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In this paper, we are interested in perturbed vortices under the influence of a wall
or ground plane. Such flows have relevance to aircraft wakes in ground effect, to
ship hull junction flows, to fundamental studies of turbulent structures close to a
ground plane and to vortex generator flows, among others. In particular, we study
the vortex dynamics of a descending vortex pair, which is unstable to a long-wave
instability (Crow, AIAA J., vol. 8 (12), 1970, pp. 2172–2179), as it interacts with
a horizontal ground plane. Flow separation on the wall generates opposite-sign
secondary vortices which in turn induce the ‘rebound’ effect, whereby the primary
vortices rise up away from the wall. Even small perturbations in the vortices can
cause significant topological changes in the flow, ultimately generating an array of
vortex rings which rise up from the wall in a three-dimensional ‘rebound’ effect.
The resulting vortex dynamics is almost unrecognizable when compared with the
classical Crow instability. If the vortices are generated below a critical height over
a horizontal ground plane, the long-wave instability is inhibited by the wall. We
then observe two modes of vortex–wall interaction. For small initial heights, the
primary vortices are close together, enabling the secondary vortices to interact with
each other, forming vertically oriented vortex rings in what we call a ‘vertical rings
mode’. In the ‘horizontal rings mode’, for larger initial heights, the Crow instability
develops further before wall interaction; the peak locations are farther apart and the
troughs closer together upon reaching the wall. The proximity of the troughs to each
other and the wall increases vorticity cancellation, leading to a strong axial pressure
gradient and axial flow. Ultimately, we find a series of small horizontal vortex rings
which ‘rebound’ from the wall. Both modes comprise two small vortex rings in each
instability wavelength, distinct from Crow instability vortex rings, only one of which
is formed per wavelength. The phenomena observed here are not limited to the above
perturbed vortex pairs. For example, remarkably similar phenomena are found where
vortex rings impinge obliquely with a wall.

Key words: vortex dynamics, vortex instability, vortex interactions

1. Introduction
We study the approach of a vortex pair to a wall, in the case where the vortices

are perturbed by a long-wavelength instability. The instability takes the form of a

† Email address for correspondence: dja222@cornell.edu

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

11
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://orcid.org/0000-0002-0172-7880
mailto:dja222@cornell.edu
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2017.114&domain=pdf
https://doi.org/10.1017/jfm.2017.114


340 D. J. Asselin and C. H. K. Williamson

sinusoidal perturbation along the span of the vortices. This causes some regions of
the vortex to encounter the wall before other regions, leading to dramatic changes in
the vortex topology and the generation of many small-scale coherent structures. While
we specifically examine vortices subject to the long-wave instability, the results we
present are relevant to many flows in which vortices experience small perturbations
close to a boundary, such as vortex rings approaching a boundary obliquely or initially
two-dimensional vortices approaching a wavy wall, among other examples.

The study of vortex–wall interactions has relevance to many practical flows in both
fundamental fluid mechanics and practical engineering applications. The presence of
coherent vortical structures is vital to the energy cascade in turbulent flows, as is
discussed extensively in the reviews of Cantwell (1981), Robinson (1991) and Panton
(2001). Furthermore, a vortex whose axis is parallel to a bounding wall generates a
boundary layer at the surface. As fluid is pushed between the vortex and the wall, this
boundary layer is subject to an adverse pressure gradient and can separate, rolling up
into a secondary vortex, as shown by Harvey & Perry (1971). The presence of the
secondary vortex can lead to distinctly complex dynamics. In fact, experiments have
demonstrated that structures resembling vortex rings can exist in the boundary layer
and evolve into much more complex vortical structures (Chu & Falco 1988).

The most well-known application of such a flow is the vortex wake generated
by an aircraft, which is the subject of an extensive review by Spalart (1998).
All wings generating lift produce a sheet of streamwise vorticity in their wake
which ultimately rolls up into a strong counter-rotating vortex pair, although the
near-wake can comprise other vortex configurations. This trailing vortex phenomenon
is particularly important in the context of airport operations, where many large
aircraft operate in close proximity to each other and to the ground. Small aircraft
following heavy transport-class aircraft for takeoff and final approach are subject
to uncommanded rolling moments induced by the rotation of these trailing vortices,
which can, in some cases, pose a significant hazard. The need to avoid such situations
leads to constraints on runway and airport capacity.

In some cases, vortices near boundaries are used to modify aircraft performance
rather than pose a hazard. Vortex generators are positioned on aircraft wings in order
to adjust their stall behaviour by manipulating the turbulent boundary layer, thereby
delaying separation. Beyond aviation, the interaction of vorticity with surfaces is
relevant to any situation in which streamwise vorticity is generated near solid bodies.
The flow around submersible vehicles and their appendages and control surfaces is
one such application, and research into methods of accelerating the destruction of the
vortex wake in order to enhance stealth has been conducted (Quackenbush, Bilanin
& McKillip 1996).

Counter-rotating and co-rotating vortex pairs are subject to several instabilities,
which have recently been reviewed by Leweke, LeDizès & Williamson (2016). There
have been a considerable number of studies of such flows due to their practical
aerodynamic applications. The well-known Crow instability (Crow 1970) is often
observed behind real aircraft due to the presence of condensation trails at high
altitudes. This phenomenon causes a pair of initially straight vortex tubes to become
sinusoidally displaced in an axisymmetric fashion with a wavelength several times
that of the vortex spacing (see figure 1a) and eventually to undergo a reconnection
process. Ultimately, a periodic series of vortex rings is formed. Reconnection has been
studied computationally by a number of authors, including Melander (1988), Melander
& Hussain (1988) and Shelley, Meiron & Orszag (1993), analysed by Saffman (1989)
and reviewed by Kida & Takaoka (1994). The Crow instability has also been observed
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(a) (b)

FIGURE 1. The principal instabilities associated with a counter-rotating vortex pair.
(a) Long-wave Crow instability. (b) Short-wave elliptic instability (Leweke & Williamson
2011). (It should be noted that the images are not to the same scale.)

in experiments performed in the laboratory (Leweke & Williamson 2011), as shown
in figure 1(a). Experimental studies show remarkable similarity to full-scale aircraft
wakes observed in the atmosphere, despite several orders of magnitude difference in
Reynolds number. In this work, we observe significant changes in vortex topology
upon interaction of the Crow instability with a solid surface; however, the extent to
which these changes exist at higher Reynolds numbers is presently unknown.

Crow’s instability theory was later extended to unequal-strength vortex pairs, which
were also shown to be unstable for any ratio of vortex circulations (Klein, Majda
& Damodaran 1995). This situation commonly arises when real aircraft deploy flaps
during takeoff or landing and has been studied numerically by Crouch (1997). Crouch
models the vortex wake as a system of two vortex pairs: for each wing, one vortex
is generated by the wingtip and one by the flap. This vortex system exhibits both
long-wavelength and short-wavelength instabilities which are dependent on the vortex
spacing and core size and the circulation ratio between the vortices in each pair. This
scenario has also been examined experimentally by Ortega, Bristol & Savaş (2003),
where a wing equipped with adjustable flaps was towed in a towing tank. The flaps
could be configured in a variety of ways to produce vortices of different strengths
relative to vortices generated at the wingtip. Several scenarios emerge: in one case,
the flap vortex deforms into a series of Ω-shaped loops. Ultimately, these loops can
reconnect with part of the tip vortex, yielding a series of vortex rings.

In addition to the long-wavelength Crow instability, counter-rotating vortex pairs
are also subject to an instability of shorter wavelength. Widnall, Bliss & Tsai (1974)
found that perturbations of a more complex structure can cause deformations within
the vortex core to grow. This growth occurs when the rotation rate of the plane
containing the perturbation caused by its self-induced motion and those effects induced
by the presence of the other vortex becomes zero. Subsequently, the perturbation is
amplified by the strain rate field of the other vortex. This instability is often referred
to as an elliptic instability, since two-dimensional flows with elliptic streamlines
become unstable in the presence of three-dimensional perturbations, as demonstrated
by Bayly (1986), Pierrehumbert (1986) and Waleffe (1990). This instability was
observed experimentally in the case of vortex pairs by Leweke & Williamson (1998),
as shown in figure 1(b), who also discovered that the instability develops with a
distinct anti-phase relationship between the two vortices.

