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ON THE NUMBER OF COUNTABLE MODELS OF A COUNTABLE
NSOP1 THEORY WITHOUT WEIGHT �

BYUNGHANKIM

Abstract. In this article, we prove that if a countable non-ℵ0-categorical NSOP1 theory with nonforking
existence has finitely many countable models, then there is a finite tuple whose own preweight is �. This
result is an extension of a theorem of the author on any supersimple theory.

§1. Introduction. In this article, T always is a complete theory in a language L,
and recall that I (�,T ) denotes the number of nonisomorphic countable models of
T . We extend the following theorem of the author for supersimple theories to the
context of NSOP1 theories.

Fact 1.1 ([6]). If T is countable and supersimple, then I (�,T ) is either 1 or
infinite.

As it iswell known,Fact 1.1 is an extension ofLachlan’s result in [8] for superstable
theories. Later, Pillay pointed out that the following described in [3] is implicit in
the proof of Lachlan’s result.

Fact 1.2. Assume countable T is stable and 1 < I (�,T ) < �. Then there is a
finite tuple whose own preweight is �.

The author indeed proved the same Fact 1.2 for simple theories, which directly
implies Fact 1.1 since a supersimple theory cannot have a type of finite tuple whose
weight is �.
Our main theorem in this note is the extension of Fact 1.2 for NSOP1 theories.

Theorem 1.3. Assume countable T is NSOP1 holding nonforking existence. If
1 < I (�,T ) < �, then there is a finite tuple whose own preweight is �.

Now we recall basic facts and terminology for this note. As usual we work in a
large saturatedmodel. Unless said otherwise, a, b, c, . . . are finite tuples,A,B,C, . . .
are small sets, andM,N, . . . are elementary submodels from the saturated model.
That a ≡A b means a, b have the same type over A; and for tuples ai (i < κ), a<j
denotes {ai | i < j}. The following (until Fact 1.6) can be found in the literature
on simple theories, for example, in [7].

Definition 1.4. (1) A formula ϕ(x, a0) divides over A if there is an A-
indiscernible sequence 〈ai | i < �〉 such that {ϕ(x, ai ) | i < �} is
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inconsistent. A formula forks over A if the formula implies some finite dis-
junction of formulas, each of which divides overA. A type divides/forks over
A if the type implies a formula which divides/forks overA. We writeA�| B C
if for any finite a ∈ A, tp(a/BC ) does not fork over B.

(2) We say T is stable if nonforking holds uniqueness over models: For any
M ⊆ A and p(x) ∈ S(M ), there is a unique extension q(x) ∈ S(A) of p
which does not fork overM .

(3) We say T is simple if nonforking satisfies local character: For any a and A,
there isA0 ⊆ Awith |A| ≤ |T | such that a�| A0 A. Any stable theory is simple.
We say T is supersimple if for any a and A, there is finite A0 ⊆ A such that
a�| A0 A; and T is superstable if T is stable and supersimple.

(4) An A-indiscernible sequence 〈ai | i < �〉 is said to be Morley over A (or
A-Morley) if ai �| A a<i for each i < �.

Fact 1.5. The following hold in any T .

(1) (Extension) If a�| A B then for any C there is a′ ≡AB a such that a′�| A BC .
(2) (Base monotonicity) If A�| B CD then A�| BC D.
(3) (Left transitivity) If B�| C D and A�| BC D, then AB �| C D. Hence for a
sequence 〈ci | i < κ〉, if ci �| A c<i holds for each i < κ, then c≥i �| A c<i for all
i < κ.

Fact 1.6. Assume T is simple. Then the following hold.

(1) (Existence) For any a and A, we have that a�| A A. Equivalently, for any a0
and A, there is an A-Morley sequence 〈ai | i < �〉.

(2) A formula divides over a set iff the formula forks over the set.
(3) ϕ(x, a0) divides over A iff for some/any Morley sequence 〈ai | i < �〉 over A,

{ϕ(x, ai) | i < �} is inconsistent.
(4) (Symmetry) For any A,B,C we have A�| B C iff C �| B A.
(5) (Transitivity) For any B ⊆ C ⊆ D, if A�| B C and A�| C D, then we have
A�| B D.

(6) (Type-amalgamation over a model ) Assume A0�| M A1, c0 ≡M c1, and
ci �

|
M Ai for i = 0, 1. Then there is c ≡MAi ci such that c �| M A1A2.

