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An investigation on the microstructure and defects in the mechanically
milled Cu and Fe powders
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The microstructural characteristics of mechanically milled (MM) iron (Fe) and copper (Cu) powders
are investigated by means of various X-ray crystallography analysis methods. The conventional
Williamson–Hall and Warren–Averbach methods are used besides the modified Williamson–Hall,
the modified Warren–Averbach, and the Variance approaches, in proper cases. Afterward, the
obtained crystallite size and dislocation density are used to calculate the stored energy in the
nanostructured powders. For this aim, a new geometrical approach is developed which can consider
three-dimensional crystallites and the thickness of boundaries between them. Moreover, the released
energy during annealing of MM Cu and Fe powders is measured using differential scanning calorim-
etry. The results of line broadening analysis and geometrical modelling are combined to the calorim-
etry of a room temperature aged Cu powder. In this way, the thickness of grain boundary in the
nanostructured Cu is calculated to be 1.6 nm. © 2014 International Centre for Diffraction Data.
[doi:10.1017/S0885715614000761]
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I. INTRODUCTION

In past decades, mechanical alloying and milling were
used for synthesis of various categories of nanostructured ma-
terials such as elemental powders, super saturated solutions,
and amorphous compounds (Suryanarayana, 2004). The
main structural change during mechanical milling of pure met-
als is increase of the lattice defects. The reduction of crystallite
size because of the application of mechanical energy goes
along with the increase of volume fraction of grain boundaries
(GBs). As a matter of fact, a noteworthy proportion of atoms is
located inside or in the vicinity of GBs, triple junctions, and
dislocation cells.

The augmentation of research in the field of nanomaterials
and nanostructured materials caused a need for proper charac-
terization methods. The common method for structural charac-
terization of the mechanically milled (MM) metals is X-ray
crystallography (XRD) analysis. The sample preparation is
simple and the obtained characteristics are average of the en-
tire sample. These can be empirical advantages over the pow-
erful technique of transmission electron microscopy (TEM)
(Tian and Atzmon, 1999; Gubicza and Ungar, 2007).
Therefore, several XRD analysis methods have been devel-
oped to calculate the crystallite size, microstrain, or disloca-
tion density in different lattice structures.

Copper (Cu) and iron (Fe) are among the most applicable
engineering metals. Characteristics of nanostructural Cu and
Fe powders are widely studied. However, dissimilar results
are reported for MM powders. It is well established that the

milling condition can affect the results, while the XRD analy-
sis method should be considered as another possible reason of
discrepancy. Some calculated crystallite sizes of the powders
which were all produced by planetary ball mill are exhibited
in Table I. It should be mentioned that despite the same mill-
ing apparatus, the milling energy can still be different.
Nevertheless, a fraction of the observable disagreement of
the literature data can be related to application of different dif-
fraction analysis methods.

On the other hand, the expansion of GB network and
structural defects results in storage of a valuable amount of en-
ergy in MM metals and alloys. There have been attempts to
calculate the stored energy using a combination of the results
of XRD analysis and diffraction scanning calorimetry (DSC)
(Zhao et al., 2001; Zhao et al., 2002). However, in the major-
ity of efforts GBs were assumed as two-dimensional (2D)
planes. In recent works on the analysis of the mechanically al-
loyed Cu alloys, a spherical (Sheibani et al., 2010; Mula et al.,
2012) or cubic (Aguilar et al., 2009) shape was assumed for
nanocrystallites. Therefore, the thickness and volume of
boundaries were neglected, while in the case of nanostructured
materials the interface volume and the proportion of triple
junctions are notable parameters.

Efforts also have been made to consider the effect of
boundary thickness on the interface volume fraction. A simple
equation for estimation of the volume fraction of the boundar-
ies is 3δ/D, proposed by Mütschele and Kirchheim (1987) in
which δ stands for the boundary thickness and D is the grain
size. Later, Palumbo et al. (1990) proposed that the inter-
crystalline fraction is equal to 1− [(D− δ)/D]3. However,
the effect of crystallites shape on the boundary volume still
cannot be considered.
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The aim of the present study is firstly to apply suitable
XRD analysis methods for evaluating the microstructural
characteristics of nanostructured Cu and Fe powders and sec-
ondly, to estimate the energy and thickness of crystallite inter-
faces in a three-dimensional (3D) approach. For this aim, a
new geometrical model is derived for prediction of the volume
fraction of interface and triple junctions in the nanostructured
materials. Finally, the obtained results were combined with
DSC experiments to estimate the average thickness of crystal-
lite boundary in the nanostructural powders.

