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ON THE NUMBER OF COUNTABLE MODELS OF A COUNTABLE
NSOP; THEORY WITHOUT WEIGHT w

BYUNGHAN KIM

Abstract. In thisarticle, we prove that if a countable non-Xy-categorical NSOP; theory with nonforking
existence has finitely many countable models, then there is a finite tuple whose own preweight is w. This
result is an extension of a theorem of the author on any supersimple theory.

§1. Introduction. In this article, 7" always is a complete theory in a language L.
and recall that I (w, T') denotes the number of nonisomorphic countable models of
T. We extend the following theorem of the author for supersimple theories to the
context of NSOP; theories.

Fact 1.1 ([6]). If T is countable and supersimple, then I(w,T) is either 1 or
infinite.

Asitiswell known, Fact 1.1 is an extension of Lachlan’s result in [§] for superstable
theories. Later, Pillay pointed out that the following described in [3] is implicit in
the proof of Lachlan’s result.

Fact 1.2. Assume countable T is stable and 1 < I(w.T) < . Then there is a
finite tuple whose own preweight is .

The author indeed proved the same Fact 1.2 for simple theories, which directly
implies Fact 1.1 since a supersimple theory cannot have a type of finite tuple whose
weight is o.

Our main theorem in this note is the extension of Fact 1.2 for NSOP; theories.

THEOREM 1.3. Assume countable T is NSOP, holding nonforking existence. If
1 < I(w.T) < w, then there is a finite tuple whose own preweight is .

Now we recall basic facts and terminology for this note. As usual we work in a
large saturated model. Unless said otherwise, a. b, ¢, ... are finite tuples, 4, B, C, . ..
are small sets, and M. N, ... are elementary submodels from the saturated model.
That a =4 b means a. b have the same type over 4: and for tuples a; (i < k). ac;
denotes {a; | i < j}. The following (until Fact 1.6) can be found in the literature
on simple theories, for example, in [7].

DerFINITION 1.4, (1) A formula ¢(x,aq) divides over A if there is an A-

indiscernible sequence (¢; | i < ) such that {p(x,a;) | i < w} is
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inconsistent. A formula forks over A if the formula implies some finite dis-
junction of formulas, each of which divides over 4. A type divides/forks over
A if the type implies a formula which divides/forks over 4. We write 4 L C
if for any finite € 4. tp(a/BC) does not fork over B.

(2) We say T is stable if nonforking holds uniqueness over models: For any
M C A and p(x) € S(M), there is a unique extension ¢(x) € S(A4) of p
which does not fork over M.

(3) We say T is simple if nonforking satisfies local character: For any a and A.
thereis 4y C A with |4| < |T|such thata L4, 4. Any stable theory is simple.
We say T is supersimple if for any a and A, there is finite A9 C A4 such that
a~Ly, A: and T is superstable if T is stable and supersimple.

(4) An A-indiscernible sequence (a; | i < w) is said to be Morley over A (or
A-Morley) if a; L4 a; foreach i < w.

Fact 1.5. The following hold in any T .

(1) (Extension) If a L4 B then for any C there is a’ =45 a such that a’ L4 BC.

(2) (Base monotonicity) If ALy CD then A~Lgc D.

(3) (Left transitivity) If B~Lc D and A-Lgc D, then AB-L¢c D. Hence for a
sequence {(c; | i < k), if ¢; L e holds for each i < k. then C>i Lo forall
i< K.

Fact 1.6. Assume T is simple. Then the following hold.

(1) (Existence) For any a and A. we have that a L4 A. Equivalently, for any aq
and A, there is an A-Morley sequence {(a; | i < w).

(2) A formula divides over a set iff the formula forks over the set.

(3) (x.ay) divides over A iff for some/any Morley sequence {(a; | i < w) over A,
{p(x.a;) | i < w} is inconsistent.

(4) (Symmetry) For any A, B, C we have AL C iff C Lz 4.

(5) (Tranmsitivity) For any B C C C D, if ALy C and AL¢ D, then we have
ALy D.