Recently, Kaplan and Ramsey proved in [4] and [5] that all the properties in Fact
1.6 (except base monotonicity in Fact 1.5) still hold over models in NSOP1 theories
with respect toKim-independence. The 1-strong order property (SOP1) is introduced
by Shelah in [10], and a nice criterion for SOP1 is given in [1] and [4].

Definition 1.7 ([10]).

(1) We say T has SOP1 if there are formula ϕ(x, y) and tuples cα (α ∈ 2<�)
such that, for each � ∈ 2�, {ϕ(x, c��m) | m ∈ �} is consistent; and
{ϕ(x, cα�〈1〉), ϕ(x, c	)} is inconsistent whenever α�〈0〉 � 	 ∈ 2<�, that
is, α�〈0〉 is an initial segment of 	.

(2) We say T is NSOP1 if T does not have SOP1. Any simple theory is
NSOP1.

Fact 1.8 ([1,4]). T has SOP1 iff there are a sequence 〈aici | i < �〉 and a formula
ϕ(x, y) such that
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(1) ai ≡(ac)<i ci for each i < �,
(2) {ϕ(x, ai) | i < �} is consistent, while
(3) {ϕ(x, ci) | i < �} is k-inconsistent for some k ≥ 2.

Definition 1.9 (Assume T satisfies nonforking existence over A, i.e., for any c,
c �| A A). A formula ϕ(x, a0) Kim-divides over A if there is an A-Morley sequence
〈ai | i < �〉 such that {ϕ(x, ai) | i < �} is inconsistent. A formula Kim-forks over
A if the formula implies some finite disjunction of formulas, each of which Kim-
divides overA. A typeKim-divides/forks overA if the type implies a formula which
Kim-divides/forks overA. We write B �|

K

A C if for any finite b ∈ B, tp(b/AC ) does
not Kim-fork over B. Obviously B�| A C implies B �|

K

A C . Due to Fact 1.6(3), T is

simple then�| =�|
K
.

An A-indiscernible sequence 〈bi | i < �〉 is called�| K -Morley over A (in p(x)) if
bi �

| K
A b<i holds for each i < � (and p(x) = tp(bi/A)).

Note that nonforking existence holds over any model since any type over a model
is finitely satisfiable over the model.

Fact 1.10 ([4]). Let T be NSOP1.

(1) (Kim’s lemma for�|
K
over a model ) ϕ(x, a0) Kim-divides overM iff for any

Morley sequence 〈ai | i < �〉 overM , {ϕ(x, ai ) | i < �} is inconsistent.
(2) A formula Kim-divides over a model iff the formula Kim-forks over the
model.

(3) (Extension for�|
K
over a model ) If a�|

K

M B then for anyC there is a
′ ≡MB a

such that a′�|
K

M BC .
(4) (Symmetry for�|

K
over a model ) For anyA,C we haveA�|

K

M C iff C �
| K
M A.

(5) (Type-amalgamation for�|
K
over a model ) AssumeA0�|

K

M A1, c0 ≡M c1, and
ci �

| K
M Ai for i = 0, 1. Then there is c ≡MAi ci such that c �|

K

M A1A2.

In a joint work [2], it is now proved that Fact 1.10 still holds over any set as far
as nonforking existence holds. Due to Fact 1.6(1), the class of NSOP1 theories with
nonforking existence fully contains that of simple theories. Moreover all the typical
nonsimple NSOP1 examples described in [4] (namely, the random parameterized
equivalence relations, �-free PAC fields, and an infinite dimensional vector space
over an algebraically closed field equipped with a symmetric alternating bilinear
form) have nonforking existence. Even we conjecture that nonforking existence
holds in any NSOP1 T .

Fact 1.11 ([2]). Assume T is NSOP1 with nonforking existence(Fact 1.6(1)).

(1) (Kim’s lemma for�|
K
) ϕ(x, a0)Kim-divides overA iff for anyMorley sequence

〈ai | i < �〉 over A, {ϕ(x, ai) | i < �} is inconsistent.
(2) A formula Kim-divides over some set iff the formula Kim-forks over the set.
(3) (Extension for�|

K
) If p(x) is a type over B which does not Kim-forks over A,

then there is a completion q(x) ∈ S(AB) which does not Kim-fork over A. In
particular if a�|

K

A B then for any C there is a
′ ≡AB a such that a′�| KA BC .
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(4) (Symmetry for�|
K
) For any A,B,C we have A�|

K

B C iff C �
| K
B A.

