_i | i < \omega \rangle$ over M, $\{\varphi(x, a_i) | i < \omega\}$ is inconsistent.
- (2) A formula Kim-divides over a model iff the formula Kim-forks over the model.
- (3) (Extension for \downarrow^K over a model) If $a \downarrow^K_M B$ then for any C there is $a' \equiv_{MB} a$ such that $a' \downarrow_M^K BC$.
- (4) (Symmetry for \downarrow^{K} over a model) For any A, C we have $A \downarrow_{M}^{K} C$ iff $C \downarrow_{M}^{K} A$. (5) (Type-amalgamation for \downarrow^{K} over a model) Assume $A_{0} \downarrow_{M}^{K} A_{1}, c_{0} \equiv_{M} c_{1}$, and $c_i \downarrow_M^K A_i$ for i = 0, 1. Then there is $c \equiv_{MA_i} c_i$ such that $c \downarrow_M^K A_1 A_2$.

In a joint work [2], it is now proved that Fact 1.10 still holds over any set as far as nonforking existence holds. Due to Fact 1.6(1), the class of NSOP₁ theories with nonforking existence fully contains that of simple theories. Moreover all the typical nonsimple NSOP₁ examples described in [4] (namely, the random parameterized equivalence relations, ω -free PAC fields, and an infinite dimensional vector space over an algebraically closed field equipped with a symmetric alternating bilinear form) have nonforking existence. Even we conjecture that nonforking existence holds in any NSOP $_1$ T.

FACT 1.11 ([2]). Assume T is $NSOP_1$ with nonforking existence (Fact 1.6(1)).

- (1) (*Kim's lemma for* \downarrow^{K}) $\varphi(x, a_0)$ *Kim-divides over A iff for any Morley sequence* $\langle a_i \mid i < \omega \rangle$ over A, $\{\varphi(x, a_i) \mid i < \omega\}$ is inconsistent.
- (2) A formula Kim-divides over some set iff the formula Kim-forks over the set.
- (3) (Extension for \downarrow^K) If p(x) is a type over B which does not Kim-forks over A, then there is a completion $q(x) \in S(AB)$ which does not Kim-fork over A. In particular if $a \downarrow_A^K B$ then for any C there is $a' \equiv_{AB} a$ such that $a' \downarrow_A^K BC$.

1170

- (4) (Symmetry for \downarrow^{K}) For any A, B, C we have $A \downarrow_{B}^{K} C$ iff $C \downarrow_{B}^{K} A$. (5) (Chain condition for \downarrow^{K}) Let $a \downarrow_{A}^{K} b_{0}$, and let $I = \langle b_{i} | i < \omega \rangle$ be \downarrow^{K} -Morley over A. Then there is $a' \equiv_{Ab_0} a$ such that $a' \downarrow_A^K I$ and I is a'A-indiscernible.

From now on for simplicity, we assume that any NSOP₁ theory in this note has nonforking existence.

In addition to Fact 1.11, type-amalgamation over sets for Lascar types are proved in [2] for any NSOP₁ theory, but we omit to state it as we will not use the property. Instead we will use Fact 1.11(5).

Remark 1.12. (1) Assume T is NSOP₁ and let $p(x) \in S(A)$. Then that ' $\langle x_i |$ $i < \omega$ is a sequence of realizations of p such that $x_i \downarrow_A^K x_{< i}$ for each $i < \omega$ ' is *A*-type-definable by $\bigwedge_{i < \omega} p(x_i) \cup \Gamma(x_0, x_1, \dots)$ where $\Gamma(x_0, x_1, \ldots) := \{\neg \varphi(x_0, \ldots, x_n, x_{n+1}) \in \mathcal{L}(A) \mid \varphi(x_0, \ldots, x_n, a)$ Kim-divides over A for some/any $a \models p$.

Hence clearly that $\langle x_i | i < \omega \rangle$ is a \downarrow^K -Morley sequence over A in p is A-type-definable as well.

(2) Notice that contrary to simple theory context, that $\langle c_i | i < \omega \rangle$ is \downarrow^K -Morley over A in NSOP₁ T need not imply

$$c_i \, \mathcal{L}_A^K \{ c_j \mid j \neq i \}$$

for all $i \in \omega$, since base monotonicity for \downarrow^K does not hold.

Now we are ready to talk about the notion of weight.

