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Abstract

Proposing relevant perturbations to biological signaling networks is central to many problems

in biology and medicine because it allows for enabling or disabling certain biological

outcomes. In contrast to quantitative methods that permit fine-grained (kinetic) analysis,

qualitative approaches allow for addressing large-scale networks. This is accomplished by

more abstract representations such as logical networks. We elaborate upon such a qualitative

approach aiming at the computation of minimal interventions in logical signaling networks

relying on Kleene’s three-valued logic and fixpoint semantics. We address this problem within

answer set programming and show that it greatly outperforms previous work using dedicated

algorithms.

1 Introduction

Systems biology is a field at the crossover of biology, informatics, and mathematics.

It aims at developing methods and models to elucidate the functioning of biological

systems. Among them, signaling networks are crucial for the understanding of the

fast response of a system to external perturbations. Importantly, they are involved

in bio-medical processes and their control has a crucial impact on drug target

identification and diagnosis.

During the last decade, many efforts have been made to develop relevant

formalisms and modeling frameworks to take into account the specificities of

such biological systems. In the lack of quantitative details, qualitative approaches,

such as Boolean logical networks (Kauffman 1969; Thomas 1973), have become

very popular (Wang et al. 2012). It has been proved that the early response of
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signaling networks can be appropriately modeled with Boolean logical networks, as

illustrated on several signal transduction pathways involved in diverse processes such

as proliferation, cell cycle regulation, apoptosis, or differentiation (Saez-Rodriguez

et al. 2007; Samaga et al. 2009; Calzone et al. 2010; Saez-Rodriguez et al. 2011).

Moreover, inference of Boolean networks from experimental data can now be

performed with several computational methods (Mitsos et al. 2009; Saez-Rodriguez

et al. 2009; Sharan and Karp 2012; Videla et al. 2012).

As mentioned in the seminal paper for systems biology (Kitano 2002), a major

challenge in this field is how to systematically control the state of the cell. From

an application viewpoint, this means selecting appropriate drugs in order to force

the system to reach a steady state with properties that were specified a priori. Thus,

progress in this area would lead to hypothesis-driven research in biology. Nowadays,

due to the lack of information, multiple hypotheses are usually generated from

prior knowledge and computational models. Next, decision-making methods can be

used to suggest new experiments in order to reduce ambiguous hypotheses. Finally,

new experimental data is produced to test the generated hypotheses, the models are

refined, and the loop is started over again (Kitano 2002; Kreutz and Timmer 2009;

Sparkes et al. 2010).

The problem of identifying “key-players” in biological systems has been addressed

for metabolic, gene and signaling networks. However, the underlying mathemati-

cal formalisms for each of these biological networks allows for different com-

putational approaches. Moreover, while significant progress has been made for

metabolic (Stelling et al. 2002; Kauffman et al. 2003; Klamt 2006; Acuña et al.

2012) and gene regulatory networks (Faryabi et al. 2008; Karlebach and Shamir

2009; Bouaynaya et al. 2011), controlling mechanisms in signaling networks remain

poorly understood and only a few approaches can be found in the literature (Abdi

et al. 2008; Samaga et al. 2010; Wang and Albert 2011). More precisely, apart from

numerical methods (e.g. ordinary differential equations), computational formalisms

for metabolic networks are based on linear algebra whereas the dynamics in gene

regulatory networks are well captured either by probabilistic approaches or by

discrete dynamical systems taking into account non-linear effects (Batt et al. 2008;

Naldi et al. 2009). On the contrary, the nature of signaling transduction networks is

closely related to that of digital circuits (Abdi et al. 2008; Morris et al. 2010; Wang

and Buck 2012). Thus, logic-based models are particularly well suited to describe

and study the (early)-response of such systems.