In the present work, we consider the approach of a counter-rotating vortex pair to
a wall. Line vortex pairs were investigated by Lamb (1932), where he calculated that
the vortices would move away from each other along hyperbolic trajectories as they
approach a wall. Dee & Nicholas (1968) measured the actual trajectories of aircraft
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wake vortices and observed that they appeared to rebound away from the surface
instead of continuing on an ideal hyperbolic trajectory. This effect was explained by
Harvey & Perry (1971) and further analysed by Peace & Riley (1983). The rebound of
the primary vortices is a consequence of the generation of secondary vorticity at the
wall. A vortex approaching a wall creates a boundary layer between itself and the wall
that is subject to an adverse pressure gradient. The vorticity contained in the boundary
layer then separates and rolls up into a discrete secondary vortex of the opposite sign,
which then induces an upward velocity on the primary vortices, significantly changing
their trajectories.

These secondary vortices are themselves subject to an instability of the Crow
type in which the entire vortex tube is displaced. This instability was simulated by
Luton & Ragab (1997), where they observed the weaker secondary vortex to become
wrapped around the stronger primary vortex and concluded that the instability was
of the elliptic type. Other research groups including Moet (2003), Georges et al.
(2006) and Duponcheel et al. (2007) reached the same conclusion. Experimental
evidence of the existence of this secondary vortex instability was provided by Harris
& Williamson (2012), where they observed bending of the entire secondary vortex
tube. Comparison of the measured instability wavelength with that predicted from
stability theory indicates that, at low Reynolds number, a displacement-type instability
mode is principally responsible for the vortex dynamics rather than a higher-order
elliptic instability, although it is possible that an elliptic instability might become
dominant at early times at higher Reynolds number, as discussed in Williamson et al.
(2014) and Leweke et al. (2016).

The formation of secondary vorticity can have a significant influence on the later
evolution of the primary vorticity. The rebound effect and the above instabilities are
the most obvious initial phenomena to be found in this flow. In fact, this effect can
occur more than once, as demonstrated through computations by Orlandi (1990), who
showed that the secondary vorticity can be advected around the primary vortex for
more than one revolution. Kramer, Clercx & van Heijst (2007) studied the interaction
of a vortex dipole with a wall and demonstrated that multiple eruptions of secondary
vorticity from the wall can occur, which strongly influence the trajectory of the
primary vortex pair. A similar effect has also been observed for the collision of a
vortex ring with a wall, in which multiple secondary rings are generated and then
ejected from the wall (Walker et al. 1987), in some cases forming loop-like structures.
The wavy instability of the secondary vortex ring was also observed numerically by
Swearingen, Crouch & Handler (1995). Further studies of vortex rings in wall effect
were conducted by Lim (1989), in which the collision was oblique, meaning that
the ring trajectory was not normal to the boundary. Rather than expanding in an
axisymmetric fashion, as is the case for a normal (perpendicular) collision with the
wall, the ring experienced significant axial flow away from the region of first contact
with the wall (i.e. the location where secondary vorticity is first generated). Ultimately,
one observes a secondary vortex loop lifting up away from the wall. This structure
contains many features that bear a remarkable resemblance to the present experiments
involving counter-rotating vortex pairs subject to the long-wave instability in wall
effect.

The experiment conducted by Lim (1989), in which an oblique collision of a vortex
ring with a wall was studied, was also simulated by Verzicco & Orlandi (1994). In
their simulation, a similar ejection of a secondary vortex structure was observed,
which they explained as a consequence of the interaction of vortex stretching and
viscous annihilation. The part of the ring interacting with the wall first experiences
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a high rate of stretching, which leads to a local intensification of vorticity and the
generation of secondary vorticity at small scales. The secondary vorticity annihilates
the primary vortex through viscous vorticity cancellation. Ultimately, enough vorticity
is cancelled in this region to produce a locally high pressure relative to the rest of the
ring. Fluid is then advected by this pressure gradient to the part of the ring furthest
from the wall, where it coalesces into a loop-like structure.

The manipulation of secondary vorticity might also serve as a practical method for
accelerating the decay of the primary vortices. From our own experiments, we see
that a rapid decrease in circulation occurs upon wall interaction. Stephan, Holzäpfel
& Misaka (2013) have simulated the approach of a counter-rotating vortex pair to
a wall containing a large rectangular obstacle. The obstacle is positioned such that
it transects both descending vortices. Secondary vorticity is produced there first
and then forms an Ω-shaped loop. Simultaneously, the circulation of the primary
vortices decreases dramatically as a result of the primary–secondary interaction. Other
researchers have sought to engineer the vortex wake to keep the trailing vortices in
a region of high strain (Rennich & Lele 1999). For example, if the wake trailing
an aircraft equipped with flaps is modelled with four vortices, two shed from the
wingtips and two from the flaps, the inboard flap vortices could be kept in the strain
field of the wingtip vortices by adjusting their relative strengths. If this is achieved,
a Crow-type instability can grow very rapidly. The strain field of these perturbed
vortices then induces a similar displacement-type perturbation on the stronger wingtip
vortices, leading to accelerated destruction of the vortex wake. Analysis by Fabre &
Jacquin (2000) shows that the growth rate can be much larger than that of the Crow
instability alone. Crouch (2005) also describes several schemes involving purposeful
oscillations in the lift distribution that can be used to accelerate vortex decay. The lift
oscillations cause perturbations in the spatial position of the trailing vortices which
cause them to approach each other. If the frequency of the lift oscillations is properly
selected to excite a long-wave instability, then the vortices will pinch off into a series
of vortex rings. Measurements indicate that this configuration poses much less risk
to aircraft at closer following distances (Crouch 2005).

The present study specifically examines the interaction of a counter-rotating vortex
pair subject to the Crow instability with a wall. The vortex pair is displaced from
its initial position and develops distinct ‘peak’ and ‘trough’ regions (see figure 2)
before it encounters a solid boundary. We present experimental methods in § 2,
followed by § 3, which provides overviews of two fundamental flows, namely the
Crow instability and the interaction of a two-dimensional vortex with a wall. These
fundamental base flows are later compared with the behaviour of a counter-rotating
vortex pair in the presence of a wall. In § 4, we present the topological changes
produced when the vortices subject to the Crow instability encounter a solid boundary.
These changes include the reorganization of the vorticity into a series of smaller
rings which then rebound from the surface. The presence of these rings is observed
from flow visualization experiments and confirmed by particle image velocimetry
measurements. In § 5, we present quantitative measurements of parameters describing
the evolution of the vortices as they interact with the wall. These measurements
include the trajectories followed by the vortices, the amplitude and angular orientation
of the instability, and the circulation as a function of time at several axial positions
along the vortex. Axial flow along each vortex tube is an important feature of the
phenomena we describe, and we discuss evidence for the presence of this flow and
describe its driving mechanisms. Importantly, the phenomena we observe are not
limited to the flow studied, and, in § 6, we discuss other flows involving perturbed
vortices close to a wall which develop structures similar to those associated with the
long-wave instability in wall effect. Conclusions follow in § 7.
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Peak

Peak

Trough

Trough

FIGURE 2. Schematic showing the approach of a vortex pair subject to the Crow
instability to a wall. The Crow instability causes an initially straight vortex pair to develop
a sinusoidal waviness with distinct ‘peak’ and ‘trough’ regions in a plane inclined at
approximately 45◦ to the horizontal.

