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We present an experimental and numerical study of natural convection with moist
air as convecting fluid. By simplifying the system as two-component convection, an
experimental method is proposed for indirectly measuring the moisture transfer rates
in buoyancy-driven flows. We verify the results using direct numerical simulations.
It is found that the non-dimensionalized transfer rates for both sensible heat (NuT)
and water vapour (Nue) are essentially determined by a generalized Grashof number
Gr (the ratio of combined buoyancy generated by the imposed temperature and
vapour pressure gradients to viscous force), and are only weakly dependent on the
buoyancy ratio Λ (the ratio of buoyancy induced by temperature variation to that
due to vapour pressure variation). Moreover, we show that the full set of control
parameters {Gr, Λ, Pr, Sc} is more suitable than other choices for characterizing the
two-component system under investigation. As a special case, the Schmidt number
dependence for passive scalar transport rates in buoyancy-driven flows is also deduced.

Key words: condensation/evaporation, moist convection

1. Introduction
Mass, heat and momentum transfers in turbulent flows occur widely in nature, and

very often they are coupled to each other. Examples include thermohaline convection
in ocean circulation (Huppert & Turner 1981; Gent & Mcwilliams 1990; Schmitt
1994), pollutant dispersion in the atmosphere (Sini, Anquetin & Mestayer 1996;
Arya 1999) and heat and moisture transfers in ocean evaporation (Liu 1979; Fairall
et al. 1996, 2003). The last example has vital significances for both the global water
cycle and climate change (Cane et al. 1997; Levitus et al. 2000; Durack, Wijffels &
Matear 2012), since evaporation is the major source of atmospheric water (Maidment
1993). In such a case, the transports of heat and mass are strongly coupled to each
other, which makes the problem more difficult. Owing to the intrinsic complexity,
measurements of transport properties of heat and mass in turbulent flows are, to our
knowledge, scarce. In this paper we take evaporation above a fluid layer driven by
natural convection (in the form of the classical Rayleigh–Bénard (RB) configuration)
as an example and present an experimental method for indirectly measuring the
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mass transfer rates of water vapour. We then verify the measured results with direct
numerical simulations (DNS). Owing to its well-defined boundary conditions and
precisely tunable control parameters, RB convection has become a paradigmatic
system in the studies of various convection phenomena occurring in nature (Ahlers,
Grossmann & Lohse 2009; Lohse & Xia 2010; Chillà & Schumacher 2012; Xia
2013).

Classical turbulent RB convection concerns a fluid layer cooled from above and
heated at the bottom. However, in atmospheric convection, the situation is more
complicated (Emanuel 1994). The key difference between atmospheric convection and
RB convection is that the water in the atmosphere undergoes phase transition. Water
evaporates from the Earth’s surface and will rise and condense at a certain height.
Condensation of water vapour is accompanied by the release of latent heat, which
results in a lower adiabatic lapse rate. Moreover, clouds formed by suspensions of the
condensed water droplets will also affect the albedo and energy budget (Bodenschatz
et al. 2010; Chandrakar et al. 2016). Developments of moist RB convection have been
made to shed light on atmospheric convection. For example, Bretherton (1987, 1988)
developed an idealized model of non-precipitating moist convection. Schumacher &
Pauluis (2010), Weidauer, Pauluis & Schumacher (2010) and Pauluis & Schumacher
(2011) used a piecewise linear buoyancy equation to study moist convection in a
conditionally unstable regime. Hernandez-Duenas et al. (2013), on the other hand,
proposed a minimal model that allows rain water to fall. More recently, Vallis, Parker
& Tobias (2019) presented an idealized model of moist convection by adding a
condensation term which obeys a simplified Clausius–Clapeyron relation.

In this paper, we focus on the mass transfer properties of water in a moist turbulent
convection system. The remainder of the paper is organized as follows. We first
describe our experimental method in § 2. In § 3 we introduce the governing equations.
The correction for sidewall condensation is then described in § 4. We then verify our
experimental results using DNS in § 5. The effect of density ratio is discussed in § 6.
Based on the results in § 6, we deduce in § 7 the Schmidt number dependence of
the transport efficiency when one of the scalars is passive. Our results are compared
with a generalized Grossmann–Lohse theory in § 8. We then show the implications
for evaporation in nature in § 9 and finally conclude our work in § 10.