(6) (Type-amalgamation over a model) Assume Aoy Ly A1, co =y c1, and
¢i Ly A; fori =0, 1. Then there is ¢ =p4, i such that ¢ Ly A4, 4,.

Recently, Kaplan and Ramsey proved in [4] and [5] that all the properties in Fact
1.6 (except base monotonicity in Fact 1.5) still hold over models in NSOP; theories
with respect to Kim-independence. The 1-strong order property (SOP; ) is introduced
by Shelah in [10], and a nice criterion for SOP; is given in [1] and [4].

DerINITION 1.7 ([10]).

(1) We say T has SOP; if there are formula ¢ (x. y) and tuples ¢, (o € 2<%)
such that, for each f € 2%, {p(x, c/ﬁm) | m € w} is consistent; and
{o(x.cay). @(x.¢,)} is inconsistent whenever o~ (0) < y € 2<%, that
is, @ (0) is an initial segment of y.

(2) We say T is NSOP; if T does not have SOP;. Any simple theory is
NSOP;.

Fact 1.8 ([1.4]). T has SOP, iff there are a sequence {a;c; | i < w) and a formula
o(x, y) such that
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(1) ai =), ¢i foreach i < o,
(2) {p(x.a;) | i< w} is consistent, while
(3) {e(x.c;) | i < w} is k-inconsistent for some k > 2.

DEFINITION 1.9 (Assume 7 satisfies nonforking existence over A4, i.e., for any c,
cLyA4). Aformula ¢(x,ay) Kim-divides over A if there is an A-Morley sequence
(a; | i < w) such that {¢(x,a;) | i < w} is inconsistent. A formula Kim-forks over
A if the formula implies some finite disjunction of formulas, each of which Kim-
divides over 4. A type Kim-divides/forks over 4 if the type implies a formula which
Kim-divides/forks over 4. We write B \Lf C if for any finite » € B, tp(b/AC) does
not Kim-fork over B. Obviously B L, C implies B \Lf C. Due to Fact 1.6(3), T is

. K
simple then L = L".

An A-indiscernible sequence (b; | i < w) is called J/K-Morley over A4 (in p(x)) if

b; sz b<; holds for each i < w (and p(x) = tp(b;/A)).

Note that nonforking existence holds over any model since any type over a model
is finitely satisfiable over the model.

FacT 1.10 ([4]). Let T be NSOP;.

(1) (Kim’s lemma for L* over a model ) @(x. ay) Kim-divides over M iff for any
Morley sequence {a; | i < @) over M, {¢(x.a;) | i < w} is inconsistent.

(2) A formula Kim-divides over a model iff the formula Kim-forks over the
model. X X

(3) (Extension for L™ over a model) If a L), B then for any C thereis a’ =yp a

M

such that a’ \LI,; BC.

(4) (Symmetry for LK overa model) For any A, C we have A \LI,; ciffCc J/fl A.

(5) (Type-amalgamation for LX overa model) Assume Ay J/[A; Ay, co = cr, and
¢ \L/f,l A; fori =0,1. Then there is ¢ =ya, ¢; such that c J/IA; A A>.

In a joint work [2]. it is now proved that Fact 1.10 still holds over any set as far
as nonforking existence holds. Due to Fact 1.6(1). the class of NSOP; theories with
nonforking existence fully contains that of simple theories. Moreover all the typical
nonsimple NSOP; examples described in [4] (namely. the random parameterized
equivalence relations, w-free PAC fields, and an infinite dimensional vector space
over an algebraically closed field equipped with a symmetric alternating bilinear
form) have nonforking existence. Even we conjecture that nonforking existence
holds in any NSOP; 7.

Fact 1.11 ([2]). Assume T is NSOP, with nonforking existence (Fact 1.6(1)).

(1) (Kim’s lemma for J/K) o (x, ag) Kim-divides over A iff for any Morley sequence
(a; | i < @) over A, {p(x.a;) | i < w} is inconsistent.

(2) A formula Kim-divides over some set iff the formula Kim-forks over the set.