2. Experimental details
Experiments were conducted at Cornell University’s Fluid Dynamics Research

Laboratories using a vortex generator facility. This facility was originally constructed
by Leweke, as described in Leweke & Williamson (1998), and has since been
modified to improve the reliability and repeatability of the experiments. The facility
consists of a rectangular glass water tank of dimensions 180 cm × 45 cm × 60 cm.
A schematic of the facility is shown in figure 3. A horizontal pair of aluminium
flaps, which are hinged to a rectangular base and driven by a stepper motor, is
lowered into the water using a separate system of lead screws and stepper motors.
The flaps are 170 cm long, so that they extend to almost the entire length of the
water tank. In order to ensure repeatability of the experiment, the Crow instability
is triggered by including a very small (1 mm amplitude) sinusoidal perturbation on
the lower edges of the flaps (see also Leweke & Williamson 2011). The perturbation
causes the peaks and troughs of the instability to develop in the same spanwise
locations during each experiment, allowing the accurate placement of light sheets
and cameras for investigation of flow features. In addition, the facility includes a
horizontal transparent acrylic ground plane whose vertical position and angle can be
adjusted using manual lead screws. The vortex pair encounters this horizontal wall
during its descent in the tank. In each experiment, care was taken to ensure that the
vortex generation process was unaffected by the presence of the wall. We determined
the minimum height above the ground plane at which this is true, and all experiments
were begun above this height.

The counter-rotating vortex pair is formed by closing the flaps (shown in figure 3)
underwater. Fluid is forced out through the gap between the flaps as they are closed,
and the shear layers generated roll up into a vortex pair. The profile used to define
the motion of the edges of the flaps was defined empirically by Leweke & Williamson
(2011) in order to produce laminar vortex pairs and is shown in figure 4(a). Helpfully,
the vortex pairs produced by this facility are well modelled by a superposition of
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Flaps

Water tank

Ground plane

B

S

FIGURE 3. Schematic of the vortex generator facility. S is the distance separating the
bases of the flaps, B is the length of the flaps, and θ is the angle of flap rotation, measured
from the vertical.
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FIGURE 4. (a) The motion profile used for closing the flaps, based on that developed by
Leweke & Williamson (2011): θ , the angle of flap rotation from the vertical, is shown
as a function of time t. (b) A least-squares best fit of the superposition of two Gaussian
vortices to the measured azimuthal velocity profile, vθ .

two Lamb–Oseen (Gaussian) vortices, as shown in figure 4(b). The azimuthal velocity
profile for a Lamb–Oseen vortex is given by

vθ(r)= Γ

2πr

[
1− exp

(
− r2

a2

)]
, (2.1)

where Γ is the vortex circulation, r is the distance measured from the vortex centre
and a is a parameter characterizing the vortex core size.
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Longitudinal plane

Horizontal plane

Ground plane

Transverse plane

Counter-rotating
vortex pair

Flaps

FIGURE 5. Schematic showing the various planes in which light sheets were positioned
for PIV experiments.

This flow was investigated using several techniques, including both fluorescent
dye visualization and particle image velocimetry (PIV). For flow visualization, a
mixture of fluorescein dye and water is painted onto the flaps prior to running the
experiment. This dye then marks the primary vorticity that is generated by the flaps.
Illumination, which could be either of the entire flow or of a particular cross-section,
is provided by a 5 W Coherent Innova 70 argon-ion laser. In addition, the secondary
vorticity generated at the wall can also be visualized by first pooling a fluorescein
dye mixture on the ground plane, as discussed in Harris & Williamson (2012). A
similar technique was used by Lim (1989) for his vortex ring studies. This technique
is particularly powerful in that it allows selective visualization of either the primary or
secondary vortices or both. Images of the flow visualization experiments are acquired
by computer-controlled digital single lens reflex (DSLR) cameras at a rate of 1 Hz.

For PIV measurements, the tank was seeded with particles (Potters’ Industries
Sphericel 110P8, mean diameter 10 µm and density 1.10 g cm−3) prior to running
the experiment. Illumination of various cross-sections was again supplied by a 5 W
argon-ion laser which was used with a cylindrical lens to create a 3 mm thick light
sheet. Images were acquired by a Kodak MegaPlus 1 megapixel digital camera at a
rate of 15 Hz. Pairs of images were then processed by PIVLab software (Thielicke
2014; Thielicke & Stamhuis 2014a,b) in order to compute the velocity fields. A
typical velocity field measures 800 by 500 pixels and contains approximately 100
by 60 velocity measurements, spaced approximately 1.5 mm apart. For orientation,
figure 5 shows the various cross-sections used for PIV measurements and flow
visualizations in this study. They will be referred to repeatedly in subsequent sections.

Velocity fields obtained from PIV experiments were then further processed to obtain
other parameters of interest. Vortex position was measured by tracking the point of
maximum vorticity over time. Other parameters, such as the angular orientation of
the plane containing the instability and the amplitude of the instability, could then
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Light sheets

Peak

2A

Trough

Peak

Trough

b

(a) (b) (c)

FIGURE 6. The measurement technique used to determine the instability amplitude and the
angle of the plane containing the instability. (a) Position of dual light sheets at the peak
and trough. (b) An example image acquired using the dual-light-sheet technique, showing
both peak and trough cross-sections. (c) Schematic illustrating the relevant geometrical
parameters, where A is the amplitude, b is the vortex separation and θ is the angle of the
plane containing the instability.

be derived. Circulation was computed by taking the line integral of the velocity field
around a contour representing 5 % of the maximum measured vorticity.

As the Crow instability produces a vortex pair with defined ‘peak’ and ‘trough’
locations (figure 2), PIV and flow visualization experiments were conducted at both
of these cross-sections. Figure 6(a) shows the position of the light sheet relative to
the vortex pair for each of these configurations. In addition, some experiments were
conducted with light sheets positioned at the peak and the trough simultaneously,
making use of a beam splitter. These dual-light-sheet experiments were previously
used by Leweke & Williamson (2011), and greatly simplified the task of tracking
the relative positions of the two cross-sections. In particular, these dual-light-sheet
experiments are especially helpful for determining the amplitude of the instability,
as both the peak and the trough cross-sections are made visible simultaneously. The
amplitude can then be computed by simply noting their relative positions in the
photographs. Figure 6(b) shows an example flow visualization image obtained in this
way.

The time for each experiment is measured from the first motion of the flaps and
is non-dimensionalized by the time required for the vortex pair to descend a distance
equal to one initial vortex spacing. Therefore, the non-dimensional time t∗ is given by

t∗ = t
Γ0

2πb2
0
, (2.2)

where t is the dimensional time, Γ0 is the initial vortex circulation and b0 is the initial
vortex spacing.

Other parameters of interest in these experiments include the Reynolds number
based on circulation, Re = Γ0/ν, where Γ0 is the initial circulation and ν is the
kinematic viscosity of water. The ratio of initial core size to initial vortex spacing,
a0/b0, is also relevant. In all experiments presented in this study, Re ≈ 1000 and
a0/b0 ≈ 0.4. The initial height h0 of the flap edges above the ground plane was the
principal variable parameter, and experiments were conducted for values of h0/b0
ranging from 3 to 12. In addition, the extent to which the Crow instability has
developed was characterized by measuring the amplitude of the instability, A, at a
height of b0 above the wall. Using this parameter, experiments were conducted for
A/b0 between 0.10 and 0.60.
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(a) (b)

(c) (d )

Reconnection

Peak Trough

FIGURE 7. Development of the Crow instability, seen in plan view: (a) t∗ = 2.96;
(b) t∗= 6.52; (c) t∗= 7.70; (d) t∗= 11.0. The vortex pair is moving towards the observer.

In order to characterize the uncertainty associated with measurements of circulation
and other quantities, multiple experiments with the same initial conditions were
conducted. The 95 % confidence interval for the value of Γ when the vortex pair is
not in wall effect (t∗ ≈ 3) is ±2.8 %. In wall effect, at t∗ ≈ 8, the uncertainty for Γ
is ±4.4 %. The variation in initial vortex spacing b0 is ±4.4 %, and the variation in
vortex core size a0 is ±3.5 %. For the amplitude of the instability, the uncertainty
out of wall effect (t∗ ≈ 3) is ±6.2 %, and it is ±6.6 % in wall effect (t∗ ≈ 8).

3. Two base studies in vortex dynamics

Before discussing the effects of wall interaction on the development of a long-wave
instability, it is important to appreciate the key features of two fundamental scenarios.
First, we study the free development of the Crow instability in the absence of a wall.
Second, we examine the interaction of 2D straight vortices with a boundary.