II. EXPERIMENTAL

A. Sample preparation

The nanostructured Cu and Fe powders were prepared
using a planetary ball mill with hardened steel vials
and balls. Each vial contained balls with diameters of 10
and 8 ml and were filled with argon gas before milling. The
99.8% purity Cu and Fe powders were subjected to 48 h of
milling with the ball to powder weight ratio of 20:1 and the
rotation speed of 370 RPM. Additionally, 1 wt% of Stearic
acid was added to the powder mixture as lubricant. The sam-
ples are marked as Cu48 and Fe48. Finally, the contamination
of Fe in the Cu powder because of milling apparatus was mea-
sured using wet chemical analysis, which was 0.4 wt%.

B. Characterization

The size and morphology of the milled powders were de-
termined using scanning electron microscopy with secondary
electron imaging. Afterward, XRD experiments were conduct-
ed at room temperature, using a PANalytical-Xpert diffrac-
tometer. Since the fluorescence of Fe powder under CuKα
radiation has a detrimental effect on the quality of XRD pro-
files, the experiments were conducted using CoKα radiation
(1.78901 Å). The 2θ step was set at 0.02° and the counting
time per step was 4 s, in the range of 2θ = 40–120°. In addition
to the newly milled metals, a milled Cu sample which had
aged at room temperature for 9 months was also subjected
to the XRD analysis (marked as sample Cu48-9).

To calculate the instrumental broadening, the Caglioti
equation (Caglioti et al., 1958) was used:

FWHM2 = U tan2 u( ) + V tan u( ) +W (1)

FWHM is full width at halfmaximumof height of the peaks and
U, V, andW are the indices which can be determined by the aid
of a standard specimen. An annealed pure alumina sample was
prepared as the standard sample. Afterward, the instrumental

broadening and background were removed from the diffraction
profiles using the software MarqX (Dong and Scardi, 2000), in
which the background is calculated by a third-order polynomial
function and the reflections are fitted using a pseudo-Voigt
function. The refinement procedure is continued until a good
agreement between the calculated and measured profiles is
achieved. Afterward, determination of crystallite size and
dislocation density was performed using the Williamson–
Hall (WH) (Williamson and Hall, 1953), Warren–Averbach
(WA) (Warren and Averbach, 1950), modified Williamson–
Hall (MWH), modified Warren–Averbach (MWA) (Ungar
and Borbely, 1996), and Variance (Wilson, 1962; Mitra and
Mukherjee, 1981) methods. Finally, thermal analysis of the
milled powders was performed in a Metler Toledo scanning
calorimeter (DSC1); with a slow heating rate of 5 K min−1,
up to 700°C. About 10 mg of powder was used for each run.

III. RESULTS

A. Particle size

The overall morphology of Cu and Fe powders after 48 h
of milling are shown in Figures 1(a) and 1(b), respectively.
The Cu powder contains flaky particles with generally uni-
form size, whereas the Fe particles are rather equiaxed and ag-
glomerated. On the other hand, the diameter of the milled Cu
flakes is mostly in the range of 15–30 µm; while the Fe parti-
cles show size deviation in the range of 1–10 µm. As can be
seen in Figures 1(c) and 1(d), both the Cu and Fe particles
are formed by cold welding of smaller particles. It is also
well known that severe plastic deformation of metals results
in the formation of subgrain boundaries. Therefore, each pow-
der particle contains several cold-welded grains and each grain
may contain thousands of crystallites. Therefore, since the par-
ticle size of both powders is in the micrometer scale, they
should be considered as nanostructured materials not
nanomaterials.

B. XRD analysis: crystallite size and dislocation density

The XRD profiles of the samples are presented in
Figure 2. According to the WH method, the volume-averaged
crystallite size <DV> and lattice microstrain , 12 .1/2 are re-
lated via Eq. (2).

b∗ = 1
kDV l

+ 2k12l1/2d∗ (2)

In which β* is the integral breath in the reciprocal space and d*

is the reciprocal lattice vector. The variation of β*versus d* for

TABLE I. The reported crystallite sizes of Cu and Fe powders, which are calculated by various XRD analysis methods. The samples are all produced by
planetary ball-mill.