(3) (Extension for J/K) If p(x) is a type over B which does not Kim-forks over A,
then there is a completion q(x) € S(AB) which does not Kim-fork over A. In

particular if a \L/f B then for any C there is a’ =4p a such that a’ J/f BC.
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(4) (Symmetry for \LK) FOI? any A. B,KC we have A Jé ciffC J/f; A. .
(5) (Chain condition for L") Let a~L | by. andlet I = (b; | i < w) be L~ -Morley
over A. Then there is a’ = 4, a such that a’ J/I/,{ I and I is a’ A-indiscernible.

From now on for simplicity, we assume that any NSOP; theory in this note has
nonforking existence.

In addition to Fact 1.11, type-amalgamation over sets for Lascar types are proved
in [2] for any NSOP; theory, but we omit to state it as we will not use the property.
Instead we will use Fact 1.11(5).

REMARK 1.12. (1) Assume 7 is NSOP; and let p(x) € S(A4). Then that (x; |
. . o K .
i < w) is a sequence of realizations of p such that x; L, x_; foreach i < »’
is A-type-definable by A,_, p(x;) U (xo.x1....) where

[(xp. x1,...) == {=p(x0...., Xn, Xnt1) € L(A) | p(x0,....x4.a)
Kim-divides over 4 for some/any a |= p}.

Hence clearly that (x; | i < w) is a J/K-Morley sequence over 4 in p is
A-type-definable as well.

(2) Notice that contrary to simple theory context, that (¢; | i < w) is LX -Morley
over A in NSOP| T need not imply

aLile 1 #i)

. .. K
forall i € w, since base monotonicity for L™ does not hold.
Now we are ready to talk about the notion of weight.

DEFINITION 1.13. Assume T is NSOP;. We say a finite tuple ¢ (or its type) has
own preweight w if there are b; = ¢ (i < w) such that ¢ >LK b;, and b; L b, for all
i< o.

For more development of the weight notion in simple theories, see [7]. As pointed
out in Remark 1.12(2), in Definition 1.13, {b; | i < w} need not be fully LXK
independent.

Recall that 7 is supersimple iff there do not exist ¢ and sets 4; (i < w) such that
A; C Ajyand ¢ by A4y forany . Since L = LX in simple 7, if T is supersimple
then due to transitivity there is no p(x) € S(f)) whose own preweight is w.

ExampLE 1.14. (1) Consider the typical stable but nonsuperstable theory.
Namely, T is the theoryin £ = {E;(x, y) | i < w} saying that each binary E;
is an equivalence relation only having infinitely many infinite classes such that
foreach j > i, E; is finer than E; and each E;-class contains infinitely many
E j-classes. Notice that 7" is a small (i.e., S(0) is countable) non-R,-categorical
theory. But there is no finite tuple whose own preweight is .

(2) Due to our Theorem 1.3, a necessary condition for an NSOP; theory to
have 1 < I(w,T) < w is that T should be small and having a finite tuple
with own preweight w. Herwig constructed such an example of a stable
theory [3].
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§2. Kim-forking and isolation. In order to prove Theorem 1.3, we will take the
similar pattern of the proof for Fact 1.1 in [6].

We first recall Pillay’s notion of semi-isolation ([3.9]). and figure out its relation-
ship with Kim-forking in NSOP; theories. We say tp(b/a) is semi-isolated if there
is a formula ¢(x, a) in tp(b/a) such that = p(x,a) — tp(h).

Fact2.1. (1) Iftp(b/a) is isolated, then tp(b/a) is semi-isolated.
(2) Iftp(c/b) and tp(b/a) are semi-isolated, then tp(c/a) is semi-isolated.
We give a proof of the the following folklore for self-containedness.

FACT 2.2. Suppose that tp(b/a) is isolated, whereas tp(a/b) is nonisolated. Then
tp(a/b) is nonsemi-isolated.