(5) (Chain condition for�|
K
) Let a�|

K

A b0, and let I = 〈bi | i < �〉 be�| K -Morley
over A. Then there is a′ ≡Ab0 a such that a′�|

K

A I and I is a
′A-indiscernible.

From now on for simplicity, we assume that any NSOP1 theory in this note has
nonforking existence.
In addition to Fact 1.11, type-amalgamation over sets for Lascar types are proved
in [2] for any NSOP1 theory, but we omit to state it as we will not use the property.
Instead we will use Fact 1.11(5).

Remark 1.12. (1) Assume T is NSOP1 and let p(x) ∈ S(A). Then that ‘〈xi |
i < �〉 is a sequence of realizations of p such that xi �| KA x<i for each i < �’
is A-type-definable by

∧
i<� p(xi) ∪ Γ(x0, x1, . . . ) where

Γ(x0, x1, . . . ) := {¬ϕ(x0, . . . , xn, xn+1) ∈ L(A) | ϕ(x0, . . . , xn, a)
Kim-divides over A for some/any a |= p}.

Hence clearly that 〈xi | i < �〉 is a �| K -Morley sequence over A in p is
A-type-definable as well.

(2) Notice that contrary to simple theory context, that 〈ci | i < �〉 is�| K -Morley
over A in NSOP1 T need not imply

ci �
| K
A{cj | j 
= i}

for all i ∈ �, since base monotonicity for�| K does not hold.

Now we are ready to talk about the notion of weight.

Definition 1.13. Assume T is NSOP1. We say a finite tuple c (or its type) has
own preweight � if there are bi ≡ c (i < �) such that c 
�| K bi , and bi �| K b<i for all
i < �.

For more development of the weight notion in simple theories, see [7]. As pointed
out in Remark 1.12(2), in Definition 1.13, {bi | i < �} need not be fully �| K -
independent.
Recall that T is supersimple iff there do not exist c and sets Ai (i < �) such that
Ai ⊆ Ai+1 and c 
�| Ai Ai+1 for any i . Since�| =�|

K
in simple T , if T is supersimple

then due to transitivity there is no p(x) ∈ S(∅) whose own preweight is �.

Example 1.14. (1) Consider the typical stable but nonsuperstable theory.
Namely, T is the theory in L = {Ei(x, y) | i < �} saying that each binaryEi
is an equivalence relation only having infinitely many infinite classes such that
for each j > i , Ej is finer than Ei and each Ei -class contains infinitely many
Ej-classes.Notice thatT is a small (i.e.,S(∅) is countable) non-ℵ0 -categorical
theory. But there is no finite tuple whose own preweight is �.

(2) Due to our Theorem 1.3, a necessary condition for an NSOP1 theory to
have 1 < I (�,T ) < � is that T should be small and having a finite tuple
with own preweight �. Herwig constructed such an example of a stable
theory [3].
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§2. Kim-forking and isolation. In order to prove Theorem 1.3, we will take the
similar pattern of the proof for Fact 1.1 in [6].
We first recall Pillay’s notion of semi-isolation ([3,9]), and figure out its relation-
ship with Kim-forking in NSOP1 theories. We say tp(b/a) is semi-isolated if there
is a formula ϕ(x, a) in tp(b/a) such that |= ϕ(x, a)→ tp(b).
Fact 2.1. (1) If tp(b/a) is isolated, then tp(b/a) is semi-isolated.
(2) If tp(c/b) and tp(b/a) are semi-isolated, then tp(c/a) is semi-isolated.

We give a proof of the the following folklore for self-containedness.

Fact 2.2. Suppose that tp(b/a) is isolated, whereas tp(a/b) is nonisolated. Then
tp(a/b) is nonsemi-isolated.

Proof. Let tp(b/a) be isolated by ϕ(x, a) (*). To lead a contradiction assume
that 
(b, y) semi-isolates tp(a/b). Now since tp(a/b) is nonisolated, there is an
L-formula φ(x, y) such that ϕ(b, y) ∧ 
(b, y) ∧ φ(b, y) and ϕ(b, y) ∧ 
(b, y) ∧
¬φ(b, y) are both consistent, while both imply tp(a). Hence ϕ(x, a) ∧ φ(x, a) and
ϕ(x, a) ∧ ¬φ(x, a) are both consistent, contradicting (*). �
The following is the key proposition describing a relationship between isolation
and Kim-dividing in NSOP1 theories.