Among the few approaches addressing the challenge of controlling the state

of the cell in the context of signaling transduction, we focus in what follows

on (Samaga et al. 2010). Based on earlier work (Klamt 2006) on metabolic networks,

the notion of minimal intervention sets was introduced in Samaga et al. (2010) and

dedicated algorithms were developed to compute them. Intuitively, an “intervention”

consists of an inclusion minimal set of knock-ins (activation drugs) and knock-outs

(inhibition drugs) that force a set of target species or compounds into a desired

state. Unfortunately, the dedicated algorithms are computationally demanding due

to the highly combinatorial mechanisms in signaling networks. Therefore, they

are limited to compute small intervention sets and fail to scale over large-scale
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networks. In general, multiple interventions are necessary to cope with robustness and

cellular complexity (Stelling et al. 2004). Moreover, previous work on the inference

of logical networks suggests that, if the inherent noise is considered, there are

multiple networks compatible with the experimental observations (Saez-Rodriguez

et al. 2009). Concretely, the mentioned limitations make it hard to prove that the

identified solutions are biologically robust to small perturbations of the system or

its environment. Thus, in order to overcome such limitations, more elaborate and

more powerful computational methods are needed towards large-scale systems and

robust solutions.

The question of scalability of computational methods for the identification or the

pruning of biological systems has already been successfully addressed with Answer

Set Programming (ASP; (Baral 2003)) in various settings, among them (Baral et al.

2004; Erdem and Türe 2008; Gebser et al. 2010; Ray et al. 2010; Gebser et al. 2011;

Videla et al. 2012). Of special interest is here ASP’s expressive power to address

problems of elevated complexity, in particular, for computing inclusion minimal

models. In the same direction as these papers, we provide a precise characterization

of the minimal intervention set problem relying on Kleene’s three-valued logic and

fixpoint semantics (similar to that of Fitting (1985)). We introduce an ASP encoding

to solve this problem and we evaluate its performance on four real-world and

biologically relevant benchmarks. 1 Interestingly, our fixpoint based characterisation

of biological network response is in line with the investigations of Inoue (2011; Inoue

and Sakama (2012) using different logic programming semantics for characterising

systems behaviour. To be more precise, Inoue uses in Inoue (2011) a two-valued logic

along with two-valued fixpoint semantics to characterise trajectories and stable states

of Boolean networks (by translating them into logic programs). Hence such logic

programming concepts appear to be appropriate tools for characterising these types

of networks. Moreover, Boolean constraint solving technologies offer a powerful

computational framework to face the highly combinatorial nature of signaling

networks.

In what follows, we assume some familiarity with ASP, its semantics as well as

its basic language constructs. A comprehensive treatment of ASP can be found

in Baral (2003; Gebser et al. (2012). Our encodings are written in the input language

of gringo 3 (Gebser et al. ).

2 Intervention set strategies

This section provides a formal characterization of intervention strategies, as treated

in Samaga et al. (2010). In doing so, we follow the popular approach to qualitative

modeling in biology (Kauffman 1969; Thomas 1973) in representing biological

networks as logical networks2 and associating biological species or compounds (eg.

receptors, kinases or phosphatases) with propositional variables. More formally, a

1 The encodings are available at: http://potassco.sourceforge.net/apps.html#interventions
2 We refrain from using the term Boolean network in view of our usage of three-valued semantics.
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Fig. 1. Exemplary directed hypergraph representation of a logical network. We refer the

reader to Klamt et al. (2009) for more details on hypergraphs and cellular networks.

logical network consists of a finite set V of propositional variables and a function

φ mapping each variable v ∈ V to a propositional formula φ(v) over V . We form

propositional formulas from V with the connectives ⊥, �, ¬, ∨, and ∧ in the standard

way. For illustration, let us consider the logical network reproduced from (Samaga

et al. 2010) in Figure 1. This network consists of the set V of species variables

{i1, i2, a, . . . , g, o1, o2} along with the function φ defined as:

φ =

⎧⎨
⎩

i1 �→ i1
i2 �→ i2

a �→ ¬d

b �→ a ∧ i1
c �→ b ∨ e

d �→ c

e �→ ¬i1 ∧ i2
f �→ e ∨ g

g �→ f

o1 �→ c

o2 �→ g

⎫⎬
⎭

Note that φ leaves the specification of the (input) variables i1 and i2 open.

The steady states of such a network are given by truth assignments yielding

identical values for v and φ(v) for all v ∈ V (although not all are biological

meaningful as we see below). Following (Samaga et al. 2010), we adapt a three-

valued setting relying on Kleene’s three-valued logic (Kleene 1950) and thus consider

truth assignments mapping formulas to truth values {t, f, u} according to Kleene’s

semantics. Clearly, two-valued assignments are restricted to range {t, f}. Observe

that any logical network has a trivial three-valued steady state obtained by assigned

u to all variables. In fact, the major constituents of intervention strategies can

be captured by means of partial two-valued assignments (designating the absence

or presence of certain species). We sometimes represent assignments extensionally

as sets, viz. {v �→ A(v) | v ∈ V }, for checking containment, difference, etc. To

avoid conflicts when composing assignments, we define A ◦ B = (A \ B) ∪ B where

B = {v �→ s | v �→ s ∈ B} and t = f, f = t, u = u.