DEFINITION 1.13. Assume T is NSOP₁. We say a finite tuple c (or its type) has own preweight ω if there are $b_i \equiv c$ $(i < \omega)$ such that $c \not \downarrow^K b_i$, and $b_i \downarrow^K b_{<i}$ for all $i < \omega$.

For more development of the weight notion in simple theories, see [7]. As pointed out in Remark 1.12(2), in Definition 1.13, $\{b_i \mid i < \omega\}$ need not be fully \downarrow^K . independent.

Recall that T is supersimple iff there do not exist c and sets A_i ($i < \omega$) such that $A_i \subseteq A_{i+1}$ and $c \not\vdash_{A_i} A_{i+1}$ for any *i*. Since $\downarrow = \downarrow^K$ in simple *T*, if *T* is supersimple then due to transitivity there is no $p(x) \in S(\emptyset)$ whose own preweight is ω .

- EXAMPLE 1.14. (1) Consider the typical stable but nonsuperstable theory. Namely, *T* is the theory in $\mathcal{L} = \{E_i(x, y) \mid i < \omega\}$ saying that each binary E_i is an equivalence relation only having infinitely many infinite classes such that for each j > i, E_j is finer than E_i and each E_i -class contains infinitely many E_i -classes. Notice that T is a small (i.e., $S(\emptyset)$ is countable) non- \aleph_0 -categorical theory. But there is no finite tuple whose own preweight is ω .
- (2) Due to our Theorem 1.3, a necessary condition for an $NSOP_1$ theory to have $1 < I(\omega, T) < \omega$ is that T should be small and having a finite tuple with own preweight ω . Herwig constructed such an example of a stable theory [3].

§2. Kim-forking and isolation. In order to prove Theorem 1.3, we will take the similar pattern of the proof for Fact 1.1 in [6].

We first recall Pillay's notion of semi-isolation ([3,9]), and figure out its relationship with Kim-forking in NSOP₁ theories. We say tp(b/a) is *semi-isolated* if there is a formula $\varphi(x, a)$ in tp(b/a) such that $\models \varphi(x, a) \rightarrow tp(b)$.

FACT 2.1. (1) If tp(b/a) is isolated, then tp(b/a) is semi-isolated. (2) If tp(c/b) and tp(b/a) are semi-isolated, then tp(c/a) is semi-isolated.

We give a proof of the the following folklore for self-containedness.

FACT 2.2. Suppose that tp(b/a) is isolated, whereas tp(a/b) is nonisolated. Then tp(a/b) is nonsemi-isolated.

PROOF. Let tp(b/a) be isolated by $\varphi(x, a)$ (*). To lead a contradiction assume that $\psi(b, y)$ semi-isolates tp(a/b). Now since tp(a/b) is nonisolated, there is an \mathcal{L} -formula $\phi(x, y)$ such that $\varphi(b, y) \land \psi(b, y) \land \phi(b, y)$ and $\varphi(b, y) \land \psi(b, y) \land \neg \phi(b, y)$ are both consistent, while both imply tp(a). Hence $\varphi(x, a) \land \phi(x, a)$ and $\varphi(x, a) \land \neg \phi(x, a)$ are both consistent, contradicting (*).

The following is the key proposition describing a relationship between isolation and Kim-dividing in $NSOP_1$ theories.

PROPOSITION 2.3. Assume that T is $NSOP_1$. Let $a \equiv b$. Assume tp(b/a) is semiisolated, but tp(a/b) is nonsemi-isolated. Then $a \neq^K b$.

PROOF. Suppose not, so that $a \downarrow^K b$.