We present a visual overview of the developing Crow instability in figure 7, in
the manner of Leweke & Williamson (2011). The initially straight vortex tubes
are displaced from their original positions. This displacement occurs when the
rotation rate of the plane containing a perturbation is zero. This condition is met for
perturbations located in a plane oriented at approximately 48◦–50◦ to the horizontal.
As shown by Crow (1970), in order to achieve instability, three rotational effects are
balanced in this plane: rotation of a vortex due to self-induction, rotation due to the
mean strain field of the other vortex and rotation due to the perturbation strain field
of the other vortex. In this ‘frozen’ plane orientation, the strain induced by the other
vortex causes the perturbation amplitude to grow exponentially.

As the wavy vortices approach each other at the trough cross-section, vorticity
cancellation occurs, leading to a decrease in circulation and an increase in pressure
at this location. The pressure gradient established by this process drives flow in the
axial direction from the troughs to the peaks of the wavy vortex tube, as shown in
figure 7. (Evidence for this pressure gradient in the case of wall interaction is shown
in § 5.2.) Reconnection occurs between the two vortices at the troughs (Leweke &
Williamson 2011), leaving a periodic series of vortex rings linked by weak bridges,
as shown in figure 7(c). These bridges of vorticity retain only approximately 10 % of
their original circulation.
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FIGURE 8. Circulation of a vortex pair subject to the unbounded Crow instability,
measured at the peak and trough cross-sections as a function of time.

We show in figure 8 the circulation measured at the peak and trough cross-sections
for the Crow instability using the technique described in § 2. The circulation at
the peak remains relatively constant throughout the evolution of the instability,
showing only minor and gradual decay due to diffusion. The circulation at the trough
cross-section, however, decreases rapidly as the two vortices are forced into close
proximity in this region. These data will be contrasted with measurements for the
same experiment conducted with a ground plane installed in § 5.

As a second basic flow with which comparisons can be made, we consider the case
of a two-dimensional counter-rotating vortex pair interacting with a solid boundary.
For these experiments, we ensure that the vortex pair remains two-dimensional for a
reasonable time by using flaps with straight edges. Combined with the low Reynolds
number for the flow and a small h0/b0 ≈ 4, the vortices remain observably free
of instabilities prior to reaching the wall. In this flow, the generation of secondary
vorticity at the boundary is critically important to the evolution of the pair. According
to Lamb (1932), a point vortex pair approaching a free-slip wall should follow a
hyperbolic trajectory, as discussed in § 1. When the no-slip condition is imposed
at the wall, however, a boundary layer forms between the primary vortex and the
wall, and begins to separate, rolling up into secondary vortices of the opposite sign,
as shown in figure 9(a). Although weaker than the primary vortices, this secondary
vorticity is able to modify the motion of the primary vortices significantly. This effect
was first explained by Harvey & Perry (1971) and further analysed by Peace & Riley
(1983). The primary vortices rebound from the wall and often follow an epicyclic
trajectory. Figure 9(b) shows the ideal hyperbolic vortex trajectories (solid lines)
and the actual vortex trajectory measured from flow visualization images (symbols).
Similar trajectories are shown in Kramer et al. (2007).

Measurements of circulation for the two-dimensional vortex–wall interaction are
presented in figure 10 and compared with numerical simulations for a two-dimensional
vortex pair evolving without the presence of the wall (Gupta 2003). Without the wall
interaction, the circulation decays slowly and gradually due to viscous diffusion.
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Secondary
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FIGURE 9. (a) Flow visualization from the transverse plane (see figure 5) of
two-dimensional (straight) vortices interacting with the wall, showing the development of
the secondary vorticity (Harris & Williamson 2012). (b) Comparison of the measured
trajectories of the two primary vortices with the ideal hyperbolic trajectories predicted by
Lamb (1932).
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Out of 
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FIGURE 10. Measured circulation of two-dimensional vortices in wall effect as a function
of time, compared with a numerical simulation of the circulation for two-dimensional
vortices out of ground effect (Gupta 2003). Also shown is the circulation of the secondary
vorticity which develops as the primary pair encounters the wall. It should be noted that
the sign of the secondary circulation has been inverted.

However, in the case with a wall present, the primary circulation decays rapidly as
the secondary vortices begin to strengthen at t∗ = 4. Eventually, the circulations of
both the primary and secondary vortices become comparable for t∗>16. This dramatic
reduction of the primary vortex strength as the primary and secondary vortices are
‘pushed together’ is responsible for many of the changes in vortex topology we
observe in cases involving a perturbed vortex in the presence of a wall.

4. Modes of vortex pair dynamics interacting with a wall
In this section, we discuss the results of three-dimensional experiments in which

a counter-rotating vortex pair, subject to a long-wave instability, encounters a solid
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boundary. It might be expected that a critical height would exist, above which the
Crow instability would have sufficient time to cause reconnection of the primary
vortices into vortex rings before interaction with the wall boundary. A series of
vortex rings would then encounter the boundary. Below this critical height, we might
suspect that the development of the Crow instability would be inhibited by the
wall because the two vortices are pulled apart by the wall interaction. In this case,
various final vortex configurations are produced, depending on the extent to which
the instability has been allowed to develop before wall interaction. Specifically, we
have identified three distinct modes, which may be delineated by the initial height
h0/b0 above the ground at which the vortices are generated, where h0 is the initial
height and b0 is the initial vortex spacing. These modes may also be distinguished
by the amplitude of the Crow instability measured at a distance b0 above the wall.
This parameter serves as a gauge of the degree of progression of the Crow instability
before wall interaction.

4.1. Vertical rings mode: secondary–secondary vortex interaction
For h0/b0 between 3 and 6 (A/b0 between 0.1 and 0.3, measured at b0 above the wall),
the vortices evolve as shown in figures 11 and 12, which present the primary and
secondary vorticity respectively from both plan and side views. At these low initial
heights, the Crow instability is inhibited as the vortex pair approaches the wall, and
the vortices do not reconnect into rings. Instead, from examination of the primary
vorticity, the principal feature is a strong axial flow, driven by a pressure gradient,
which transfers fluid from the region of first contact, the trough, to the peak of the
vortex tube, as shown in figure 11(a–h). This ‘collapsed vortex’, visible in figure 11(c),
then rebounds away from the wall. ‘Vortex collapse’ is defined as the loss of spanwise
uniformity as a result of axial pressure gradients and axial flows, which transport
vorticity to concentrated regions along the vortex. The reason for the rebound of the
collapsed region is the formation of small vertical vortex rings at the locations of
the ‘collapsed vortices’, as discussed below. The final configuration of the primary
vortices, seen in figure 11(d), comprises two regions of concentrated vorticity per
instability wavelength and is markedly different from the rings associated with the
Crow instability in unbounded fluid.

The mechanism by which this configuration is produced can be discerned through
examination of the evolution of the secondary vorticity. The small difference in
height between the peak and the trough of the primary vortex means that the trough
encounters the wall and generates secondary vorticity there first. The secondary vortex,
shown in figure 12(a), then rolls up and separates from the wall, forming a ‘tongue’
that wraps around the primary vortex. The secondary vortex tongue (see figure 12a)
and other parts of the rolled up secondary vortex are transported to the peak, where
distinct secondary vortex loops (marked T1 and T2) are formed (see figure 12d,h).
Simultaneously, the primary vortex circulation at the trough is weakened by viscous
vorticity cancellation. This effect creates a region of higher pressure at the trough, as
shown later, which drives fluid towards the peak, where the circulation is higher and
the pressure is lower.