2. Method

In the experiment, a rectangular RB convection cell with dimensions 12.6 cm
(height) × 12.6 cm (length) × 7.6 cm (width) is used. The system consists of a thin
layer (1.6 cm in thickness) of distilled and deionized water at the bottom, with moist
air above filling the rest of the cell. The system is kept at atmospheric pressure and
the mixture of water vapour and dry air can be treated as an ideal gas. The top and
bottom plates are made of copper. The top plate is cooled by a temperature-regulated
refrigerator and the bottom plate is heated by a resistive heater. Three thermistors
(0.7 cm away from the liquid–solid interface) are embedded in the plates to monitor
the temperature therein, denoted by Tp,bot and Tp,top. An additional small thermistor
(see figure 1) is placed in the centre of the liquid water layer in order to monitor the
temperature in the centre of the liquid layer Tl,c. When the bottom plate is heated and
the top plate is cooled, a temperature gradient will be built in the thin water layer.
The temperature at the liquid–gas interface is then determined by Tbot = 2Tl,c − Tp,bot.
Water evaporates at the bottom liquid–gas interface and condenses on the top plate,
forming a thin layer of liquid water thereon (Zhong, Funfschilling & Ahlers 2009;
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Water layer
Bottom plate

Top plate

FIGURE 1. (Colour online) Schematic of the experimental set-up. Arrows indicate the
direction of heat flux. Open arrows denote the LHF and the filled arrows represent the
SHF.

Prabhakaran et al. 2017). In steady state, the upward mass flux of water vapour
is balanced by the downward-dripping droplets. Since the top liquid–gas interface
is a dynamic one and therefore difficult to measure directly, we approximate its
temperature by Ttop = Tp,top. During the experiment, the whole convection cell is
placed in a home-made thermostat whose temperature is set to be the same as the
bulk temperature of the mixture. The temperature stability of the thermostat is about
±0.02 K. Data acquisition is made after all temperature signals reach statistical
stationary states, and each heat transfer measurement lasts for more than two hours.

The total heat flux in this system can be divided into two parts, the sensible heat
flux (SHF) and the latent heat flux (LHF) (Mangarella et al. 1973) (see figure 1).
The former is what is typically measured in RB convection experiments (Ahlers et al.
2009; Lohse & Xia 2010) and the latter reflects the contribution of phase transition at
both boundaries. It is with this LHF that we deduce the mass flux, or vapour transfer
rate.

Since the system is free of condensation nuclei and far from the critical point,
we expect that neither heterogeneous (Chandrakar et al. 2016) nor homogeneous
condensations (Prabhakaran et al. 2017) would occur in the bulk region of the
convection cell. This fact was verified by a laser light scattering test, in which no
visible droplets were observed. The total heat flux Φq can then be approximated as

Φq =ΦS +ΦL = (NuTk∆T +NueDL∆ρ,v)/H. (2.1)

Here, NuT = ΦSH/(k∆T) and Nue = ΦLH/(DL∆ρ,v) are the Nusselt numbers for
temperature and vapour pressure, respectively. They represent the non-dimensionalized
heat and moisture transfer rates. In the above, ΦS is the SHF and ΦL is the LHF.
Parameters k and D are the thermal conductivity and mass diffusivity of water vapour
in dry air and L is the latent heat of water. The difference ∆T = Tbot − Ttop is the
temperature difference across the layer of moist air, with Tbot the temperature at the
lower liquid–gas interface and Ttop the temperature at the upper liquid–gas interface.
In the above, ∆ρ,v denotes the water vapour density difference across the two liquid–
gas interfaces, which can be further written as ∆ρ,v = (es,bot/Tbot − es,top/Ttop)Me/R.
Here es,bot and es,top are the saturation water vapour pressures at the bottom and top
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FIGURE 2. (Colour online) (a) Total heat flux Φq as a function of the temperature
difference ∆T across the two liquid–gas interfaces, and for various values of the bulk
temperature Tbulk which is measured at the cell centre. (b) The ratio of the LHF to the
total heat flux ΦL/Φq.

interfaces, with Me the molar mass of water vapour and R the universal gas constant.
We plot in figure 2(a) the experimentally measured total heat flux Φq as a function
of the temperature difference across the two liquid–gas interfaces. It is seen that Φq
shows an excellent power-law dependence on ∆T . Meanwhile, for a fixed ∆T , higher
bulk temperature leads to a higher total heat flux. This can be understood by the fact
that the difference of the saturation water vapour pressure between the two boundaries
(∆ρ,v) increases as bulk temperature is raised (Murray 1967), so the corresponding
LHF also increases. It is worth mentioning that since the latent heat of water is large,
LHF accounts for over 90 % of the total heat flux in the parameter range explored in
our experiment, as illustrated in figure 2(b). So LHF is the dominant factor in (2.1)
for the present case.