CLAIM 2.4. There is $c \models q = \operatorname{tp}(a)$ such that $b \downarrow^K ac$ and $ba \equiv cb$: Choose $c_0 \models q$ such that $ba \equiv c_0b$. Hence $a \downarrow^K b$ and $b \downarrow^K c_0$. Now $\operatorname{tp}(a/b)$ does not Kim-divide over \emptyset . Thus by the definition of Kim-dividing and compactness, for any infinite κ , there is some Morley sequence $I = \langle b_i \mid i < \kappa \rangle$ with $b = b_0$ such that I is a-indiscernible. Moreover by symmetry for \downarrow^K (Fact 1.11(4)), we have $c_0 \downarrow^K b$. Hence $\operatorname{tp}(c_0/b)$ does not Kim-divide over \emptyset , and again by the definition of Kim-dividing, $\bigcup_{i < \kappa} p(x, b_i)$ is consistent where $p(x, b_0) = p(x, b) = \operatorname{tp}(c_0/b)$. Choose c'_0 realizing $\bigcup_{i < \kappa} p(x, b_i)$ so that $c_0b \equiv c'_0b$ and $c'_0b' \equiv c'_0b$ for any $b' \in I$ (*). Now take $\kappa = (2^{|T|})^+$. Then by the pigeonhole principle, there is a subsequence $I' = \langle b'_i \mid i < \kappa \rangle$ of I such that $\operatorname{tp}(b'_i/ac'_0)$ is fixed for any i. Then since I' is Morley as well, we have $ac'_0 \downarrow^K b'_0$, by Fact 1.11(1),(2). Note now that $Ia \equiv I'a$. Hence there is c such that $c'_0b'_0I'a \equiv cb_0Ia = cbIa$. Therefore by symmetry, we have $b \downarrow^K ac$, and due to (*), $ba \equiv c_0b \equiv c'_0b \equiv c'_0b' \equiv c'_0$.

Now put $c_0b_0a_0 = cba$. We can find $c_ib_ia_i \equiv cba$ $(i < \omega)$ such that $a_ic_{i-1} \equiv ba$ (**), and $(cba)_i \downarrow^K (cba)_{<i}$, as follows. Assume we have found such $c_ib_ia_i$ for i < k. We want to find $c_kb_ka_k$ holding the conditions. Since $c_{k-1} \equiv a_0$, there is a_k such that $a_kc_{k-1} \equiv ba$. Now since $b \downarrow^K a$, we have $a_k \downarrow^K c_{k-1}$. Hence by extension for \downarrow^K (Fact 1.11(3)), we can assume that $a_k \downarrow^K (cba)_{<k}$. By symmetry we have $(cba)_{<k} \downarrow^K a_k$. Then again by extension, there is c_kb_k such that $c_kb_ka_k \equiv c_0b_0a_0$ and $(cba)_{<k} \downarrow^K c_kb_ka_k$. By symmetry, $c_kb_ka_k \downarrow^K (cba)_{<k}$ as wanted.

We now let $\varphi(x, a)$ be a formula semi-isolating tp(b/a).

https://doi.org/10.1017/jsl.2019.47 Published online by Cambridge University Press

CLAIM 2.5. The collection of formulas $\{\varphi(c_i, x) \land \varphi(x, a_i) \mid i < \omega\}$ is 2inconsistent: If it were not 2-inconsistent, then there is d such that $\varphi(d, a_i)$ and $\varphi(c_i, d)$ for some j > i. Therefore clearly $\operatorname{tp}(d/a_i)$ and $\operatorname{tp}(c_i/d)$ are both semiisolated, and hence again by Fact 2.1(2), so does $tp(c_i/a_i)$. Now since $tp(a_i/a_{i+1})$ is semi-isolated by (**), once more Fact 2.1(2) implies $tp(c_i/a_{i+1})$ is semi-isolated. But since $tp(c_i a_{i+1}) = tp(ab)$, it leads a contradiction. Hence the claim is proved.

Now by compactness applying to the type-definability described in Remark 1.12(1), there is some \downarrow^K -Morley sequence $\langle c'_0 b'_0 a'_0 | i < \omega \rangle$ over A such that $c'_0 b'_0 a'_0 = cba$ and $\{\varphi(c'_i, x) \land \varphi(x, a'_i) | i < \omega\}$ is 2-inconsistent. Note now that $b \models \varphi(c, x) \land \varphi(x, a)$. Then due to the chain condition for \downarrow^{K} in Fact 1.11, we must have $b \neq^{K} ac$, contradicting Claim 1. Therefore we must have $a \neq^{K} b$. \dashv

COROLLARY 2.6. Assume that T is $NSOP_1$, and we let $a \equiv b$. If tp(b/a) is isolated, and tp(a/b) is nonisolated, then $a \neq^{K} b$.

§3. Proof of Theorem 1.3. In this section, T is countable and non- \aleph_0 -categorical. A proof of the following fact can be found for example in [3] or [6].

FACT 3.1 (Folklore). Suppose that $I(\omega, T)$ is finite. Then there is a tuple a and a prime model M over a such that p(x) := tp(a) is nonisolated and all the types of finite tuples are realized in M. Moreover there is a tuple b in M such that $b \equiv a$ and tp(a/b) is nonisolated.