The tops T1 and T2 of the secondary vortex loops rotate by self-induction into a
vertical orientation, as is apparent in figure 12(h). The loops from each side of the
flow then move towards each other by self-induction and interact along the centreplane
of the primary vortex system, as shown in figure 12(d,h). They then expand rapidly
in a vertical plane, as shown in figure 13, in which side views of the primary
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(a) (e)

(b) ( f )

(c) (g)

(d ) (h)

Axial flow

Ground plane

Collapsed vortex

FIGURE 11. Visualization of the primary vorticity associated with the vertical rings mode
(h0/b0= 5). Panels (a–d) show a plan view, in which the vortices are moving towards the
observer. Panels (e–h) show a side view, with images taken at the same time as those
in (a–d). In (a,e), (b, f ), (c,g) and (d,h), the images depict t∗ = 5.68, 7.78, 9.57 and 12.0
respectively.
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(a) (e)

(b)

(d )

(c)

( f )

(g)

(h)
Vertical vortex rings

(T1 and T2)

Vortex ‘tongue’

T1

T2

T1
T2

FIGURE 12. Visualization of the secondary vorticity associated with the vertical rings
mode (h0/b0 = 5). As in figure 11, (a–d) show a plan view and (e–h) show a side view.
Images were acquired at the same times as those referred to in figure 11.

vorticity (a) and secondary vorticity (b) are shown at a later time in their evolution.
The vertical vortex loops are principally composed of the secondary vorticity in
figure 13(b), although they are more faintly visible in the primary visualization in (a)
due to diffusion of the dye into the secondary vorticity.

We show in figure 14 a schematic depicting our interpretation of the principal
vortex dynamics involved in this wall interaction. In (a), the secondary vortex is
generated first at the trough location and then becomes wrapped around the primary
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(a)

(b)

T1 and T2
Secondary vertical loops

FIGURE 13. (a) Late-time development of the primary vorticity for the vertical rings mode
(h0/b0 = 5), shown from the side. (b) Development of the secondary vorticity for the
vertical rings mode, taken at the same time as (a).

vortex, forming a ‘tongue’ of vorticity. As the primary vortex is weakened by viscous
vorticity cancellation, the pressure at the trough becomes higher, driving fluid towards
the peaks of the primary vortex. Measurements of these effects are presented later.
The result of this axial flow is the formation of a vortex loop from the secondary
vorticity at the peak cross-section, as shown in (b). At this stage, the direction
of rotation of the secondary vortex loops at T1 and T2 is such that they induce
themselves to move upward away from the wall and then towards the centreline
dividing the primary vortices, as depicted in (c). Reconnection of the secondary
vorticity at the bottom of the loop to form a ring appears to occur and is visible in
the flow visualization of figure 13(a). Further evidence suggesting reconnection from
PIV measurements is discussed below.

The sequence by which vertical vortex loops (in figures 13 and 14) rebound
from the wall differs from the traditional two-dimensional rebound effect in several
important ways. Figure 15 shows vorticity contours taken from PIV measurements
made using the transverse cross-section plane (see figure 5) superposed with
streamlines. Panels (a–d) show a two-dimensional vortex pair in ground effect,
while panels (e–h) show a vortex pair subject to the Crow instability in ground effect.
In the two-dimensional flow, the secondary vortices orbit the primaries and eventually
return to the vicinity of the ground plane between the primary vortices, as shown in
figure 15(a–d). The flow streamlines advect the secondary vortices down between the
primaries. In contrast, when the flow has become three-dimensional by the action of
the Crow instability, the secondary vorticity is induced upwards above the primary
vortices, with no tendency to get pulled down between the primary vortex pair, as

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

11
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.114


Influence of a wall on the three-dimensional dynamics of a vortex pair 355

T1

T1

T1

T2

T2

T2

(a)

(b)

(c)

FIGURE 14. Schematic showing the authors’ interpretation of the principal vortex
dynamics in the vertical rings mode (h0/b0 = 5).

shown in (e–h). This is also indicated by the streamlines which, in contrast to the
2D case, are aligned upwards at the locations of the secondary vortices, taking the
secondary vorticity away from the wall. The principal vortex interactions are between
the secondary vortices. This ‘secondary–secondary’ interaction is indicated by the
labelling in figure 15(h), which shows a vortex pair in cross-section, representing a
cut into the top of the vertical vortex loops described earlier. Evidence suggesting
that reconnection has occurred at the bottom of the loop to form a ring is visible in
figure 15(h). There, two patches of vorticity, distinct from the primary vortices, are
visible at the bottom of the PIV image. We suggest that these patches represent the
bottom of each vortex ring.

In order to confirm the presence of a vortex loop, additional experiments were
conducted using a light sheet positioned in the horizontal plane (see figure 5).
Figure 16 shows vorticity contours derived from PIV and flow visualization from
the same cross-section. Two ‘vortex pairs’, representing the vertical arms of the
vortex loops, are visible in this view. Furthermore, the circulation of the vortex pair
measured in this plane is comparable to that measured for the secondary vortices
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(a) (e)

(b)

(g)(c)

( f )

(d) (h)

Ground plane

Secondary

Primary

Top of rings

Bottom of rings

2D 3D

FIGURE 15. Contours of vorticity and streamlines for a two-dimensional vortex pair
interacting with a wall (a–d) and a vortex pair subject to the Crow instability interacting
with a wall in the vertical rings mode (e–h). In (a,e), (b, f ), (c,g) and (d,h), the images
depict the vorticity at times t∗ = 2.74, 5.93, 8.31 and 11.1 respectively.

in the transverse plane (approximately 20 % of the initial circulation of the primary
vortex). As the cross-sections depicted in figures 15 and 16 are orthogonal and both
depict vortex pairs, we have reasonable evidence that a vertical vortex ring has
formed.
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Ground plane

View direction

Position of
light sheet

T2

T1
(a) (b)

(c)

FIGURE 16. Contours of vorticity (a) and corresponding flow visualization (b) image
taken in the horizontal plane (see figure 5), cutting through the legs of the vertical vortex
loops. The position of the light sheet is shown in (c).

4.2. Horizontal rings mode: secondary–primary vortex interaction
For values of h0/b0 between 6 and 9 (A/b0 between 0.3 and 0.5, measured at b0
above the wall), the behaviour of the vortex pair is distinctly different. Figure 17
shows the evolution of the primary vorticity in plan view. Immediately apparent here
is the stronger axial flow from the trough to the peak. The trough cross-sections
become almost entirely evacuated of dye, and later measurements of circulation show
that they are weakened much more than for vortex pairs generated at lower values of
h0/b0 in § 4.1. The weakening of the trough cross-section is caused by two effects.
First, the Crow instability has developed further and has consequently moved the
vortices closer together at the trough, leading to more vorticity cancellation between
the two primary vortices. This effect is visible in figure 17(b,c). Second, the primary
vortices are further eroded by interaction with the secondary vorticity that is generated
at the wall. The reduced circulation in the trough produces a higher pressure which
drives the stronger axial flow from trough to peak. The Crow instability remains
inhibited, and the wall interaction produces two ‘collapsed vortex’ structures per
instability wavelength instead of forming a single vortex ring. These structures are
labelled in (d).

Each of the ‘collapsed vortices’ contains a horizontally oriented vortex ring which
then rebounds vertically upwards from the wall, although this is not clearly evident
from the visualization alone. Figure 18 shows vorticity contours computed from
PIV measurements taken in the transverse plane and the longitudinal plane (see
figure 5). During the time that the secondary vorticity is generated at the wall, the
primary vortex topology is altered by the axial flow moving towards the peak, and
the structure begins to resemble a hollow vortex (see figure 18b), in which the
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(a) (b)

(c) (d )

Peak

Trough

Axial flow

Collapsed vortex

FIGURE 17. Visualization of the primary vorticity associated with the horizontal rings
mode (h0/b0 = 7.5) in plan view: (a) t∗ = 8.39; (b) t∗ = 10.1; (c) t∗ = 12.7; (d) t∗ = 15.6.

principal vorticity is situated around the perimeter of the vortex, similar to the hollow
vortex described by Baker, Saffman & Sheffield (1976) and Saffman (1992). It seems
that the vortex is entraining some irrotational fluid during the course of its evolution,
probably as a result of the axial flow. The upper portion of the hollow vortex, labelled
P1 in figure 18(c), interacts with and reconnects with the secondary vortex to form a
vortex ring. Figure 18(d–f ) shows the flow observed from the longitudinal plane (see
figure 5). Here, vorticity contours and flow visualization images are overlaid and show
the development of a vortex pair that rebounds rapidly from the wall. As this view is
orthogonal to the transverse plane of (a–c), and both views contain ‘vortex pairs’ in
the same location, we can confirm that a vortex ring has formed, although the actual
process of reconnection is difficult to observe directly. Furthermore, the circulations
of the ‘vortex pairs’ observed in each plane are comparable, approximately 25 % of
the initial circulation of the primary vortex. In figure 19, we compare the vorticity
contours acquired in the longitudinal plane with a flow visualization image acquired
using the same cross-sectional light sheet. The sense of rotation of the ring is clearly
marked by the dye.