3. Governing equations
To obtain the moisture transfer rate Nue, we first consider the governing equations

of the system. These equations can be derived (Landau & Lifshitz 2013) by choosing
temperature T and water vapour pressure e as state variables and applying the
Oberbeck–Boussinesq approximation, ρ(T, e) = ρ0[1 − α(T − T0) − β(e − e0)] =

ρ0(1 − αδT − βδe), where T0 and e0 are the reference temperature and vapour
pressure, which are usually taken to be their respective bulk values; α ≡ −∂ρ/∂T
and β ≡ −∂ρ/∂e are the thermal expansion coefficient and the solutal expansion
coefficient, respectively. These coefficients can be determined from the equation of
state of the moist mixture: ρ = [eMe + (P0 − e)Md]/(RT) (Andrews 2000). Here
Md is the molar mass of dry air and P0 is the atmospheric pressure. With this
approximation, the buoyancy term in the usual Oberbeck–Boussinesq equations for
classical RB convection becomes (αδT + βδe)g. In addition, there is now also a
diffusion–convection equation for e which is the same as that for T except κ is
replaced by D. Putting together, one has the following governing equations:

∂u
∂t
+ u · ∇u=−

1
ρ
∇p+ ν∇2u+ (αδT + βδe)gk̂, (3.1)

∂T
∂t
+ u · ∇T = κ∇2T, (3.2)
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Moisture transfer by turbulent natural convection 1045

∂e
∂t
+ u · ∇e=D∇2e, (3.3)

∇ · u= 0. (3.4)

To non-dimensionalize these equations, one can follow the idea developed in double-
diffusive convection and, more recently, two-scalar convection system (Radko 2013;
Yang, Verzicco & Lohse 2018), and get four control parameters, i.e. two Rayleigh
numbers RaT = αg∆TH3/(νκ) and Rae = βg∆eH3/(νD), Prandtl number Pr = ν/κ
and Schmidt number Sc = ν/D. Here RaT and Rae are Rayleigh numbers for the
temperature and vapour pressure. They describe the relative driven strength induced
by temperature difference and by vapour pressure drop, respectively.

Here, to better characterize this two-component convection system, we introduce
a new type of non-dimensionlization for the governing equations by defining a
generalized free-fall time t=

√
H/(α∆Tg+ β∆eg) as a typical time scale, and use cell

height H, temperature difference ∆T and vapour pressure difference ∆e= es,bot − es,top

as the other characteristic scales for the non-dimensionlization of related quantities.
The non-dimensional governing equations read as

∂u′

∂t′
+ u′ · ∇u′ =−∇p′ +

√
1

Gr
∇

2u′ +
(

Λ

Λ+ 1
T ′ +

1
Λ+ 1

e′
)

k̂, (3.5)

∂T ′

∂t′
+ u′ · ∇T ′ =

√
1

Gr
Pr−1
∇

2T ′, (3.6)

∂e′

∂t′
+ u′ · ∇e′ =

√
1

Gr
Sc−1
∇

2e′, (3.7)

∇ · u′ = 0, (3.8)

where Gr = (α∆T + β∆e)gH3/ν2 is a generalized Grashof number (Sanders &
Holman 1972; Bergman et al. 2011), which represents the relative strength of the
total buoyancy; Λ = α∆T/(β∆e) is the buoyancy ratio, or the ratio of buoyancy
induced by temperature changes to that induced by changes in water vapour pressure;
and Pr and Sc are the Prandtl number and Schmidt number, as usual. We note that,
with the above normalization, the two scalars (T and e) are on equal footing, or
symmetric, in the equations of motion. Parameters {Gr, Λ, Pr, Sc} together with the
aspect ratio Γ of the convection cell now form the full set of control parameters.
The Grashof number and the buoyancy ratio can also be expressed in terms of the
above Rayleigh numbers as Gr = (RaT/Pr + Rae/Sc) and Λ = (RaT/Pr)/(Rae/Sc),
respectively.

For the moist mixture in the experiment, Pr ' 0.7 and Sc ' 0.6. Thus, the
ratio between thermal diffusivity and mass diffusivity, namely the Lewis number
Le ≡ κ/D = Sc/Pr, is about 1. Therefore, we may expect that the water vapour
field is similar to the temperature field, which led us to make the approximation
Nue ' NuT . Physically this means that, with equal diffusivity, heat and moisture are
carried by the turbulent flow with the same efficiency, which is also evident from
the equations of motion. Under this approximation, we can obtain Nue from the
experimentally measured total heat flux. The results are shown as square symbols in
figure 3. A correction has been made to account for the additional LHF leakage from
the sidewall, as described below.
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FIGURE 3. (Colour online) Nusselt numbers Nue and NuT as functions of the Grashof
number Gr. Filled squares: experimentally measured Nue; open squares: Nue from DNS;
solid line: 0.143Gr0.283, which is a power-law fit to Nue from DNS; open triangles: NuT
from DNS; dashed line: 0.152Gr0.283, which is a power-law fit to NuT from DNS. The
colour bar shows the inverse buoyancy ratio. The upper inset shows a magnified view
containing the experimental data. Lower inset: squares, correction coefficient (4.2) used
for correcting the experimental data; circles, correction coefficient obtained from DNS.