Proposition 2.3. Assume that T is NSOP1. Let a ≡ b. Assume tp(b/a) is semi-
isolated, but tp(a/b) is nonsemi-isolated. Then a 
�| K b.
Proof. Suppose not, so that a�|

K
b.

Claim 2.4. There is c |= q = tp(a) such that b�| K ac and ba ≡ cb: Choose
c0 |= q such that ba ≡ c0b. Hence a�| K b and b�| K c0. Now tp(a/b) does not
Kim-divide over ∅. Thus by the definition of Kim-dividing and compactness, for any
infinite κ, there is some Morley sequence I = 〈bi | i < κ〉 with b = b0 such that I
is a-indiscernible. Moreover by symmetry for �|

K
(Fact 1.11(4)), we have c0�|

K
b.

Hence tp(c0/b) does not Kim-divide over ∅, and again by the definition of Kim-
dividing,

⋃
i<κ p(x, bi) is consistent where p(x, b0) = p(x, b) = tp(c0/b). Choose c

′
0

realizing
⋃
i<κ p(x, bi) so that c0b ≡ c′0b and c′0b′ ≡ c′0b for any b′ ∈ I (*). Now take

κ = (2|T |)+. Then by the pigeonhole principle, there is a subsequence I ′ = 〈b′i | i < κ〉
of I such that tp(b′i /ac

′
0) is fixed for any i . Then since I

′ is Morley as well, we have
ac′0�

| K b′0, by Fact 1.11(1),(2). Note now that Ia ≡ I ′a. Hence there is c such that
c′0b

′
0I

′a ≡ cb0Ia = cbIa. Therefore by symmetry, we have b�| K ac, and due to (*),
ba ≡ c0b ≡ c′0b ≡ c′0b′0 ≡ cb, as wanted. We have proved Claim 1.
Now put c0b0a0 = cba. We can find cibiai ≡ cba (i < �) such that aici−1 ≡ ba
(**), and (cba)i �|

K
(cba)<i , as follows.Assumewe have found such cibiai for i < k.

We want to find ckbkak holding the conditions. Since ck−1 ≡ a0, there is ak such
that akck−1 ≡ ba. Now since b�| K a, we have ak �| K ck−1. Hence by extension
for �|

K
(Fact 1.11(3)), we can assume that ak �|

K
(cba)<k . By symmetry we have

(cba)<k �|
K
ak . Then again by extension, there is ckbk such that ckbkak ≡ c0b0a0

and (cba)<k �|
K
ckbkak . By symmetry, ckbkak �|

K
(cba)<k as wanted.

We now let ϕ(x, a) be a formula semi-isolating tp(b/a).
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Claim 2.5. The collection of formulas {ϕ(ci , x) ∧ ϕ(x, ai ) | i < �} is 2-
inconsistent: If it were not 2-inconsistent, then there is d such that ϕ(d, aj ) and
ϕ(ci , d ) for some j > i . Therefore clearly tp(d/aj) and tp(ci/d ) are both semi-
isolated, and hence again by Fact 2.1(2), so does tp(ci/aj). Now since tp(aj/ai+1) is
semi-isolated by (**), once more Fact 2.1(2) implies tp(ci/ai+1) is semi-isolated. But
since tp(ciai+1) = tp(ab), it leads a contradiction. Hence the claim is proved.
Now by compactness applying to the type-definability described in Remark
1.12(1), there is some �|

K
-Morley sequence 〈c′0b′0a′0 | i < �〉 over A such that

c′0b
′
0a

′
0 = cba and {ϕ(c′i , x) ∧ ϕ(x, a′i ) | i < �} is 2-inconsistent. Note now that

b |= ϕ(c, x) ∧ ϕ(x, a). Then due to the chain condition for �| K in Fact 1.11, we
must have b 
�| K ac, contradicting Claim 1. Therefore we must have a 
�| K b. �
Corollary 2.6. Assume thatT is NSOP1, and we let a ≡ b. If tp(b/a) is isolated,
and tp(a/b) is nonisolated, then a 
�| K b.

§3. Proof of Theorem 1.3. In this section, T is countable and non-ℵ0-categorical.
A proof of the following fact can be found for example in [3] or [6].