In figure 20, we present a schematic illustrating the principal vortex dynamics
involved in the evolution of the horizontal rings mode. The secondary vortex is
represented by the shaded regions shown in (a). During the evolution of the instability,
the secondary vortex is deformed by the stronger primary in (b) and advected towards
the peak cross-section by the axial flow described earlier. According to our PIV
vorticity measurements, it seems that reconnection occurs between the secondary
vortex and the primary vortex, leaving two horizontal vortex rings for each instability
wavelength, as depicted in (c). These horizontal rings then propel themselves vertically
away from the wall by self-induction (towards the observer in figure 20).
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(a)

(e)(b)

(d)

(c) ( f )

S

P

S

S

P

P1

P2

Hollow
vortex

FIGURE 18. Contours of vorticity associated with the horizontal rings mode (h0/b0= 7.5).
Panels (a–c) show contours acquired using the transverse plane, and panels (d–f ) show the
longitudinal plane at the same time. Superimposed on the vorticity contours in (d–f ) are
flow visualization images acquired at the same non-dimensional time. In (a,d), (b,e) and
(c, f ), the images depict times t∗ = 12.1, 14.4 and 20.2 respectively.

Reconnection is a critical process in the evolution of the vortex rings described
above. This process has been extensively studied as it is a fundamental process by
which vortical structures interact and change topology. It is well known as a key to
the classical problem of the Crow instability without ground effect and to the evolution
of vortex rings. The present flows are complex and would benefit from numerical
simulations to interpret the vortex dynamics and topological changes in the vorticity
distribution.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

11
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.114


360 D. J. Asselin and C. H. K. Williamson

View direction

Position of
light sheet

(a) (b)

(c)

FIGURE 19. Contours of vorticity (a) and corresponding flow visualization image (b)
taken in the longitudinal plane (see figure 5), showing the rebounding horizontal vortex
ring of the horizontal rings mode (h0/b0 = 7.5). The position of the light sheet is shown
in (c).

4.3. Large rings mode: vortex ring–surface interaction
As we shift to values of h0/b0 greater than 9 (A/b0 greater than 0.5, measured at
b0 above the wall), the long-wave instability develops to the point of reconnection
and the formation of vortex rings prior to the vortices reaching the ground plane.
Figure 21 shows the result of wall interaction for vortex rings formed in this manner.
The final configuration of vorticity in this case is significantly different from both
previously considered cases, with the rings rapidly expanding upon experiencing the
effects of the wall. The primary ring can then generate secondary and tertiary vorticity
at the wall. This effect has been observed in many other studies, and may itself result
in the generation of other instabilities, such as those observed in the work of Walker
et al. (1987) and Swearingen et al. (1995). Interestingly, this is not the only possible
final vortex configuration for the ring–wall interaction. Because the Crow instability
develops in a plane that is inclined to the horizontal, it produces rings that are
non-planar. Furthermore, as described by Leweke & Williamson (2011), the rings can
change their orientation due to the effects of self-induction. Consequently, depending
on the precise moment at which the rings encounter the wall, phenomena, including
the axial flow and vortex collapse described for the vertical and horizontal rings
modes, can be triggered in addition to the behaviour shown in figure 21.

5. Discussion
5.1. Vortex dynamics

In this section, we discuss how wall interaction alters other quantities describing the
evolution of the vortex pair, such as the circulation of the vortices as a function
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Primary

Secondary

Reconnection
forming vortex rings

(a)

(b)

(c)

FIGURE 20. Schematic showing the authors’ interpretation of the principal vortex
dynamics leading to the development of horizontal vortex rings in the horizontal rings
mode (h0/b0 = 7.5).

of time, the amplitude of the instability, the angle of the plane containing the
instability, and the vortex pair trajectories. Figure 22 shows the instability amplitude
as a function of time for the vertical rings mode and the large-rings mode and
the unbounded Crow instability. The amplitude was determined from dual-light-sheet
visualization experiments conducted in the transverse plane (see figure 5), as described
in § 2. Figure 22 presents the actual amplitude of the instability in the plane in which
the instability exists.

The long-wave instability proceeds through several phases of development as the
amplitude grows and the vortices reconnect to form vortex rings. The amplitude for
the large-rings mode tracks that for the unbounded long-wave instability very closely
until the wall effect is observed around t∗ = 11. After that point, the rings stop their
downward motion and the amplitude reaches a plateau. In the unbounded case, the
rings continue downward, leaving the trough regions behind and causing the amplitude
to continue to grow. For the vertical rings mode, the Crow instability is inhibited long
before it is able to form vortex rings. Consequently, the amplitude diverges from the
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(a)

(b)

FIGURE 21. Interaction of vortex rings formed by the Crow instability with a wall in the
large-rings mode (h0/b0 = 10): (a) t∗ = 8.00; (b) t∗ = 10.7.

0 2 4 6 8 10 12 14 16

Ring developement

Large rings mode

Vertical rings mode

Inhibition of
ring developement

Formation
of rings

Translation
of rings

Unbounded
Crow

18 20

 0.5

1.0

1.5

2.0

2.5

FIGURE 22. The amplitudes of the unbounded Crow instability, the vertical rings mode
and the large-rings mode as functions of time. The amplitudes presented here are measured
in the plane of the instability and include both the horizontal and the vertical components.

other two cases early in its evolution, around t∗ = 5 in our example. Interestingly,
following wall interaction, the amplitude of the instability actually decreases due to
rotation of the plane containing the instability, as explained below.

One characteristic of this flow becomes significantly modified when the ground
plane is present, namely the orientation of the instability plane angle as a function of
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FIGURE 23. The angle of the plane containing the instability as a function of time for
the vertical rings mode (h0/b0= 5). Schematics depicting the relative positions of the peak
and trough at the labelled points are also shown, in which the peak is represented by a
filled circle and the trough by an open circle.

time. (The instability plane angle is the angle of the plane that contains the instability
waviness, and it can be measured using the dual-light-sheet technique discussed earlier
with figure 6.) Initially, with or without a wall, the instability angle is around 48◦–50◦.
Sketches of the peak locations (solid symbols) and trough locations (open symbols)
are shown in figure 23 for different times A, B, C, D, where we also show a plot
of the variation of instability angle. There is a significant difference when there
is a ground plane present when compared with the variation of the angle for the
unbounded Crow instability in Leweke & Williamson (2011). After the initial phase
close to A, the instability plane angle decreases to point B, due to the rebound effect
of secondary vorticity acting on the trough primary vorticity earlier than the peak
primary vorticity. Thereafter, the plane angle increases as the ground effect pulls the
troughs away from each other along the wall, and at C the plane angle is close to
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FIGURE 24. (a) Circulation measured at the peak and trough cross-sections for a vortex
pair subject to the Crow instability, evolving in wall effect in accordance with the vertical
rings mode (h0/b0= 5). (b) Circulation of a vortex pair subject to the Crow instability at
the peak cross-section, both with and without the presence of a wall. Also shown is the
development of the secondary vorticity at the wall. It should be noted that the sign of the
secondary vorticity has been inverted.

90◦ (vertical). The angle further increases to point D. In essence, if one looks at
the instability in plan view (vertically downwards in the diagrams of figure 23), for
cases C and D, there is what could be called a ‘reverse waviness’. The trough is
the location at which vortices initially make their closest approach in the long-wave
instability; the effect of the ground causes the peaks to be the parts of the vortices
that come closest together. In this sense, the waviness is reversed.

The circulation of the primary vortices experiences distinct changes upon wall
interaction. Figure 24(a) shows the circulation measured at the peak and trough
cross-sections for a vortex pair evolving according to the vertical rings mode. Here,
the trough cross-section enters wall effect before the peak cross-section because the
developing Crow instability has moved the troughs below the peaks, as shown in
figure 23, schematic A. Because of this difference, the circulation of the trough
decreases sooner and more rapidly than that of the peak cross-section. This spanwise
difference in circulation creates a pressure gradient and drives axial flow along the
vortex.