Material Analysis method Milling time (h) Crystallite size (nm) Reference

Copper Scherrer–Wilson 10 18 Khitouni et al. (2009)
Scherrer–Wilson 100 10.9 Zhao et al. (2002)
WPPM 48 29 Fais and Scardi (2008)
WPPM 24 35 Boytsov et al. (2007)

Iron Scherrer 1 17 Le Brun, Gaffet et al. (1992)
Scherrer 54 12.7 Guittoum et al. (2010)
Scherrer–Wilson 140 7.6 Zhao et al. (2001)
Williamson–Hall 45 19.2 Delshad Chermahini et al. (2009)
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the sample Cu48 is plotted in Figure 3(a) and the resulted size
and strain can be seen in Table II. However, the five data
points do not have a linear trend and the parameter R2 is just
0.54 for the fitted line. This can be caused by the effect of dis-
locations as a source of anisotropic strain broadening.

On the other hand, the crystallite size which results from
the Scherrer equation (Langford and Wilson, 1978) in the
<111> direction is near twice of the <311> direction. This
may be interpreted as a sign of anisotropic size broadening.
On the other hand, the strain anisotropy because of the for-
mation of stacking faults in the (111) plane of face centered
cubic (FCC) materials can affect the calculated crystallite size
in the <111> direction. We have also calculated the crystallite
size of Cu crystallites using Rietveld refinement (Mojtahedi
et al., 2013), which were 13.5, 7.6, 9.5, and 9.6 nm for
(111), (200), (220), and (311) diffractions, respectively. It
should be mentioned that the crystallite size in the <200 > ,
<220 > , and <311> directions are not significantly different.
Therefore, the difference of calculated size in the <111> di-
rection can be caused by a combination of crystallite shape
and stacking faults.

A very common method for the estimation of the disloca-
tion density in materials science is the equation of Williamson
and Smallman (WS) (Williamson and Smallman, 1956):

r = 2
��
3

√
k12l1/2

Db
(3)

where b and ρ are the Burgers vector length and the disloca-
tion density, respectively. The effect of dislocations is also
considered in the modified WH method, in which Eq. (2) is
adjusted to the form of Eq. (4), where A is a factor related
to the outer cut-off radius of dislocations (Re) and Chkl is
the average dislocation contrast factor.

b∗ = 0.9
kDV l

+ pA2b2

2

( )1/2

r1/2d∗Chkl
1/2 + O(d∗Chkl) (4)

The crystallite size can be calculated by plotting β* versus
d∗Chkl

1/2 and fitting a second-order equation. For this aim,
the contrast factors of the edge and screw dislocations of Cu
were calculated using the program ANIZC (Borbely et al.,
2003) (Table III). As can be seen in Figures 3(b) and 3(c),
in the case of edge dislocations the variation of β* versus
d∗Chkl is irregular and the fitting quality is poor, whereas in
the case of screw dislocations a second-order polynomial
equation can be well fitted to the data points. This indicates
that the screw dislocation type has the main fraction among
dislocations in the milled Cu powder. Finally, the crystallite
sizes for samples Cu48 and Cu48-9 were calculated using
the intercept of the corresponding curves (Table II).

The microstrain or the density of dislocations cannot be
calculated via the MWH method. According to the WA meth-
od, the intensity of the diffraction peaks can be expressed via
Eq. (5), in which A(L) and B(L) are the Fourier coefficients and

Figure 1. Secondary electron images showing: (a) morphology of Cu powder after 48 h of milling, (b) morphology of Fe powder after 48 h of milling, (c) typical
shape of a single Cu particle, and (d) typical shape of a single Fe particle.

16 Powder Diffr., Vol. 30, No. 1, March 2015 Mojtahedi et al. 16

https://doi.org/10.1017/S0885715614000761 Published online by Cambridge University Press

https://doi.org/10.1017/S0885715614000761


L is the Fourier length.