For capturing the dynamics of a logical network (V , φ), we define the following

operator on truth assignments over V : 3

Ω(V ,φ)(A) = {v �→ A(φ(v)) | v ∈ V }.

3 The interested reader may notice the resemblance to Fitting’s three-valued operator (Fitting 1985).
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Among the (three-valued) steady states of (V , φ), we are interested in the fixpoint of

Ω(V ,φ) reachable from the “undefined assignment”. As with Fitting’s operator (1985),

this fixpoint is unique and can be computed in polynomial time.

To this end, we define the iterative variant of Ω(V ,φ) as

Ω0
(V ,φ)(A) = A and Ωj+1

(V ,φ)(A) = Ω(V ,φ)

(
Ωj

(V ,φ)(A)
)
.

In biological terms, a sequence (Ωj
(V ,φ)(A))j∈J represents the evolution of a system

starting in state A.

For capturing modifications to a logical network, (Samaga et al. 2010) puts

forward the notion of clamping variables to Boolean values, thereby overriding

their original specification: The logical network (V , φ|A) is obtained from (V , φ) by

clamping assignment A over V , if

φ|A(v) =

⎧⎨
⎩

� if A(v) = t

⊥ if A(v) = f

φ(v) otherwise

Given a network, the aim of an intervention strategy is to identify an intervention

that leads to a steady state satisfying a given goal under some side constraints. The

concepts of an intervention (I), goal (G), and side constraints (C) can be captured

as partial two-valued assignments (indicating the absence or presence of certain

species).

To be more precise, given a logical network (V , φ), an intervention scenario is a

pair (G,C) of partial two-valued assignments over V and an intervention set is a

partial two-valued assignment I over a set of intervention variables X ⊆ V .

Intervention Strategy

Let (V , φ) be a logical network, let (G,C) be an intervention scenario, and X ⊆ V

be a set of intervention variables.

An intervention set I over X is an intervention strategy for (G,C) wrt (V , φ),

if for some j � 0, we have

1. Ωj
(V ,φ|C◦I )

(Su) = Ωj+1
(V ,φ|C◦I )

(Su) where Su = {v �→ u | v ∈ V } and

2. G ⊆ Ωj
(V ,φ|C◦I )

(Su)

In words, Ωj
(V ,φ|C◦I )

(Su) is a steady state of the clamped network (V , φ|C◦I ) satisfying

the goal conditions in G. The important biological property of Ωj
(V ,φ|C◦I )

(Su) is that

each of its variables remains undefined unless there is a cause to make it true or

false.

The intervention set problem consists in deciding whether there is an intervention

strategy for an intervention scenario (G,C) wrt a logical network (V , φ). Roughly

speaking, the intervention set problem is a typical problem in NP : Once an

intervention is guessed, it can be verified in polynomial time.

As an example, consider the above logical network along with the intervention

scenarios (G1, C1) = ({o1 �→ f, o2 �→ t}, {i1 �→ t}) and (G2, C2) = ({a �→ t}, ∅). The

intervention set {b �→ f, e �→ f, f �→ t} satisfies both scenarios yielding the two

https://doi.org/10.1017/S1471068413000422 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000422


680 R. Kaminski et al.

steady states, respectively:

{i1 �→ t, i2 �→ u, a �→ t, b �→ f, c �→ f, d �→ f, e �→ f, f �→ t, g �→ t, o1 �→ f, o2 �→ t}
{i1 �→ u, i2 �→ u, a �→ t, b �→ f, c �→ f, d �→ f, e �→ f, f �→ t, g �→ t, o1 �→ f, o2 �→ t}.

Now, let us define further intervention strategies relying on a finite family

(Gj, Cj)j∈J of intervention scenarios and k some positive integer.

• A multi-scenario intervention strategy for (Gj, Cj)j∈J wrt (V , φ) is an interven-

tion strategy for each (Gj, Cj) wrt (V , φ) for each j ∈ J .