Figure 24(b) presents the circulation measured at the peak location for the
unbounded Crow instability as well as circulation at the peak location for the
large-rings mode, with h0/b0 = 10. In this mode, the Crow instability has sufficient
time to cause vortex reconnection and the formation of vortex rings. The secondary
vorticity near the wall weakens the primary vortices significantly. This is similar to
the 2D vortex decay described in § 3. The trough circulation behaviour (not included
in figure 24) is the same for both flows and also experiences a rapid decrease in
vortex strength. In the case of the peak of the vortex, the circulation decay is due
to a primary–secondary interaction at the wall. For the trough, the circulation decays
as a result of primary–primary interaction as the Crow instability forces the vortices
together during their descent.

5.2. Axial flow
Fundamental to all of the possible modes observed in this work is the presence of
significant axial flow along the vortex tubes. This flow moves fluid away from the
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trough, the part of the vortex that contacts the wall first, and causes the vortex to
‘collapse’ towards the peak region.

Axial flow has been studied in the context of vortex bursting by Moet et al.
(2005). In their computations, a Gaussian vortex with a variable core radius was used
to generate a pressure gradient along the length of the vortex. The region of larger
cross-section had a correspondingly higher pressure than the part of the vortex with
smaller cross-section. The consequent pressure gradient then pushed fluid from the
larger diameter section towards the smaller cross-section.

In our experiment, the pressure gradient is generated not by a change in cross-
sectional area along the vortex, but by the weakening of the circulation at specific
spanwise locations. In our case, the thinning of the vortex core radius in the trough
is associated with an increase in pressure, opposite to the flow illustrated in Moet
et al. (2005). This effect occurs at the trough cross-section first because that is the
part of the vortex that encounters the wall first. Viscous vorticity cancellation caused
by interaction with the secondary vorticity at the wall causes the primary circulation
to decay, increasing the pressure locally.

In order to quantify the magnitude of the pressure gradient generating the axial flow,
we have modelled the vortices as Gaussian. From the Navier–Stokes equations written
in cylindrical coordinates, the pressure field in a Lamb–Oseen vortex can be defined
by

ρ
vθ

r2
= ∂p
∂r
, (5.1)

where ρ is the fluid density, vθ is the azimuthal velocity, r is the radial coordinate and
p is the pressure. The azimuthal velocity is given by (5.2) below and is a function of
the circulation Γ and the vortex core size a,

vθ(r)= Γ

2πr

[
1− exp

(
− r2

a2

)]
. (5.2)

Using measured values of the circulation and vortex core size in (5.2) and
integrating (5.1), figure 25(a) shows the computed pressure in both the peak and
the trough as a function of time for the horizontal rings mode. As the troughs
are weakened both by primary–primary interaction and then in wall effect by
primary–secondary cancellation, the pressure in the trough becomes larger than
the pressure at the peak. Consequently, a pressure gradient is established between the
trough and the peak, which drives a relatively strong axial flow, ultimately leading to
vortex collapse at the peak. The same weakening of circulation occurs at the peak,
but it is delayed compared with the trough, allowing the establishment of the pressure
gradient.

From flow visualization images (see figure 17), the axial flow driven by this
pressure gradient appears to be largely complete between t∗ = 12 and t∗ = 15. This
estimate correlates well with the computed pressure curves, which show the pressure
gradient becoming very small for times greater than t∗ = 15.

To gain further insight into the parameters that govern the evolution of the pressure,
we can consider the pressure coefficient of a Rankine vortex. The pressure at the
centre of a Rankine vortex is well known and is given by

p− p0 =−2
ρΓ

8πa2
, (5.3)
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FIGURE 25. (a) Pressure computed at the vortex centre for the peak and trough cross-
sections as a function of time in the horizontal rings mode. Here, P0 is the pressure far
from the vortex centre and V is the initial self-induced descent velocity of the vortex pair.
(b) Circulation and vortex core size for the trough cross-section of the horizontal rings
mode (h0/b0 = 7.5).

where p is the pressure, p0 is the pressure far from the vortex, Γ is the circulation
and a is the core size.

We define the pressure coefficient in the usual manner,

Cp = p− p0
1
2ρV2

, (5.4)

where V is the initial descent velocity of the vortex pair, Γ0/2πb0, and Γ0 and b0 are
the initial vortex circulation and separation respectively.

By substituting (5.3) and the initial descent velocity into (5.4), we obtain

Cp =−2
(

b0

Γ0

)2 (
Γ

a

)2

. (5.5)

Equation (5.5) shows that the pressure coefficient is simply a function of the ratio
of the circulation Γ to the core size a. Figure 25(b) shows that the increase in
pressure at the trough is due largely to the rapid weakening of the circulation at
that location. The core size remains relatively constant during the wall interaction,
whereas the circulation decreases markedly.

6. Discussion of other relevant studies of vortex–wall interactions

The present study is related to an entire class of flows in which a perturbed vortex
approaches a parallel boundary. The general problem, in which viscous vorticity
cancellation causes a pressure gradient and axial flow, is not solely tied to the
existence of a vortex pair or the long-wave instability influenced by a wall. Similar
phenomena occur for a single vortex close to a wall, and the perturbations need not
be periodic. A single perturbation at some spanwise location along a vortex, under
the influence of a boundary, can generate similar phenomena to what we have shown
in the present work. In addition, remarkably similar phenomena and vortex structures
are found resulting from an oblique collision of a vortex ring with a flat boundary,
as studied by Lim (1989).
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Axial flow

Axial flow(a) (b) (c)

(d ) (e) ( f )

Collapse of vortex

Collapse of vortex ring

FIGURE 26. Comparison of the evolution of the primary vorticity of a vortex pair in
wall effect and the collision of a vortex ring with an inclined wall from Lim (1989)
(reproduced with permission of Springer). The vortex ring interaction is shown in (a–c),
and a plan view of the vortex pair is shown in (d–f ).

An axial flow phenomenon similar to that observed for the vortex pair appears to
occur as the ring encounters the wall, as shown in figure 26. Just as for the vortex
pair, the flow moves fluid away from the portion of the ring that encounters the wall
first. This flow produces what we call a ‘collapsed vortex’. Both of these flows involve
vorticity cancellation, the formation of a spanwise pressure gradient and a spanwise
flow. Both flows also involve vortex rebound and the generation of smaller-scale vortex
structures.

Examination of the secondary vorticity reveals more similarities. Figure 27 shows
an example of our vortex pair evolving in the manner of the vertical rings mode
and Lim’s vortex ring, both in plan view. The secondary vortex structure that gives
rise to a vertical vortex ring in the case of the vortex pair is very similar to the
loop observed in Lim’s vortex ring. It is possible, then, that a vortex ring colliding
obliquely with a wall will change the vortex topology and evolve into a smaller-scale
vortex ring or loop, which may then rebound away from the boundary, as we find
in our flow. A principal difference between our flow and Lim’s, however, is that the
secondary vortices produced by the vortex pair interact with each other along the
centreline dividing the two vortices. In the vortex ring experiment, only one such loop
is produced.

In presenting his results, Lim (1989) described how the interaction of a vortex
ring and an oblique wall causes the formation of ‘bi-helical’ vortex lines close to
the location of first contact between the wall and the vortex ring. He suggests that
these vortex lines are displaced along the circumferential axis, ultimately compressed
around the portions of the ring furthest from the wall, by the induced velocity of
the secondary vorticity. He deduces that the no-slip condition of the wall and the
corresponding generation of secondary vorticity play a vital role in displacing these
vortex lines. In the present work, clearly, the generation of secondary vorticity is at
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(a) (b)

Top of vortex loop
Top of vortex loop

FIGURE 27. Comparison of the evolution of the secondary vorticity of a vortex pair in
wall effect with the collision of a vortex ring with an inclined wall from Lim (1989)
(reproduced with permission of Springer). (a) The secondary vorticity generated by the
vortex ring. (b) The secondary vorticity generated by a vortex pair evolving according to
the vertical rings mode.

the heart of the 3D vortex dynamics, although there is no indication in our flow of
the dynamics of helical vortex lines. Certainly, the vortex lines will assume roughly
a helical orientation due to the combined axial flow with swirl in the vortex tubes,
but we could not observe them directly.