I s( ) = K s( )
×

∑L=+1
L=−1 A L( ) cos cos 2pLs( ) + B L( ) sin sin 2pLs( )

(5)

On the other hand, the microstrain, the diffraction vector and
the Fourier coefficient of crystallite size [AS(L)], are related
to each other via Eq. (6).

lnA L( ) = lnAS L( ) + 2p2d∗ 2
hkl , L

2 , 12 L( ) . (6)

On the basis of the works of Krivoglaz (Krivoglaz and
Ryaboshapka, 1963; Krivoglaz, 1996) and Wilkens
(Wilkens, 1976), it is stated that in the case of anisotropic
broadening, Eq. (6) should be modified to the following
form (Ungar and Borbely, 1996):

lnA L( ) = lnAS L( ) − 1/2rb2L2p ln Re/L
( )

d∗2Chkl

+ O(d∗)4(Chkl)
2 (7)

Now the dislocation density can be calculated by plotting the
variations of lnA( L ) versus d∗ 2Chkl for various quantities
of L. The variations are plotted for the edge and screw dislo-
cation types in Figures 4(a) and 4(b), respectively. Again the
data for screw dislocations can be well fitted to a second-order
equations; therefore the MWA method confirms the result of

the MWH method about the principal dislocation type in the
MM Cu powder.

The MWA method can be applied as a method for
calculation of the dislocation density, which is more reliable
than Eq. (3). For each of the assumed amounts of L
in Figure 4(b), an equation in the form of A(L)x2 + B(L)x +
C = 0 can be resulted. Afterward, by plotting the variations
of the term B(L)/(πb2L2/2) versus L, the dislocation density
can be calculated.

The results of the WH, MWH, WA, and MWA methods
for the milled Cu powders are collected in Table II. It can
be seen that the WA method resulted in smaller crystallite
size and higher microstrain than the WH method. As can be
seen in Table II, deviation of results in the conventional WH
method is too high. As previously mentioned, this inaccuracy
is attributable to the application of linear fitting. The mathe-
matical deviation becomes essentially smaller by application
of the Modified form of WH plot.

The density of dislocations is calculated using the WS
equation, as well as the MWA method. For this aim, the crys-
tallite size and microstrain of Cu powders which are calculated
from both of the WA and WH methods are inserted in Eq. (3).
The estimated amounts of dislocation density are highly
correlated to the XRD analysis method. It seems that more re-
search is required to evaluate the precision of the results of
various analysis methods for non-equilibrium nanostructured
materials.

The obtained microstructural characteristics of the MM Fe
powder by means of the WH and WA methods are also

Figure 2. (Color online) The XRD profiles of Cu and
Fe samples.
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imbedded in Table II. There were just three reflections of
(110), (200), and (211) available in the diffraction range;
therefore the calculated results may not be precise enough.
Consequently, to obtain the crystallite size and dislocation
density of Fe, the momentum method is applied despite the
MWH and MWAmethods. This method can provide adequate

accuracy in the case of insufficient reflections. According to
the works of Wilson (Wilson, 1962) and Groma (Groma,
1998), the kth-order moment of the intensity distribution
I(q) can be defined as:

Mk(q) =
∫q
−q

qkI(q)dq/
∫1
−1

I(q)dq (8)

In which q = 2/λ(sinθ− sinθ0), where θ0 is the Brags angle.
The different order moments and the Fourier transform of
the intensity distribution are in the following relation:

Mk(q) = (i)k
1

A(0)
dk

dLk
A(L) L=0| (9)

Groma has calculated the second- and fourth-order moments
as Eqs (10) and (11), respectively, in which C�F is the crystallite
size and L = p/2g2b2C (Borbély and Ungar, 2012), where g
is the diffraction vector. The amounts of C and Λ for the dif-
fraction peaks of Fe are expressed in Table IV. It should be
noted that the dislocation character is unknown; therefore
the dislocations are assumed to be half-edge and half-screw
(Ungar et al., 1998a, 1998b). Borbely and Groma (2001)
have indicated that if the crystallite size causes notable broad-
ening, the dislocation density could not be calculated from
M2(q). In fact, evaluation of the dislocation density from
M4(q) is more accurate.