• A bounded intervention strategy for (Gj, Cj)j∈J wrt (V , φ) and k is a multi-

scenario intervention strategy for (Gj, Cj)j∈J wrt (V , φ) of cardinality k′ � k.

• A minimal bounded intervention strategy for (Gj, Cj)j∈J wrt (V , φ) and k is a

⊆-minimal multi-scenario intervention strategy for (Gj, Cj)j∈J wrt (V , φ) of

cardinality k′ � k.

In the following, we are particularly interested in enumerating all minimal bounded

intervention strategies. 4 We apply two different approaches to ASP solving. The

first is claspD, which can enumerate all subset minimal solutions in polynomial

space. The second one is hclasp, which utilizes (heuristic-driven) solution recording

and hence runs in exponential space. Given that the intervention set problem has

a potentially exponential number of solutions, both algorithms run in exponential

time. However, by using claspD, it is possible to ask more complex queries. We can

in principle put additional constraints on the solution candidates enumerating only

subset minimal solutions that have a certain property. This is not possible with

hclasp without embedding it into another algorithm (and then not in polynomial

space).

3 Encoding

3.1 Instance representation

Let (V , φ) be a logical network. We represent the variables V as facts over predicate

variable/1, namely variable(v) for all v ∈ V . Facts over predicate candidate/1

denote the intervention variables that can be part of an intervention set. This allows

us to control on which species interventions are permitted, for example one can

exclude interventions over constrained or goal variables.

Without loss of generality, we assume that all formulas mapped by φ are in

disjunctive normal form. Hence, φ(v) is a set of (dual) clauses and a clause a set of

literals. We represent formulas using predicates formula/2, dnf/2, and clause/3.

The facts formula(v,sφ(v)) map variables v ∈ V to their corresponding formulas

φ(v), facts dnf(sφ(v),sc) associate φ(v) with its clauses c ∈ φ(v), facts clause(sc,v,1)

associate clause c with its positive literals v ∈ c ∩ V , and facts clause(sc,v,-1)

associate clause c with its negative literals ¬v ∈ c. Note that each s(·) stands for

some arbitrary but unique name in its respective context here.

4 In Samaga et al. (2010), minimal bounded intervention strategies are called minimal intervention sets.

https://doi.org/10.1017/S1471068413000422 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000422


Minimal intervention strategies in logical signaling networks with ASP 681

Finally, we represent the set of scenarios (Gi, Ci) for 1 � i � n using predicates

scenario/1, goal/3, and constrained/3. The facts scenario(i) for 1 � i � n

denote the scenarios to consider. The facts goal(i,v,1) and constrained(i,w,1)

for positive goal literals v ∈ Gi ∩ V and positive constrained literals w ∈ Ci ∩ V and

facts goal(i,v,-1) and constrained(i,w,-1) for negative goal literals ¬v ∈ Gi

and negative constrained literals ¬w ∈ Ci denote the respective intervention goals

and side constraints in each scenario.

Listing 1 shows the instance representation of our toy example logical network

in Figure 1 together with the two intervention scenarios (G1, C1) = ({o1 �→ f, o2 �→
t}, {i1 �→ t}) and (G2, C2) = ({a �→ t}, ∅).

Listing 1. Toy example problem instance
1 variable(i1). variable(i2). variable(o2). variable(o1). variable(a).
2 variable(b). variable(c). variable(d). variable(e). variable(f).
3 variable(g).
4

5 candidate(i2). candidate(b). candidate(c). candidate(d).
6 candidate(e). candidate(f). candidate(g).
7

8 formula(a,0). formula(b,2). formula(c,1). formula(d,4). formula(e,3).
9 formula(f,6). formula(g,5). formula(o1 ,4). formula(o2 ,7).

10

11 dnf(0,5). dnf(1,6). dnf(1,0). dnf(2,3). dnf(3,7).
12 dnf(4,1). dnf(5,2). dnf(6,4). dnf(6,6). dnf(7,4).
13

14 clause(0,b,1). clause(1,c,1). clause(2,f,1). clause(3,a,1).
15 clause(3,i1 ,1). clause(4,g,1). clause(5,d,-1). clause(6,e,1).
16 clause(7,i2 ,1). clause(7,i1 ,-1).
17

18 scenario (1). scenario (2).
19

20 constrained (1,i1 ,1).
21

22 goal(1,o1 ,-1). goal(1,o2 ,1). goal(2,a,1).