Fact 3.1 (Folklore). Suppose that I (�,T ) is finite. Then there is a tuple a and
a prime modelM over a such that p(x) := tp(a) is nonisolated and all the types of
finite tuples are realized inM . Moreover there is a tuple b inM such that b ≡ a and
tp(a/b) is nonisolated.
We are ready to prove Theorem 1.3. We keep the notation in Fact 3.1. Assume
further that T is NSOP1.

Claim 3.2. There are two realizations a1, a0 of p inM such that a1�| a0, and both
tp(a0/a1), tp(a1/a0) are nonisolated.
Proof. Due to nonforking existence and extension, there is c |= p such that
c �| ab, and hence c �|

K
ab. Now, by Fact 2.2, tp(a/b) is nonsemi-isolated. Hence,

by Fact 2.1, either tp(a/c) or tp(c/b)must be nonisolated. Since c �|
K
ab, if tp(a/c)

is nonisolated then so is tp(c/a), by Corollary 2.6. The same holds when tp(c/b) is
nonisolated. Now choose a1a0 inM such that a1a0 ≡ ca or cb. �
We continue the proof with the selected tuples. Note now that tp(a/a0), tp(a/a1)
are both nonisolated (†), since if say tp(a/a0) were isolated, thenM is prime over a0
and so tp(a1/a0) would be isolated, a contradiction. Therefore again by Corollalry

2.6, we have a 
�| K a0 and a 
�| K a1. We are ready to claim the following which says
that p has its own preweight �, so finishes our proof of Theorem 1.3.

Claim 3.3. There is a set {au | u ∈ X, au |= p} where

X = {u ∈ 2<� | u = 0m+1 =
m+1︷ ︸︸ ︷
0 . . . 0 or 0m1 for some m < �}

such that for each m < �,
(1) a1a0a ≡ a0m1a0m+1a0m ,
(2) a0m1�| {au | u ∈ X and 0m+1 � u},
(3) a0m1�|

K
a1a01 . . . a0m−11, and

(4) a 
�| K au for all u ∈ X .
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We prove the claim using induction. Given k < �, assume that we have selected
A = {au | u ∈ X, |u| ≤ k + 1} satisfying above (1)–(4) for each m ≤ k. Note that
a1a0a satisfies the initial condition for k = 0.Wewill find appropriate a0k+11, a0k+2 |=
p holding (1)–(4) for k + 1.
First choose d1 = a0k+11, d0 = a0k+2 |= p such that d1d0a0k+1 ≡ a1a0a.
Now since A satisfies (1) with m = k, we have that a1a0 ≡ a0k1a0k+1 and so
a0k1�

| a0k+1 . Hence due to nonforking extension (Fact 1.5(1)), by possibly mov-
ing d1d0 while fixing a0k1a0k+1 we can additionally assume the chosen d1, d0 satisfy
that a0k1�

| d1d0a0k+1 . Now we iterate this process. Namely, since A satisfies (2) for
m = 0, . . . , k − 1 as well, again by nonforking extension we can further assume
(by iteratively moving d1d0 while fixing A pointwise) that a0k−11�| d1d0a0k+1a0k1a0k ,
a0k−21�

| d1d0a0k+1a0k1a0k a0k−11a0k−1 , . . . ,a1�| d1d0(A \ {a1}). Therefore with this
choice of a0k+11a0k+2 = d1d0, (2) also holds on Aa0k+11a0k+2 for each m ≤ k + 1. The
rest can be shown with the tuples a0k+11a0k+2 .
Namely, by (2), for each m ≤ k + 1, we have

a0m1�
| {a0n1 | m < n ≤ k + 1}.

Thus by Fact 1.5, we have that for each n ≤ k + 1,
{a0m1 | m < n}�| a0n1,

and hence

{a0m1 | m < n}
K

�| a0n1

holds since�| ⇒�| K . Then by symmetry for�| K (Fact 1.11(4)), it follows that

a0n1

K

�| {a0m1 | m < n}.
Wehave shown that (3) holds onAa0k+11a0k+2 . Now fora1, we already knowa 
�| K a1,
For other au (u ∈ X ), due to (1) andFact 2.1, we have that tp(au/a) is semi-isolated.
However tp(a/au) is nonsemi-isolated since if it were so then again by Fact 2.1,
tp(a/a0) is semi-isolated contradicting above (†) and Fact 2.2. Therefore by Fact
2.3, a 
�| K au . We have proved (4) and so complete the proof of Theorem 1.3.
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