4. Correction for sidewall condensation
In an ideal case, water evaporates at the lower interface, being transported to

the opposite side by turbulent convection and condenses therein. The sidewall is
assumed to be adiabatic and free of condensation. Despite the thermal insulations
used to prevent sensible heat leakage, condensation on the sidewall is inevitable
and a correction for the latent heat leakage from the sidewall must be made,
which was done as follows. The saturation water vapour pressure depends only
on temperature and is determined by the Tetens empirical formula (Murray 1967):
es(T)= 6.1078× exp[17.2693882(T − 273.16)/(T − 35.86)]. The bulk temperature is
simply the arithmetic mean of those at the interfaces: Tbulk = (Tbot + Ttop)/2. The bulk
vapour pressure is approximated as

ebulk = [(es,bot + es,top)× Splate + es,sidewall × Ssidewall]/(2Splate + Ssidewall), (4.1)

where Splate and Ssidewall are the areas of the conducting plate and the sidewall. For
large aspect ratios, the above equation reduces to ebulk = (es,bot + es,top)/2. Since the
saturation vapour pressure has an exponential dependence on temperature, the bulk
vapour pressure is therefore higher than the corresponding saturation vapour pressure
at bulk temperature ebulk > es,Tbulk , which means there exists a vapour concentration
boundary layer at the sidewall. By further assuming that the thickness of this boundary
layer is the same as those over the two interfaces, the ratio of the LHF across the top
liquid–gas interface to the total supply at the bottom plate can then be approximated
as

η=
Φeff

Φtotal
=

(ebulk − es,Ttop)× Splate

(ebulk − es,Ttop)× Splate + (ebulk − es,Tbulk)× Ssidewall
. (4.2)
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We used the average value of this ratio as a correction coefficient for the sidewall
latent heat leakage, and obtained the corrected Nusselt number for water vapour as

Nue =
Φq

k∆T/H + η−1DL∆ρ,v/H
. (4.3)

5. Verification by DNS
To verify this simplified two-component convection model, we use the CUPS

code (Chong, Ding & Xia 2018) to solve (3.5)–(3.8) by a fourth-order finite-volume
method on staggered grids. In addition, the simulations cover a much wider range
of both Grashof number Gr and buoyancy ratio Λ than our experiment. The Prandtl
number and the Schmidt number are fixed at Pr = 0.7 and Sc = 0.6. The DNS are
conducted in a cubic domain. All boundaries are set to be impermeable and non-slip.
Moreover, we apply constant-value boundary conditions at the top and bottom plates
and zero-flux conditions at the sidewalls for both the temperature and the vapour
fields. We also adopt a non-uniform mesh with denser grids at the boundaries (the
grid spacing following a tanh function therein) in our simulations and use up to 2563

grids for the highest Grashof number of 3× 108, to ensure that both the Kolmogorov
and Batchelor scales are resolved (Shishkina et al. 2010). The parameters as well as
the time-averaged Nusselt number for both temperature and vapour can be found in
table 1.

The DNS results for the moisture transfer Nusselt number Nue are shown as open
squares in figure 3. It is seen that, under the present resolution, all data points with
different buoyancy ratios fall on a singe solid line, Nue= 0.143Gr0.283, which implies
that the moisture transfer Nussult number Nue is mainly determined by the Grashof
number Gr and is hardly affected by the buoyancy ratio Λ. In the same figure, we
plot the sensible heat transfer Nussult number NuT as open triangles. It is seen that
NuT exhibits the same scaling dependence on Gr as Nue, but with a slightly larger
magnitude; a power-law fitting gives NuT = 0.152Gr0.283. The difference between Nue
and NuT is about 6 %. The fact that both Nue and NuT exhibit negligible dependence
on the buoyancy ratio shows that the Grashof number is the primary control parameter
in determining the transport properties of both scalars.

In the upper left-hand corner of figure 3, we show a magnified portion of the
plot containing the experimental data (squares). It is seen that the experimentally
determined moisture transfer rate Nue is in general higher than the corresponding
DNS data. This difference may be attributed to the fact that, in our simulation, the
upper boundary is treated as flat and non-slip. Whereas in the experiment, water
condensed in the upper boundary forms a ‘rough’ liquid–gas interface and then
drips down occasionally. Such effect is neglected for the moment and may introduce
additional uncertainty. Wei et al. (2014) studied the heat transport in RB convection
with smooth bottom and rough top plate, which is close to the situation in our present
experiment. They found that the heat transport efficiency in such a configuration is
slightly higher than that in the smooth–smooth cell and much lower than that in the
rough–rough cell. On the other hand, the dripping event will undoubtedly induce a
perturbation in the flow field and thus might trigger a burst of the heat flux. We
can make an estimation as follows. Taking the point of the top right-hand corner in
figure 2 as an example and considering that the SHF cannot exceed the total heat
flux, the mass flux of water vapour is about dm/dt = ΦL × S/L < Φq × S/L ∼ 6g/h.
Therefore, we consider that the effects of dripping are relatively small compared to
the sidewall condensation as we discussed in § 4.
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Pr Sc RaT Rae Λ Gr Ngrids NuT Nue tavg