3.2 Logic program

Next we describe our encoding for solving the minimal intervention set problem as

described in Section 2. Our ASP encoding is shown in Listing 2.

Listing 2. Logic program for solving the minimal intervention set problem
1 goal(T,S) :- goal(_,T,S).
2 goal(T) :- goal(T,_).
3 constrained(Z,E) :- constrained(Z,E,_).
4 constrained(E) :- constrained(_,E).
5

6 satisfy(V,W,S) :- formula(W,D), dnf(D,C), clause(C,V,S).
7 closure(V,T) :- goal(V,T).
8 closure(V,S*T) :- closure(W,T), satisfy(V,W,S), not goal(V,-S*T).
9

10 { intervention(V,S) : closure(V,S) : candidate(V) }.
11 :- intervention(V,1), intervention(V,-1).
12 intervention(V) :- intervention(V,S).
13

14 eval(Z,V,S) :- scenario(Z), intervention(V,S).
15 eval(Z,E,S) :- constrained(Z,E,S), not intervention(E).
16 free(Z,V,D) :- formula(V,D), scenario(Z),
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17 not constrained(Z,V), not intervention(V).
18

19 eval_clause (Z,C,-1) :- clause(C,V,S), eval(Z,V,-S).
20

21 eval(Z,V, 1) :- free(Z,V,D), eval(Z,W,T) : clause(C,W,T), dnf(D,C).
22 eval(Z,V,-1) :- free(Z,V,D), eval_clause(Z,C,-1) : dnf(D,C).
23

24 :- goal(Z,T,S), not eval(Z,T,S).
25

26 #const max =0.
27 :- max >0, max + 1 #count{ intervention(_) }.
28

29 #minimize { intervention(_) }.

Note that in the following we use 1 and −1 for truth assignments to t and f,

respectively. Furthermore, undefined variables are represented by the absence of

assignments to both t and f. In Lines 1-4 we define auxiliary domain predicates

used in the remainder of the encoding.

Lines 6-8 deserve closer attention since they allow us to reduce significantly the

search space of candidate solutions. We incorporate a preprocessing step introduced

in Samaga et al. (2010) that prunes variable assignments that can never be part of a

minimal intervention set. The idea is to inductively collect all assignments that could

be used to support a goal. First we gather all assignments that make a literal in a

clause true and associate it with variable of the associated DNF (Line 6). Starting

from the assignments that can satisfy a goal literal directly (Line 7), we inductively

consider variable assignments (Line 8) that can support the assignments collected

so far.

Let us illustrate this on our toy example. In order to satisfy goal(1,o2,1), one

would never consider to intervene variables f or g negatively. Since both reach o2

positively, only positive interventions on them could help. The same happens for

variable e. However, since e also reaches o1 positively and we have goal(1,o1,-1),

a negative intervention of e could help for this goal.

Next, we use a choice rule in Line 10 to generate candidate solutions. We

only choose interventions collected in the preprocessing step above. The integrity

constraint in Line 11 eliminates contradictory interventions. Whereas Line 12 projects

the intervention set to the intervened variables regardless of their signature. For

example, one could generate the intervention set consisting of intervention(e,1)

and intervention(c,-1).

Next, we describe in lines 14-15 which variables are clamped in the network accord-

ing to the side constraints C in each scenario and the interventions I , i.e., (V , φ|C◦I ).

Following the previous example, this will generate predicates eval(1,i1,1),

eval(1,e,1), eval(2,e,1), eval(1,c,-1) and eval(2,c,-1). The rule in Line 16

captures the remaining variables that have not been clamped i.e., predicates free/3.

Then in Line 19 we declare the fact that a conjunction evaluates to f if at least

one of the literals occurring in it evaluates to f. Afterwards, the rules in Lines 21

and 22 inductively propagate the truth values t and f in the standard way starting

from the clamped truth values. Exploiting inductive definitions is ASP, this allows

us to compute for each scenario the fixpoint of Ω(V ,φ|C◦I ). For our example, we can
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see how the positive intervention over e is propagated as follows. Since variable f

is not intervened, its formula (f �→ e ∨ g) described by predicates formula(f,6),

dnf(6,4), dnf(6,6), clause(4,g,1) and clause(6,e,1), is “free” in all scenarios,

i.e., free(1,f,6) and free(2,f,6). Further, given that we have dnf(6,6) related

only to clause(6,e,1) and e was intervened positively, the truth value for f is

propagated in all scenarios regardless of g, i.e., eval(1,f,1) and eval(2,f,1).