ProOF. Let tp(b/a) be isolated by ¢(x,a) (*). To lead a contradiction assume
that w (b, y) semi-isolates tp(a/b). Now since tp(a/b) is nonisolated, there is an
L-formula ¢(x, y) such that (b, y) A w(b.y) A ¢(b.y) and @(b.y) A w(b.y) A
—¢(b. y) are both consistent, while both imply tp(«). Hence ¢ (x.a) A ¢(x.a) and
o(x,a) A —~¢(x.a) are both consistent, contradicting (*). -

The following is the key proposition describing a relationship between isolation
and Kim-dividing in NSOP; theories.

PROPOSITION 2.3, Assume that T is NSOP,. Let a = b. Assume tp(b/a) is semi-
isolated, but tp(a/b) is nonsemi-isolated. Then a %K b.

ProOOF. Suppose not, so that a L5,

Cramv 2.4. There is ¢ = q = tpla) such that b LK ae and ba = cb: Choose

co = q such that ba = cob. Hence a L ana pL* co. Now tp(a/b) does not
Kim-divide over (). Thus by the definition of Kim-dividing and compactness. for any
infinite k., there is some Morley sequence I = (b; | i < k) with b = by such that T

is a-indiscernible. Moreover by symmetry for LE (Fact 1.11(4)). we have cq L5,
Hence tp(co/b) does not Kim-divide over 0, and again by the definition of Kim-
dividing, | J;_,. p(x.b;) is consistent where p(x.by) = p(x.b) = tp(co/b). Choose ¢
realizing | J;_,. p(x.b;) so that cob = ¢jb and cjb’ = c{b for any b" € I (*). Now take
k = (2IT1)* . Then by the pigeonhole principle. there is a subsequence I' = (b! | i < k)
of I such that tp(b]/ac) is fixed for any i. Then since I' is Morley as well, we have
ac LK b{. by Fact 1.11(1).(2). Note now that Ia = I'a. Hence there is ¢ such that
cbbyl’a = cbola = cbla. Therefore by symmetry, we have b LK ae. and due 1o (*).
ba = cob = c(’)b = c(’)b(’) = c¢b, as wanted. We have proved Claim 1.

Now put coboag = cha. We can find ¢;b;a; = cba (i < w) such that a;c;_| = ba
(**), and (cha); J/K(cba)<i, as follows. Assume we have found such ¢;b;a; fori < k.
We want to find ¢;biay holding the conditions. Since ¢, = ay. there is a; such
that aici_; = ba. Now since b L a, we have ay LX crx—1. Hence by extension
for L* (Fact 1.11(3)). we can assume that a; \LK(cba)<k. By symmetry we have
(cha) <y LX ay. Then again by extension, there is ¢ by such that cibra; = coboag

and (cha) < LXK crbray. By symmetry. ¢ by ay J/K(cba)<k as wanted.
We now let ¢(x, a) be a formula semi-isolating tp(b/a).
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Cramv 2.5. The collection of formulas {p(ci.x) N o(x.a;) | i < o} is 2-
inconsistent: If it were not 2-inconsistent, then there is d such that ¢(d.a;) and
o(c;.d) for some j > i. Therefore clearly tp(d/a;) and tp(c;/d) are both semi-
isolated, and hence again by Fact 2.1(2). so does tp(c;/a;). Now since tp(a;/a;+1) is
semi-isolated by (**), once more Fact 2.1(2) implies tp(c;/a; 1) is semi-isolated. But
since tp(c;a;y1) = tplab), it leads a contradiction. Hence the claim is proved.

Now by compactness applying to the type-definability described in Remark
1.12(1). there is some L -Morley sequence (chboay | i < w) over A such that
clblal = cba and {p(cl.x) A p(x.a}) | i < w} is 2-inconsistent. Note now that
b = (e, x) A @(x.a). Then due to the chain condition for L% in Fact 1.1 1, we
must have b %K ac, contradicting Claim 1. Therefore we must have a )«LK b. -

COROLLARY 2.6. Assume that T is NSOP;, andwe let a = b. If tp(b/a) is isolated,
and tp(a/b) is nonisolated, then a %K b.

83. Proof of Theorem 1.3. In this section, 7" is countable and non-Xy-categorical.
A proof of the following fact can be found for example in [3] or [6].