0.7 0.6 3× 105 0 0 4.29× 105 723 5.92 5.55 1000
0.7 0.6 3× 105 2.57× 104 0.1 4.71× 105 723 6.09 5.71 1000
0.7 0.6 3× 105 7.71× 104 0.3 5.57× 105 723 6.45 6.04 1000
0.7 0.6 3× 105 1.29× 105 0.5 6.43× 105 723 6.67 6.24 1000
0.7 0.6 3× 105 1.80× 105 0.7 7.29× 105 723 6.90 6.47 1000
0.7 0.6 3× 105 2.57× 105 1 8.57× 105 723 7.12 6.70 1000
0.7 0.6 106 0 0 1.43× 106 963 8.34 7.74 1000
0.7 0.6 106 8.57× 104 0.1 1.57× 106 963 8.55 8.00 1000
0.7 0.6 106 2.57× 105 0.3 1.86× 106 963 9.08 8.49 1000
0.7 0.6 106 4.29× 105 0.5 2.14× 106 963 9.44 8.84 1000
0.7 0.6 106 6× 105 0.7 2.43× 106 963 9.76 9.13 1000
0.7 0.6 106 8.57× 105 1 2.86× 106 963 10.3 9.67 1000
0.7 0.6 3× 106 0 0 4.29× 106 1283 11.4 10.7 1000
0.7 0.6 3× 106 2.57× 105 0.1 4.71× 106 1283 11.8 11.1 1000
0.7 0.6 3× 106 7.71× 105 0.3 5.57× 106 1283 12.5 11.7 1000
0.7 0.6 3× 106 1.29× 106 0.5 6.43× 106 1283 13.0 12.1 1000
0.7 0.6 3× 106 1.80× 106 0.7 7.29× 106 1283 13.4 12.6 1000
0.7 0.6 3× 106 2.57× 106 1 8.57× 106 1283 14.1 13.2 1000
0.7 0.6 107 0 0 1.43× 107 1623 16.2 15.1 1000
0.7 0.6 107 8.57× 105 0.1 1.57× 107 1623 16.6 15.6 1000
0.7 0.6 107 2.57× 106 0.3 1.86× 107 1623 17.4 16.4 1000
0.7 0.6 107 4.29× 106 0.5 2.14× 107 1623 18.1 17.0 1000
0.7 0.6 107 6.00× 106 0.7 2.43× 107 1623 18.8 17.6 1000
0.7 0.6 107 8.57× 106 1 2.86× 107 1623 19.7 18.5 1000
0.7 0.6 1.5× 107 1.29× 107 1 4.29× 107 2163 22.1 20.7 1000
0.7 0.6 1.8× 107 1.03× 107 0.67 4.29× 107 2163 22.0 20.6 1000
0.7 0.6 2.1× 107 7.71× 106 0.43 4.29× 107 2163 22.1 20.7 1000
0.7 0.6 2.4× 107 5.14× 106 0.25 4.29× 107 2163 21.9 20.5 1000
0.7 0.6 2.7× 107 2.57× 106 0.11 4.29× 107 2163 21.9 20.5 1000
0.7 0.6 3× 107 0 0 4.29× 107 2163 22.0 20.6 1000
0.7 0.6 3× 107 2.57× 106 0.1 4.71× 107 2163 22.6 21.2 1000
0.7 0.6 3× 107 7.71× 106 0.3 5.57× 107 2163 23.6 22.1 1000
0.7 0.6 3× 107 1.29× 107 0.5 6.43× 107 2163 24.6 23.0 1000
0.7 0.6 3× 107 1.80× 107 0.7 7.29× 107 2163 25.5 23.9 1000
0.7 0.6 3× 107 2.57× 107 1 8.57× 107 2163 26.8 25.1 1000
0.7 0.6 108 0 0 1.43× 108 2563 30.84 28.9 500
0.7 0.6 108 8.57× 106 0.1 1.57× 108 2563 31.7 29.6 500
0.7 0.6 108 2.57× 107 0.3 1.86× 108 2563 33.5 31.3 500
0.7 0.6 108 4.29× 107 0.5 2.14× 108 2563 34.9 32.6 500
0.7 0.6 108 6× 107 0.7 2.43× 108 2563 36.1 33.8 500
0.7 0.6 108 8.57× 107 1 2.86× 108 2563 37.8 35.4 500

TABLE 1. Simulation parameters and time-averaged Nusselt numbers for the temperature
NuT and water vapour Nue. The averaging time tavg is given in the last column.