Analogously, truth values are propagated through all the network until predicates

eval/3 describe the fixpoint in every scenario.

Line 24 declares an integrity constraint to eliminate solutions that do not satisfy

all goals in each scenario. The statements in Line 26 and 27 allows us to optionally

bound the problem by considering only intervention sets up to a given size. And

finally, the minimize constraint in Line 29 denotes that we are interested in solutions

involving a minimal number of interventions.

3.3 Solving

Using a standard ASP solver such as clasp (Gebser et al. 2007), our encoding

will actually generate cardinality minimal models whereas we are interested in

inclusion minimal models. Towards this end, we evaluate two alternative solvers

derived from clasp, namely claspD (Gebser et al. 2013) and hclasp (Gebser et al.

2013). The disjunctive solver claspD together with the encodings of the metasp

framework (Gebser et al. 2011) can easily be used to compute inclusion minimal

models.5 On the other hand, hclasp is a recently developed solver incorporating

domain-specific heuristics into the input language allowing us to compute inclu-

sion minimal models too. Thus, in order to use hclasp, the minimize constraint

in the last line of the encoding in Listing 2 must be replaced by the rule in

Listing 3.

Listing 3. Changes to Listing 2 in order to use hclasp
29 _heuristic(intervention(V),false ,1) :- closure(V,S), candidate(V).

Together with hclasp’s option --heuristic=domain, the effect of the rule in Listing 3

is to tell the solver that atoms of the form intervention(V) must be chosen first and

assigned truth value f. This guarantees that the first answer set found is inclusion

minimal regarding the set of atoms in focus (Castell et al. 1996). To further ensure

inclusion minimality for all subsequent answer sets, a constraint must be added

excluding the previous answer set (cf. (Di Rosa et al. 2010)); this is invoked by

hclasp’s option --enum-mode record.

In Listing 4 we show the models found for the toy instance described in Listing 1

using claspD. Of course, the same models are found with hclasp using the fol-

lowing command line: gringo enc-hclasp.lp toy.lp | hclasp --heuristic=domain

--enum-mode record 0

5 The encodings are available at http://www.cs.uni-potsdam.de/wv/metasp/
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Listing 4. Computing all MISs for the toy instance
$ gringo --reify encoding.lp toy.lp |\

gringo - meta.lp metaD.lp metaO.lp <(echo "optimize (1,1,incl).") |\
claspD 0

claspD version 2
Reading from stdin
Solving ...
Answer: 1
intervention(i2 ,-1) intervention(b,-1) intervention(f,1)
Answer: 2
intervention(e,-1) intervention(b,-1) intervention(f,1)
Answer: 3
intervention(e,-1) intervention(b,-1) intervention(g,1)
Answer: 4
intervention(i2 ,-1) intervention(b,-1) intervention(g,1)
Answer: 5
intervention(b,-1) intervention(f,1) intervention(d,-1)
Answer: 6
intervention(b,-1) intervention(d,-1) intervention(g,1)
Answer: 7
intervention(g,1) intervention(c,-1)
Answer: 8
intervention(e,1) intervention(c,-1)
Answer: 9
intervention(f,1) intervention(c,-1)
SATISFIABLE

Models : 9
Time : 0.034s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
CPU Time : 0.010s

4 Benchmarks

We evaluate the performance and scalability of our ASP solution over four real-world

and biologically relevant benchmarks (Table 1). Three of these benchmarks (EGFR,

EGFR multiple and TCR) were used in Samaga et al. (2010) and their corresponding

logical networks were recently published (Saez-Rodriguez et al. 2007; Samaga et al.

2009). Further, we also use a larger unpublished logical network (TBH6b) provided

by Axel von Kamp and Steffen Klamt. While the authors in Samaga et al. (2010)

restricted their study to a maximum cardinality of 3, herein we extend this limitation

to a maximum cardinality of 10 or no limit at all. For each case we report the number

of ⊆-minimal intervention sets (MISs) and CPU time in seconds for each solver.