M2(q) = 1
p2C�F

q− L

4p2 K2C�F
2
+ Lkrl ln (q/q0)

2p2
(10)

M4(q)
q2

= 1
3p21F

q+ Lkrl
4p2

+ 3L2kr2l
4p2q2

ln2 (q/q1) (11)

To utilize the Variance method, a pseudo-Voight function was
fitted to each reflection profile. In this way, the FWHM and the
fraction of Lorentzian function were obtained for each peak
and then the fourth moment of each reflection was calculated.
The variations of M4(q)/q

2 versus q are plotted in Figure 5.
Finally, a linear function is fitted to the first linear zone of
each curve and C�F is calculated from the slope of the lines.
On the other hand, to calculate the dislocation density, Chkl is
calculated for each of the reflections of Fe. Afterward, the pa-
rameter of Λ is determined and Λ 〈 ρ 〉 is plotted versus Λ.
The dislocation density is then calculated by a linear fit. As
can be seen in Table II, the dislocation densities of Fe which
are calculated using the WS method are too high, while the re-
sult of the Variance method is in a reasonable range.

III. DISCUSSION

A. Geometrical modelling of a nanostructured material

The truncated octahedral (TO) is widely applied as a rep-
resentative of the 3D geometry of grains and cellular structures
(Aste et al., 1996; Pari and Misiolek, 2008). In this study, we
also considered the boundaries between TO grains as 3D
spaces. Schematic illustration of the crystallites and the related
interface volumes are shown in Figures 6(a) and 6(b), respec-
tively. The 2D or 3D hexagonal shapes are also used for
modelling the microstructural behaviour of nanostructured

Figure 3. (Color online) The plots for the reflections of sample Cu48. (a) The
WH plot. (b) The modified WH plot for edge dislocation type. (c) The
modified WH plot for screw dislocation type.
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materials (Yamakov et al., 2002; Shimokawa et al., 2005).
Here, 3D prisms with hexagonal base are applied, which are
presented in Figure 7(a). As can be seen in Figure 7(b), the
thickness of GB boundary is presented by m. Flaky and co-
lumnar crystallites will be modelled by changing the ratio of
dimensions of the prism.

In the next step, it is necessary to assume a reasonable
amount for the interface thickness. It is common to assume
m = 0.5 nm, while the inter-crystalline disordered regions
may be wider in the deformed materials. Some available
data about GB width of elemental metals can be seen in
Table V. It can be seen that the diffusional width is normal-
ly about 0.5 nm, while the reported structural widths show
more variations. The presence of a layer with internal stress
around GBs (Guo et al., 2013) can be the source of this
variation. The relaxation of boundaries under low-
temperature annealing of Fe powder is proved by
HRTEM imaging (Jang and Atzmon, 2006). It is also
shown that far from equilibrium interfaces can have various
thicknesses (Li et al., 2000). However, it would be possible
to consider a larger average boundary width in the de-
formed nanostructured metals. Therefore, the boundary
width of the MM metals is stated as a variable in the fol-
lowing calculations.

1. Truncated octahedral

The volume of a TO in Figure 6(a), with the edge length
of s, is equal to:

VTO = 8
��
2

√
s3 (12)

As is displayed in Figure 6(b), four kinds of space exist around
each TO: the spaces between two square sides (six pieces), the
spaces between two hexagonal sides (eight pieces), the spaces
between three edges (36 pieces) which can be representative of

triple junctions, and the spaces between four corners (24 piec-
es), which can illustrate the vortex points. To calculate the in-
terface volume which belongs to each crystallite, the volume
of each of the mentioned spaces should be multiplied to its
total number around a single TO, and then to the fraction of
that space which is related to each crystallite. Therefore, the
relation of interface volume for each TO crystallite and the in-
terface thickness is:

VIS
TO = 2

��
3

√
s2 m+ 6

��
3

√
s2 m+ 3.266

��
3

√
m2 s

+
��
3

√
/2m3 (13)

The number of crystallites in one mole of milled materials can
be calculated via Eq. (14), in which Vm is the molar volume.

nTO = Vm

8
��
2

√
(s+ m��

6
√ )3

(14)

Finally, the total volume of interface in one mole of material
can be calculated:

VI
TO = (nTO)

× 2
��
3

√
s2 m+ 6

��
3

√
s2 m+ 3.266

��
3

√
m2 s+

��
3

√
/2m3

( )
(15)

2. Hexagonal prism

As can be seen in Figure 7(a) the geometry of a prism with
hexagonal base can be defined by three dimensions of L1, L2,
and L3. There are seven shapes of space at the interfaces of
each crystallite, which are shown in Figure 7(b). Calculation
of the volume of these interfacial spaces using three dimen-
sions of L1, L2, and L3 is difficult; therefore additional dimen-
sions are define in Figure 7(c). A section of a tetragon with the
same area is also shown. The transformation of the dimensions
is the same as in Eqs (16).