It is worth mentioning that the boundary conditions associated with our experiment
and DNS are quite different, which might also be responsible for the differences
observed in figure 3. In our DNS, the flux of the water vapour is set to be zero;
such a condition is more close to the ideal case or the situation in nature, where
vapour transport takes place in an infinite or large lateral convection domain without
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Gr Λ ∆T (K) Tbulk (◦C) NuT,bot NuT,top Nue,bot Nue,top ηDNS tavg

2.86× 106 1 10.0 35.0 10.3 10.3 10.4 8.98 0.864 500
2.86× 106 1 10.0 40.0 10.3 10.3 10.4 8.95 0.861 500
2.86× 106 1 10.0 45.0 10.4 10.4 10.4 9.07 0.872 500
2.86× 106 1 10.0 50.0 10.3 10.3 10.3 8.94 0.871 500

TABLE 2. Simulation parameters and time-averaged NuT and Nue at both plates when
condensation on the sidewall is considered. The correction coefficient ηDNS is defined as
Nue,top/Nue,bot.

condensation. However, for the present experimental set-up, a sidewall is present
and kept at constant temperature, and so condensation is inevitable. Although a
correction has been made in § 4, the validation of the method needs to be justified.
As a test, we run several additional DNS by setting saturation vapour pressure at the
sidewall, e = es(T). As a result, there exits an outward vapour flux at the sidewall.
The correction coefficient is then defined as ηDNS = 〈∂zT〉top/〈∂zT〉bot. The tests are
conducted at Gr = 2.9 × 106, Λ = 1 with four bulk temperatures (table 2). The
temperature difference between the two interfaces is ∆T = 10 K. We compare the
correction coefficients acquired from DNS with those used for the experimental data
(4.2) with similar parameters in the inset of figure 3. It is seen that both coefficients
are insensitive to the changes in bulk temperature, and ηDNS is on average larger
than η for the experiment by about 8 %. For the temperature, the adiabatic boundary
condition we applied at the sidewall region may result in a slightly lower SHF than
for the constant-temperature boundary condition (Stevens, Lohse & Verzicco 2014).
We nevertheless consider this as a minor effect since the SHF accounts for less than
10 % of the total flux (figure 2b).

The fact that the two Nusselt numbers are almost the same can also be seen from
figure 4, where simultaneous snapshots of the temperature and vapour pressure iso-
surfaces are seen to be almost identical. For a close inspection, we show the contour
plots of both temperature (dashed curve) and vapour field (solid curve) in figure 5,
with the vertical cross-section in figure 5(a) and horizontal cross-section figure 5(b).
It is seen that both fields indeed show similar features, especially near the top and
bottom boundaries. The isolines of the temperature field nest in those of the vapour
field, which is due to the fact that the thermal diffusivity is slightly smaller than the
mass diffusivity of water vapour.

In figure 6(a), we show the parameter ranges explored in both experimental and
DNS studies in the 1/Λ–Gr plane. It is seen that under the present parameterization,
the experimental data for four different bulk temperatures correspond to four sets of
measurement, each with a fixed value of buoyancy ratio but varying Grashof number
Gr. In contrast, if the more conventional Rayleigh numbers RaT and Rae were to
be used instead, the experimental data will correspond to measurements with the
two control parameters both varying at the same time. This is shown in figures 6(b)
(experiment) and 6(c) (DNS), where Nue are plotted against both Rae and RaT . The
corresponding experimental parameter space is shown as open squares in the bottom
plane. Different colours denote different bulk temperatures, corresponding to those
in figure 2. It is seen that the moisture transfer rate Nue depends on Rae and RaT in a
complicated way and a simple functional form such as a power law is not applicable.
This further shows that the parameter set {Gr, Λ, Pr, Sc} proposed here is a suitable
choice for studying the two-component convection system in the present case.
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-0.250 0 0.250 -0.250 0 0.250(a) (b)

FIGURE 4. (Colour online) Snapshots of temperature (a) and water vapour content (b)
isosurfaces taken simultaneously from DNS data at Gr = 2.9× 107, Λ= 1, Pr = 0.7 and
Sc= 0.6.

0.5

0

-0.5

(a) (b)

FIGURE 5. (Colour online) Contour plots of the temperature field (dashed curve) and
vapour field (solid curve). (a) Snapshot of the vertical cross-section. (b) Snapshot of the
horizontal cross-section. Colour map corresponding to the temperature fields.

6. The buoyancy ratio dependence

Although the two Nusselt numbers are mainly determined by the Grashof number,
they may still have a weak dependence on the buoyancy ratio, which can be
seen from figure 7. In this figure, the compensated Nue and NuT are plotted as
functions of the inverse buoyancy ratio 1/Λ using the DNS data. To determine
the possible functional form of Nu(Λ), we use the two asymptotic limits of Λ as
constraints. When Λ =∞, the flow would be entirely temperature-driven and water
vapour should act as a passive scalar (and vice versa when Λ= 0); these two limiting
behaviours can be realized by the asymptotic function (ΛPr + Sc)/(Λ + 1). Fitting
this to the data points in figure 7 and assuming a power-law dependence, we obtain

(NueGr−0.283)Pr=0.7,Sc=0.6 = 0.138
(

PrΛ+ Sc
Λ+ 1

)−0.089

Pr=0.7,Sc=0.6

, (6.1)
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FIGURE 6. (Colour online) (a) Parameter space of the study in the {1/Λ, Gr} plane;
squares: experimental data; circles: DNS data. (b) Experimentally measured Nue as a
function of RaT and Rae; open squares: projection of the data to the parameter space in
the Rae, RaT plane. The colours in (a,b) correspond to different bulk temperatures and the
colour code is the same as in figure 2(a). (c) Values of Nue from DNS.