Computations were run on a MacBook Pro, Intel Core i7, 2.7 GHz and 4 GB of

RAM using gringo-3.0.3 together with claspD-2 and hclasp, respectively. In Table 1

we describe our benchmark problem instances. For each case we report the number

of variables (i.e. species) in the logical network, the number of intervention scenarios,

the number of intervention constraints, the number of intervention goals, and the

number of candidate intervention sets. The number of candidate intervention sets

is computed as follows. Let n be the number of variables that could be intervened

positively and negatively. Let m be the number of variables that could be intervened

either positively or negatively, but not both. Then, the number of intervention sets

is given by 3n × 2m. We note that for EGFR, TCR and TBH6b interventions are

forbidden over constrained and goal variables, whereas for EGFR multiple this is not

https://doi.org/10.1017/S1471068413000422 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000422


Minimal intervention strategies in logical signaling networks with ASP 685

Table 1. Benchmark instances of the multi-scenario intervention set problem

Instance Variables Scenarios Side constraints Goals Candidate MISs

(Gj, Cj)j∈J wrt (V , φ) |V | |J|
∑

j∈J |Cj |
∑

j∈J |Gj |

EGFR 103 1 28 2 313 × 219

EGFR multiple 103 34 974 408 352 × 215

TCR 94 1 17 12 335 × 228

TBH6b 203 1 17 3 385 × 224

Table 2. MISs calculation up to a given size (k) or unbounded (∞) with a timeout

set to 1000 sec. For each instance we report the number of intervention sets (I) and

CPU time (sec) of both, claspD and hclasp

EGFR EGFR multiple TCR TBH6b

k I claspD hclasp I claspD hclasp I claspD hclasp I claspD hclasp

1 15 0.02 0.00 0 0.86 0.07 0 0.04 0.00 0 0.75 0.00

2 21 0.11 0.00 0 0.93 0.08 0 0.05 0.00 0 0.81 0.00

3 21 0.13 0.00 8 1.15 0.10 7 0.05 0.00 6 0.92 0.00

4 21 0.14 0.00 38 11.16 0.15 26 0.36 0.03 6 18.00 0.00

5 21 0.17 0.00 74 41.57 0.21 1196 2.04 0.08 6 17.40 0.00

6 21 0.16 0.00 83 73.14 0.19 4290 60.38 0.37 15 20.28 0.00

7 21 0.16 0.00 83 90.66 0.20 7258 198.19 0.35 15 47.19 0.00

8 21 0.16 0.00 83 90.56 0.24 8776 465.67 0.75 24 52.11 0.01

9 21 0.18 0.00 83 88.95 0.25 9316 655.22 1.09 207 90.67 0.04

10 21 0.19 0.00 83 84.60 0.23 9704 669.64 0.94 1248 667.85 0.23

∞ 21 0.13 0.00 83 91.83 0.19 13016 512.52 1.19 -a - -

a Both solvers have reached a timeout for this case, however their behaviors are very different. After
1000 seconds, claspD found only 648 models whereas hclasp found 894483 models

the case (there are no forbidden variables). This relaxation is necessary in order to

reproduce the results reported in Samaga et al. (2010) and compare both methods.

Nonetheless, it worth noting that there are no solutions satisfying the 34 scenarios.

In fact, depending on the application at hand, finding no solution could be more

interesting than relaxing the problem. In Table 2 we show the performance over the

four problem instances. First, we were able to compute all MISs of up to size 10 for

all instances regardless of the solver used. This represents a significant improvement

compared to previous approaches limited in practice to compute intervention sets

having maximum cardinality of 3 or 4. Moreover, for EGFR, EGFR multiple and

TCR we were able to solve the unbounded problem, i.e. k = ∞. That is, for the

mentioned instances, we are able to completely characterize all feasible inclusion

minimal intervention sets. Further, while for k � 4 the difference between claspD and

hclasp may not be very evident, for 5 � k � 10 computation times for claspD tend to

grow significantly whereas computation times for hclasp remain relatively constant.