We are ready to prove Theorem 1.3. We keep the notation in Fact 3.1. Assume further that T is NSOP₁.

CLAIM 3.2. There are two realizations a_1, a_0 of p in M such that $a_1 \downarrow a_0$, and both $tp(a_0/a_1), tp(a_1/a_0)$ are nonisolated.

PROOF. Due to nonforking existence and extension, there is $c \models p$ such that $c \downarrow ab$, and hence $c \downarrow^{K} ab$. Now, by Fact 2.2, tp(a/b) is nonsemi-isolated. Hence, by Fact 2.1, either $\operatorname{tp}(a/c)$ or $\operatorname{tp}(c/b)$ must be nonisolated. Since $c \downarrow^{K} ab$, if $\operatorname{tp}(a/c)$ is nonisolated then so is tp(c/a), by Corollary 2.6. The same holds when tp(c/b) is nonisolated. Now choose a_1a_0 in M such that $a_1a_0 \equiv ca$ or cb.

We continue the proof with the selected tuples. Note now that $tp(a/a_0)$, $tp(a/a_1)$ are both nonisolated (†), since if say $tp(a/a_0)$ were isolated, then M is prime over a_0 and so $tp(a_1/a_0)$ would be isolated, a contradiction. Therefore again by Corollalry 2.6, we have $a \not\perp^{K} a_0$ and $a \not\perp^{K} a_1$. We are ready to claim the following which says that p has its own preweight ω , so finishes our proof of Theorem 1.3.

CLAIM 3.3. There is a set $\{a_u \mid u \in X, a_u \models p\}$ where

$$X = \{ u \in 2^{<\omega} \mid u = 0^{m+1} = \overbrace{0...0}^{m+1} \text{ or } 0^m 1 \text{ for some } m < \omega \}$$

such that for each $m < \omega$,

- (1) $a_1 a_0 a \equiv a_{0^m 1} a_{0^{m+1}} a_{0^m}$,
- (2) $a_{0^{m_1}} \downarrow \{a_u \mid u \in X \text{ and } 0^{m+1} \trianglelefteq u\},$ (3) $a_{0^{m_1}} \downarrow^K a_1 a_{01} \dots a_{0^{m-1}1}, and$ (4) $a \not \downarrow^K a_u \text{ for all } u \in X.$

We prove the claim using induction. Given $k < \omega$, assume that we have selected $A = \{a_u \mid u \in X, |u| \le k + 1\}$ satisfying above (1)–(4) for each $m \le k$. Note that a_1a_0a satisfies the initial condition for k = 0. We will find appropriate $a_{0^{k+1}1}, a_{0^{k+2}} \models p$ holding (1)–(4) for k + 1.

First choose $d_1 = a_{0^{k+1}1}$, $d_0 = a_{0^{k+2}} \models p$ such that $d_1d_0a_{0^{k+1}} \equiv a_1a_0a$. Now since A satisfies (1) with m = k, we have that $a_1a_0 \equiv a_{0^{k}1}a_{0^{k+1}}$ and so $a_{0^{k}1} \downarrow a_{0^{k+1}}$. Hence due to nonforking extension (Fact 1.5(1)), by possibly moving d_1d_0 while fixing $a_{0^{k}1}a_{0^{k+1}}$ we can additionally assume the chosen d_1, d_0 satisfy that $a_{0^{k}1} \downarrow d_1d_0a_{0^{k+1}}$. Now we iterate this process. Namely, since A satisfies (2) for $m = 0, \ldots, k - 1$ as well, again by nonforking extension we can further assume (by iteratively moving d_1d_0 while fixing A pointwise) that $a_{0^{k-1}1} \downarrow d_1d_0a_{0^{k+1}}a_{0^k}a_{0^{k-1}1}a_{0^{k-1}}a_{0^{k-1}1}a_{0^{k-1}}a_{0^{k-1}1}a_{0^{k-1}}a_{0^{k-1}1}a_{0^{k-1}}a_{0^{k-1}1}a_{0^{k-1}}a_{0^{k-1}1}a_{0^{k-1}1}a_{0^{k-1}1}a_{0^{k-1}}a_{0^{k-1}1}a_{0^{k-1}}a_{0^{k-1}1}a_{0^{k-1}1}a_{0^{k-1}}a_{0^{k-1}1}a_{0^{k-1}1}a_{0^{k-1}}a_{0^{k-1}1}a_{0^{k-1}}a_{0^{k-1}1}a_{0^{k-1}}a_{0^{k-1}1}a_{0^{k-1}1}a_{0^{k-1}}a_{0^{k-1}1}a_{0^{k-1}}a_{0^{k-1}1}a_{0^{k-1}}a_{0^{k-1}1}a_{0^{k-1}}a_{0^{k-1}1}a_{0^{k-1}}a_{0^{k-1}1}a_{0^{k-1}1}a_{0^{k-1}}a_{0^{k-1}1}a_{0^{k-1}1}a_{0^{k-1}}a_{0^{k-1}1}a_{0^{k-1}}a_{0^{k-1}1}a_{0^{k-1}}a_{0^{k-1}1}a_{0^{k-1}}a_{0^{k-1}1}a_{0^{k-1}}a_{0^{k-1}1}a_{0^{k-1}}a_{0^{k-1}1}a_{0^{k-1}}a_{0^{k-1}1}a_{0^{k-1}}a_{0^{k-1}}a_{0^{k-1}1}a_{0^{k-1}}a_{0^{k-1}}a_{0^{k-1}1}a_{0^{k-1}}a_{0^{k-1}}a_{0^{k-1}}a_{0^{k-1}1}a_{0^{k-1}}a_{$