(NuTGr−0.283)Pr=0.7,Sc=0.6 = 0.147
(

PrΛ+ Sc
Λ+ 1

)−0.087

Pr=0.7,Sc=0.6

. (6.2)

Such a function incorporates the effect of buoyancy ratio Λ and would give the
correct asymptotic limits.

7. The case when one of the scalars is passive
To demonstrate that the functional form used in (6.1) and (6.2) is justified, we

consider the special case in which one of the scalars is active and the other is passive.
Let temperature T be the active scalar and vapour pressure e be the passive one.

To deduce the Pr dependence of NuT , a minimum of two points are required. Here
we choose NuT(Λ = ∞, Pr = 0.6) and NuT(Λ = ∞, Pr = 0.7). While for the Sc
dependence of Nue, the values at Nue(Λ=∞,Pr=0.7,Sc=0.7) and Nue(Λ=∞,Pr=
0.7, Sc= 0.6) are selected. However, equations (6.1)–(6.2) are only valid for Pr= 0.7
and Sc= 0.6. We therefore consider two limiting cases as follows.
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FIGURE 7. (Colour online) Compensated plot of Nue and NuT . Blue circles: NueGr−0.283;
red triangles: NuTGr−0.283; solid line: 0.138Gr0.283

[(ΛPr+ Sc)/(Λ+ 1)]−0.089; dashed line:
0.147Gr0.283

[(ΛPr+ Sc)/(Λ+ 1)]−0.087. The data scatter for the same Λ is about 2 % and
is the uncertainty of the DNS data.

Taking advantage of the fact that the T and e fields are symmetric in the governing
equations, we have NuT(Λ=∞,Pr= 0.6)=Nue(Λ= 0, Sc= 0.6) (where the quantity
on the right-hand side can be acquired by substituting Λ= 0 into (6.1)). The second
point can be obtained by substituting Λ=∞ into (6.2), which gives NuT(Λ=∞,Pr=
0.7). Combining these two points, we obtain NuT ∼ Gr0.28Pr0.34

= Ra0.28
T Pr0.06, which

is consistent with previously published results (Ahlers et al. 2009). Although the Pr
dependence of NuT is determined by only two points, the fact that it agrees with
known results suggests that the functional form of (6.1) and (6.2), which is deduced
based on asymptotic limits and symmetry of the governing equations, is reasonable.

We now consider the Sc dependence of Nue. Note that when Pr= Sc in (3.6) and
(3.7), the two scalars are governed by the same equation, despite one being active and
the other being passive. Therefore, Nue should be the same as NuT . Hence, Nue(Λ=

∞,Pr= 0.7, Sc= 0.7)=NuT(Λ=∞,Pr= 0.7, Sc= 0.7)=NuT(Λ=∞,Pr= 0.7, Sc=
0.6), where the last equality comes about because when Λ=∞, NuT does not depend
on Sc, because the vapour is now a passive scalar. We now need another point to
determine the Sc dependence of Nue, which can be obtained by substituting Λ=∞

into (6.1), which yields Nue(Λ=∞, Pr= 0.7, Sc= 0.6). Combining these two points,
we obtain the Schmidt number dependence of the passive scalar, i.e. Nue∼Gr0.28Sc0.43.
This implies that the transport of a passive scalar with large Schmidt number (or
low molecular diffusivity), which is usually the case for liquid solvent, is much more
efficient than that of an active scalar. To our knowledge, this is the first time that the
Schmidt number dependence of passive scalar transfer rate has been predicted, which
of course would need verification by future experiments.

8. A generalized Grossmann–Lohse theory
The Grossmann–Lohse (GL) theory (Grossmann & Lohse 2001, 2002; Stevens

et al. 2013), which has demonstrated great success in predicting both the Nu and
Re behaviours in turbulent RB convection, has been recently extended to two-scaler
convection system (Yang et al. 2018). In this section, we extend the GL theory to
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a two-component system using the new parameter set {Gr, Λ, Pr, Sc}. The basic
idea of the GL theory is to divide the total energy and thermal dissipation rates into
contributions from the boundary layer (BL) region and the bulk region:

εu = εu,BL + εu,bulk, (8.1)
εθ = εθ,BL + εθ,bulk, (8.2)
εe = εe,BL + εe,bulk. (8.3)

Together with the exact relations for all three dissipation rates

εu =
ν3

H4
RaTPr−2(NuT − 1)+

ν3

H4
RaeSc−2(Nue − 1)

=
ν3

H4
Gr

Λ

Λ+ 1
Pr−1(NuT − 1)+

ν3

H4
Gr

1
Λ+ 1

Sc−1(Nue − 1), (8.4)

εθ = κ
∆2

T

H2
NuT, (8.5)