Facr 3.1 (Folklore). Suppose that I(w. T) is finite. Then there is a tuple a and
a prime model M over a such that p(x) := tp(a) is nonisolated and all the types of
finite tuples are realized in M. Moreover there is a tuple b in M such that b = a and
tp(a/b) is nonisolated.

We are ready to prove Theorem 1.3. We keep the notation in Fact 3.1. Assume
further that 7" is NSOP;.

Cram 3.2, There are two realizations ay, ap of p in M such that a, L ay, and both
tp(ao/ai1). tp(ay /ao) are nonisolated.

Proor. Due to nonforking existence and extension, there is ¢ |= p such that
¢-Lab, and hence ¢ L5 ab. Now, by Fact 2.2, tp(a/b) is nonsemi-isolated. Hence,

by Fact 2.1, either tp(a/c) or tp(c¢/b) must be nonisolated. Since ¢ LK ap if tp(a/c)
is nonisolated then so is tp(c/a), by Corollary 2.6. The same holds when tp(c/b) is
nonisolated. Now choose ajag in M such that a;ag = ca or ¢b. =

We continue the proof with the selected tuples. Note now that tp(a/ay). tp(a/a;)
are both nonisolated (), since if say tp(a/ao) were isolated, then M is prime over ag
and so tp(a;/ap) would be isolated, a contradiction. Therefore again by Corollalry

2.6, we have a )«LK ap and a yLK a;. We are ready to claim the following which says
that p has its own preweight w, so finishes our proof of Theorem 1.3.

Cram 3.3. Thereisaset {a, |u € X. a, |= p} where
m+1

~ =
X={uec2®|u=0""=0...0 or 0"1 for some m < w}

such that for each m < w,

(l) ajapa = aomidon+1dom,
2) apny LHa, | u e X and 0" < u},

(2)
(3) agm LK ayao ... dgn—1y. and
4) a %/K a, forallu € X.
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We prove the claim using induction. Given k < @, assume that we have selected
A={a, | ue X |ul <k+ 1} satisfying above (1)—(4) for each m < k. Note that
ajapa satisfies the initial condition for k& = 0. We will find appropriate agii1. a2 =
p holding (1)—(4) for k + 1.

First choose d = ay+, dy = ags+2 | p such that didpag = ajapa.
Now since A satisfies (1) with m = k., we have that ajap = g ap+ and so
ayy L age. Hence due to nonforking extension (Fact 1.5(1)). by possibly mov-
ing d,dp while fixing ag;ag+1 we can additionally assume the chosen d. dy satisfy
that ag, L didoag..1. Now we iterate this process. Namely, since A4 satisfies (2) for
m = 0,....k — 1 as well, again by nonforking extension we can further assume
(by iteratively moving d; dy while fixing 4 pointwise) that ag—1; L dydyage. age ag: .
Apk—21 \Ldld()aokuaoklaokaok—]1610/‘»—1, Y \Ldld()(A \ {Cll}). Therefore with this
choice of agei1yage = didy. (2) also holds on Aagii1ag2 for each m < k + 1. The
rest can be shown with the tuples agi1;agrsa.

Namely, by (2). for each m < k + 1, we have

aomy \‘-/{(10/71 |m<n<k+1}.
Thus by Fact 1.5, we have that foreachn < k + 1,
{agm | m < n} Lag.
and hence

K
{aoml | m < n} \La()”l

holds since L = L. Then by symmetry for L* (Fact 1.1 1(4)), it follows that

K
daon] \l/{aoml | m < I’l}.

We have shown that (3) holds on Aae:1; age+2. Now for ay, we already know a %K ap,
For other a, (u € X),dueto (1) and Fact 2.1, we have that tp(a, /a) is semi-isolated.
However tp(a/a,) is nonsemi-isolated since if it were so then again by Fact 2.1,
tp(a/ap) is semi-isolated contradicting above (1) and Fact 2.2. Therefore by Fact

2.3,a J/K a,. We have proved (4) and so complete the proof of Theorem 1.3.
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