Namely, by (2), for each $m \le k + 1$, we have

$$a_{0^{m_1}} \downarrow \{a_{0^{n_1}} \mid m < n \le k+1\}.$$

Thus by Fact 1.5, we have that for each $n \le k + 1$,

$$\{a_{0^m1} \mid m < n\} \cup a_{0^n1}$$

and hence

$$\{a_{0^m1} \mid m < n\} \stackrel{\kappa}{\stackrel{\smile}{\sqcup}} a_{0^m1}$$

holds since $\downarrow \Rightarrow \downarrow^{K}$. Then by symmetry for \downarrow^{K} (Fact 1.11(4)), it follows that

$$a_{0^{n_1}} \stackrel{K}{\smile} \{a_{0^{m_1}} \mid m < n\}.$$

We have shown that (3) holds on $Aa_{0^{k+1}}a_{0^{k+2}}$. Now for a_1 , we already know $a \not\succ^K a_1$, For other a_u ($u \in X$), due to (1) and Fact 2.1, we have that $tp(a_u/a)$ is semi-isolated. However $tp(a/a_u)$ is nonsemi-isolated since if it were so then again by Fact 2.1, $tp(a/a_0)$ is semi-isolated contradicting above (†) and Fact 2.2. Therefore by Fact 2.3, $a \not\perp^K a_u$. We have proved (4) and so complete the proof of Theorem 1.3.

Acknowledgment. The author has been supported by Samsung Science Technology Foundation under Project Number SSTF-BA1301-03.

REFERENCES

[1] A. CHERNIKOV and N. RAMSEY, *On model-theoretic tree properties*. *Journal of Mathematical Logic*, vol. 16 (2016), no. 2, 1650009.

[2] J. DOBROWOLSKI, B. KIM, and N. RAMSEY, *Independence over arbitrary sets in NSOP*₁ theories, preprint.

[3] B. HERWIG, Weight ω in stable theories with few types, this JOURNAL, vol. 60 (1995), pp. 353–373.

[4] I. KAPLAN and N. RAMSEY, On Kim-independence. Journal of the European Mathematical Society, to appear.

[5] — , Transitivity of Kim-independence, preprint, 2019, arXiv:1901.07026.

[6] B. KIM, On the number of countable models of a countable supersimple theory. Journal of the London Mathematical Society (2), vol. 60 (1999), pp. 641–645.

[7] ——, Simplicity Theory, Oxford University Press, Oxford, 2014.

[8] A. H. LACHLAN, On the number of countable models of a countable superstable theory, Logic, Methodology and Philosophy of Science IV (L. Henkin, editor), North-Holland, Amsterdam, 1973, pp. 45–56.

[9] A. PILLAY, Countable models of stable theories. Proceedings of the American Mathematical Society, vol. 89 (1983), pp. 666–672.

[10] S. SHELAH, Toward classifying unstable theories. Annals of Pure and Applied Logic, vol. 80 (1996), pp. 229–255.

DEPARTMENT OF MATHEMATICS YONSEI UNIVERSITY 50 YONSEI-RO SEODAEMUN-GU SEOUL 03722, REPUBLIC OF KOREA *E-mail*: bkim@yonsei.ac.kr