εe =D
∆2

e

H2
Nue, (8.6)

we can obtain

Gr
Λ

Λ+ 1
Pr−1(NuT − 1)+Gr

1
Λ+ 1

Sc−1(Nue − 1)= c1
Re2

g(
√

Rec/Re)
+ c2Re3, (8.7)

NuT − 1 = c3Re1/2Pr1/2

{
f

[
2aNuT
√

Rec
g

(√
Rec

Re

)]}1/2

+ c4PrRef

[
2aNuT
√

Rec
g

(√
Rec

Re

)]
, (8.8)

Nue − 1 = c3Re1/2Sc1/2

{
f

[
2aNue
√

Rec
g

(√
Rec

Re

)]}1/2

+ c4ScRef

[
2aNue
√

Rec
g

(√
Rec

Re

)]
, (8.9)

where c1 = 8.05, c2 = 1.38, c3 = 0.487, c4 = 0.0252, a = 0.922 and Rec = (2a)2 are
constants determined by existing data (Stevens et al. 2013). Here we have used the
fact that the temperature and water vapour are equivalent to each other in this system
and thus the prefactors in both (8.8) and (8.9) are the same (Yang et al. 2018). Now
the three response parameters Re, NuT and Nue can be determined for given set of
control parameters {Gr, Λ, Pr, Sc}.

We compare our experimental and numerical results with the predictions of the
generalized GL theory in figure 8. The Prandtl number and Schmidt number are fixed
to be Pr= 0.7 and Sc= 0.6, respectively. The dashed line (dark blue) corresponds to
the prediction of the theory with density ratio equal to unity Λ= 1, while the solid
line (deep red) represents infinite density ratio (1/Λ= 0). The generalized theory also
predicts a negligible effect of density ratio on Nue. Furthermore, the Nue–Gr relation
of the theory follows exactly the same trend as both our experimental and DNS results,
despite some deviations at the lower end.
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FIGURE 8. (Colour online) Nusselt number Nue as a function of Gr. Filled squares:
experimentally measured Nue; open squares: Nue from DNS; solid line: 0.143Gr0.283;
dashed line: GL prediction for 1/Λ= 1; dotted line: GL prediction for 1/Λ= 0; colour
bar: inverse density ratio.

9. Implications for evaporation in nature
In hydrological cycles, the ocean is the ultimate source of all the water used in

natural ecosystems and in human activity. Hence a comprehensive understanding
of the worldwide ocean evaporation rate is necessary. However, the state-of-the-art
bulk parameterization method (Liu 1979; Fairall et al. 1996) may not be accurate
when the mean wind is low and thus mechanical driving is weak. In such
circumstances, the SHF and LHF generated entirely by natural convection, as
in the present case, may serve as a robust lower bound. This lower bound
may be estimated by using relevant parameters corresponding to sea surface and
in the atmosphere. We can express the Grashof number with bulk parameters:
Gr= 16[α(SST−Tbulk)+β(es(SST)− ebulk)]gH3/ν2, where SST denotes the sea-surface
temperature, Tbulk and ebulk are the bulk temperature and bulk water vapour pressure,
es(SST) is the saturation vapour pressure at the sea surface and H is the reference
height. The LHF is then ΦL = NueDL∆ρ,v/H = 0.138Gr0.283DL∆ρ,v/H, and the SHF
is ΦS =NuTk∆T/H= 0.147Gr0.283k∆T/H. Here we have neglected the buoyancy ratio
effect, which has been shown to be insignificant for moist air. It should also be
pointed out that the choice of reference height H has only a minor influence on the
above estimation since the Grashof number has a cubical dependence on H.

10. Conclusion
We have presented in this study an indirect experimental method for measuring

moisture transfer rates using natural convection as an example. We choose temperature
and water vapour pressure as state variables for this two-component system. The non-
dimensional moisture transfer rate Nue is determined indirectly from the total heat
flux, after a correction for the sidewall condensation. We also made a DNS study of
the system, to verify the experimental results and expand the parameter space. We
find reasonable agreement between the experimental and numerical results. Moreover,
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we propose to use the Grashof number Gr together with the buoyancy ratio Λ as
control parameters, and find that the transfer rates for both heat (NuT) and water
vapour (Nue) are mainly determined by the Grashof number Gr, and are only very
weakly dependent on the buoyancy ratio Λ. We further find that {Gr, Λ, Pr, Sc}
form a full set of control parameters, and is more suitable than other choices for the
present system. This set of parameters may also be applicable to describe other two-
component systems. When one of the scalars is passive, its transport properties can
also be inferred by considering the limiting cases. Moreover, the present results can
be readily extended to the field of hydrology. An example is the no-wind evaporation
limit of a water body, e.g. ocean, sea, lake or pond, which can be determined once the
surface temperature, bulk temperature and bulk specific humidity are given. Therefore,
the present results should complement existing bulk parameterization models for ocean
evaporation.
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