Both Lim (1989) and the subsequent simulations of Verzicco & Orlandi (1994)
discuss a sequence of events that leads to the significant changes in vortex topology
for the oblique rings. As the oblique ring approaches the wall, vortex stretching occurs
first where the ring first comes into contact with the wall. Essentially, in this region
of the flow, the radius of the ring grows due to the image effect of the vortex ring
in the wall. Due to this stretching, the rate of vorticity annihilation due to viscous
diffusion is increased. As the vortex circulation decays, there is a local increase in
pressure, which generates axial flow. The above authors then focus on the existence
of a vortex loop that arises out of the secondary vorticity, convecting upwards due to
its own self-induced motion.

In the case of our flow here, it should be emphasized that vigorous axial flows are
found not only in the secondary vorticity but also in the primary vorticity, and both
sources of vorticity can have a key role in the subsequent vortex dynamics.

It is suggested by Lim (1989) and Verzicco & Orlandi (1994) that ‘differential
stretching’ causes the axial flow of the secondary vorticity and subsequent ejection
of a vortex loop. In our case, the stretching in the manner of a ring spreading out
with increasing radius does not occur. We believe that axial flow is not the result of
vortex stretching; the stretching is the result of axial flow. However, they clearly occur
together.

In the flows discussed here, the initial conditions consist of a vortex pair with
a perturbation that approaches a wall. At the point where a vortex first comes
into contact with the wall, the presence of the primary vortex causes a boundary
layer to form and creates a pressure gradient, resulting in flow separation and the
formation of secondary vorticity. Locally, the interaction between the primary and
secondary vorticity has a ‘head start’ over other parts of the flow; the rapid growth of
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secondary vorticity leads to diffusion and rapid cancellation of primary vorticity. The
local weakening of the primary vortex strength causes a local increase in pressure
and induces axial flow in the vortex tube. The flow away from the point of first
contact towards the parts of the vortex furthest from the wall leads to the collapse
of the primary vortex. The net result of these vortex dynamics leads typically to the
formation of vortex loops or vortex rings which rise up away from the horizontal
wall. The formation of these three-dimensional structures ‘rebounding’ from the wall
may represent a generic characteristic of such flows.

7. Conclusions
In this study, we examined the approach of a vortex pair to a solid boundary, in

the case where the vortices are unstable to a long-wave instability. The effects of a
wall lead to distinctly different vortex dynamics, almost unrecognizable compared with
the unbounded Crow instability. The interaction of a vortex pair with a wall leads
to inhibition of the long-wave instability. The vortices are then subject to localized
vorticity cancellation, which causes the development of axial pressure gradients within
each vortex, producing strong axial flows. Ultimately, quite distinct vortex topologies
develop, involving small vortex rings. We believe that these characteristics are not
limited to our flow, and are relevant to a broader class of fundamental flows in which
a perturbed vortex (or vortex ring) becomes influenced by a wall. The most notable
practical application is the vortex wake that forms behind aircraft near a runway and
which imposes constraints on airport and runway capacity. However, the phenomena
we discuss are also relevant to flows around submerged ship hull appendages as well
as flows downstream of vortex generators.

If the vortex pair is generated below a critical initial height, the wall serves
to inhibit the three-dimensional (Crow) instability. We observe two modes of
vortex–wall interaction. For small heights, the primary vortices are close together,
enabling the secondary vortices to interact with each other above the primary pair,
forming vertically oriented vortex rings. This unexpected vortex structure represents
the principal dynamics of vorticity in this ‘vertical rings mode’, and represents a
three-dimensional version of vortex ‘rebound’.

In the ‘horizontal rings mode’, with a range of larger initial heights, the Crow
instability develops to a greater extent before wall interaction. The perturbation
amplitude grows larger, and this means that the peak locations are farther apart
and the troughs closer together upon wall interaction. The proximity of the troughs
also increases vorticity cancellation there, leading to a greater loss of circulation.
Further reduction in circulation is caused by the generation of secondary vorticity
in wall effect. This reduction of circulation at the troughs locally leads to a higher
pressure compared with the peaks of the vortices, and triggers ‘vortex collapse’ as
a result of strong axial flows moving fluid from the troughs towards the peaks.
The secondary vortices generated at the peaks are also much farther apart, which
inhibits any interaction between them. Instead, the secondary vortices interact with
their individual primaries, leading to reconnection and the formation of a series of
small horizontal vortex rings which ‘rebound’ from the wall. There are two small
vortex rings in each instability wavelength, quite different from the large Crow vortex
rings, one of which is formed per wavelength. As for the first mode, which generates
vertical rings, these 3D ‘rebound effects’ of the horizontal rings mode are distinctly
different from the 2D rebound observed for straight unperturbed vortex pairs in wall
effect. The results of wall interaction arising from these modes are summarized in
table 1.
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Mode h0/b0 A/b0 at h= b0 Principal interaction

Vertical rings 3–6 0.10–0.30 Secondary–secondary
Horizontal rings 6–9 0.30–0.50 Primary–secondary
Large rings (Crow instability) >9 >0.50 Primary–secondary

TABLE 1. Summary of principal modes of wall interaction.

If the vortices are generated above the critical height, the long-wavelength instability
causes reconnection to occur at the troughs and a series of vortex rings to be
generated. However, because the instability occurs in a plane oriented at 45◦ to
the horizontal, the rings are non-planar. The ‘large-rings mode’ then refers to the
interaction of these deformed rings with a boundary. Because they are non-planar and
also change their orientation continuously following reconnection, the behaviour of
the rings in wall effect is dependent on the precise height at which they are generated.
In many cases, the rings expand upon impinging with the ground plane, as would be
expected for axisymmetric rings. In other cases, phenomena evolve that resemble the
horizontal rings mode.

The physical mechanisms that are causing these vortex structures to evolve, breaking
up spanwise coherence of the original vortex pairs, may be summarized as below.

Perturbed vortex tube approaches wall
↓

Early generation of secondary vorticity where
vortex tube first contacts wall

↓
Locally enhanced vorticity diffusion and cancellation

leads to locally higher pressure
↓

Vortex collapse occurs as axial pressure gradient drives
axial flow away from point of first contact with wall

↓
Formation of small-scale rebounding vortex ring structures

We recognize that there is a significant difference in Reynolds number between
this laboratory-scale flow and real flows that exist in the atmosphere. Despite this
difference, other studies, such as that of Leweke & Williamson (2011), have shown
striking similarities in the vortex structures produced across this span of Reynolds
numbers. That said, it is unknown whether the structures observed in this study are
also produced at higher Reynolds numbers. This does not detract, however, from the
relevance of this flow to other situations where vortices exist approximately parallel
to a surface.

Some studies of aircraft wake vortices, such as that of Stephan et al. (2013), show
circulation decay (Γ (t)) within non-dimensional times (t∗ ≈ 8–10) that are shorter
than some of those observed here. It appears that the time required for the circulation
to decay (e.g. to 40 % of its initial value) is dependent not only on the configuration
of the vortices but also on the Reynolds number. For example, with two-dimensional
vortices (figure 10), the primary vorticity decays to 40 % of its starting value by

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

11
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.114


Influence of a wall on the three-dimensional dynamics of a vortex pair 371

t∗= 20, while, for the Crow instability in wall effect (figure 24b), this level of decay
is reached by t∗= 10. A further example is shown in figure 24(a), in which the peaks
of the vortices decay to 40 % of their initial value by t∗= 16, while the troughs have
already decayed to this level at t∗ = 8.

The phenomena observed in these experiments are not limited to perturbed vortex
pairs. Remarkably similar phenomena are found where vortex rings impinge obliquely
with a wall, as discussed in Lim (1989) and Verzicco & Orlandi (1994). The changes
in topology of the vorticity, the initiation of axial flow, and the creation of rebounding
3D vortex rings appear to be generic phenomena for flows where perturbed vortices
are roughly parallel with a surface. Simulations on these and other flows would
illuminate and clarify additional features of the vortex dynamics.
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