Finally, for the unbounded case of TBH6b where we found a timeout after

1000 seconds, it is interesting to note the different behavior of each solver (see

footnote in Table 2). One reason for the worse performance of claspD is related to
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the way metasp implements subset minimization. Currently, for non-tight programs,

the encoding of inclusion minimality in metasp leads to a quadratic blowup in the

propositional program passed to claspD. Compare with the EGFR instance where

the underlying network is acyclic and hence the resulting propositional program is

tight. The performance of claspD is better on this instance. Overall, hclasp’s solution

recording based algorithm appears to be the better choice for enumerating subset

minimal answers.

5 Discussion and conclusion

Logic modeling is an emerging qualitative approach to capture mechanistic behavior

in large-scale biological systems. Despite of its relative simplicity, it allows for ad-

dressing relevant problems related to drug target identification, experimental design,

and diagnosis. In this context, finding minimal intervention strategies in a logic

signaling network with desired outcomes leads to challenging combinatorial problems

that require advanced solving technologies. Previous work on this subject consists

of dedicated algorithms and special purpose search space reduction techniques for

coping with combinatorial explosions. In fact, in practice, such algorithms are limited

to searching intervention sets having only a small number of interventions (eg. � 3).

In this work, we have provided a precise characterization of the minimal inter-

vention set problem relying on Kleene’s three-valued logic and fixpoint semantics

(close to traditional logic programming concepts). In this context, our fixpoint

characterization allows us to capture the steady states of a logical network following

from a set of clamped values. We have proposed an ASP encoding for this problem

and we have evaluated its performance using real-world biological benchmarks.

Negation by default and the recursive definition of reachability make of ASP a very

suitable framework for this problem. For addressing our problem’s complexity, we

have used and compared the ASP solvers claspD and hclasp.

Our ASP encoding incorporates a search space reduction based on the interaction

graph underlying a logical network (Samaga et al. 2010). This can be exploited during

the grounding phase, significantly reducing the number of candidate solutions. In

fact, we considered also other special purpose techniques from the aforecited work

but did not observe any improvements in performance on the available instances.

Experiments have shown that our approach outperforms the previous dedicated

algorithms in up to four orders of magnitude (for small number of interventions

(� 3) still feasible for the algorithm). This was not very surprising since such

algorithms are based on a standard breadth-first search using additional techniques

for search space reduction. More importantly, we are able to search for significantly

larger intervention sets or even solve the unbounded problem (ie. no limit in the

number of interventions). While considering a small number of interventions the

number of solutions (i.e. intervention sets) is in the order of tens, with a larger

number of interventions we have found thousands of feasible solutions. Furthermore,

being able to solve the unbounded problem allows us to completely characterize the

set of solutions.
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Nowadays, in signaling networks, large-scale (> 10) interventions combining

different inhibitors can be considered as a long-term technological perspective.

Nevertheless, in 2 out of 4 benchmarks (EGFR and EGFR mutiple), we did not

find intervention sets of size bigger than 10. This suggests that extending the set of

interventions may not be interesting for such models. Similarly, for the remaining

benchmark where we have solved the unbounded problem (TCR), ∼ 70% of the

minimal intervention sets have size smaller than 10. This provides also a useful

information on the flexibility of the system. On the contrary, knowing that a large

number of interventions are required to reach certain state could help to understand

(at least theoretically) the systems’ robustness. Altogether, being able to compute

both small and large admissible intervention sets, appears as an interesting and

relevant feature of our approach.

Both computational and biological perspective tracks are open. On the computa-

tional side, a precise estimation of the empirical complexity appears to be non trivial

and very specific to each instance. Given a problem instance, the number of candidate

solutions can be computed analytically. However, experiments have shown that this

is not the only parameter determining the empirical complexity. The number of

goal variables and their location in the logical network, the number of intervention

scenarios, and topological properties of the network may have an impact on the

computational efforts required in practice. More generally, it will be interesting to

investigate in how far the employed concepts from logic programming furnish an

adequate and general tool for addressing problems in (Boolean) networks, as also

indicated by the work of Inoue and Sakama in Inoue (2011; Inoue and Sakama

(2012). On the biological side, in the light of such a large number of solutions,

the way to select among them arises. In general, when the inherent noise is taken

into account, several logical networks can describe a biological system equally (or

similarly) well (Saez-Rodriguez et al. 2009). Thus, one could extend the intervention

set problem to a family of plausible logical networks. This way, we would reduce

the number of solutions by selecting the more robust of them. That is, intervention

sets satisfying each scenario in all networks.
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