L1 = c+ 2U, d = c− 2U = L1 − 4U, V = L2/4,

T =
�������������
4U2 + 4V2

√
(16)

The volume of a single crystallite is VS
P = L2 L3c. Using the

same approach as the TO geometry, the interface volume,
which is related to one crystallite can be calculated via

TABLE II. The crystallite size, microstrain, and dislocation density of ball-milled Cu and Fe powders, calculated using different XRD analysis methods.

Sample Size (nm) Microstrain (%) Method ρ ( × 1015 m−2) Method

20.9 ± 13.4 0.15* WH 1.00* WS
Cu48 12.9 ± 0.0 0.40 ± 0.01 WA 4.17 ± 0.65 WS

26.6 ± 5.28 – MWH 2.08 ± 0.23 MWA
21.8 ± 13.4 0.15* WH 0.97* WS

Cu48-9 13.0 ± 0.1 0.39 ± 0.01 WA 4.05 ± 0.63 WS
26.7 ± 7.19 – MWH 2.06 ± 0.31 MWA
10.1* 0.92 ± 0.87 WH 12.71* WS

Fe48 2.6 ± 0.1 0.63 ± 0.03 WA 36.66 ± 7.44 WS
3.9 ± 0.87 – Variance 6.97 ± 0.58 Variance

*The calculated deviation was higher than the data itself.

TABLE III. Contrast factors of the edge and screw dislocations for the
diffraction planes of Cu.

Diffraction plane Cedge Cscrew

111 0.1378 0.0470
200 0.3048 0.3124
220 0.1795 0.1133
311 0.2261 0.1874
222 0.1378 0.0470
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Eq. (17):

V IS
P = 2TmL3 + dmL3 +

��
3

√

2
m2 L3 + cmL2 + m2d

+ 2m2T+
��
3

√

2
m3 (17)

Afterward, the number of crystallites and the volume of inter-
face can be calculated via Eqs (18) and (19), respectively:

nP = Vm

VS
P + VI S

P

(18)

VI
TO = (nP)×

(
2TmL3 + dmL3 +

��
3

√

2
m2 L3 + cmL2

+ m2d+ 2m2T+
��
3

√

2
m3

)
(19)

As a matter of fact, the accurate volume fraction of interfaces
in each geometry can be derived using the concept of Eq. (20),
in which VS is the volume of one crystallite and VIS is the re-
lated interface volume.

VI = 1− VS

VS + VIS
(20)

A comparison of this approach with the equations of
Mütschele and Palumbo is plotted in Figure 8. The crystallite
size (D = 6 nm) is considered as the diameter of a sphere and
then, equivolume TO and prism are applied. In the case of
prismatic geometry, three kinds of crystallites with equiaxed

(L2 = L3 = a), flaky (L2 = L3 = b = 2c), and columnar (L3 = c
= 2b, L2 = b) shapes are modelled. It can be seen that the inter-
face fraction which results from the equation of Mütschele is
larger. Moreover, by increasing the boundary thickness, VI in-
creases linearly and rapidly. Reaching the limit of 3δ =D, the
interface volume fraction can increase to more than 100%
which has no physical meaning. On the other hand, the
model of Palumbo exhibits small volume fraction when the in-
terfaces are rather thin; but also shows a high tendency to in-
crease with the increase of boundary thickness. However, it
will rise from 100% when the crystallite size is larger than
boundary thickness. The interface volume fraction which re-
sults from the approach of this study exhibits a slower increase
and would not rise from 100% in any situation.

B. The stored energy of defects

The stored energy can be divided into the interfacial ener-
gy and strain energy of dislocations. The GB energies (γ) of
Cu and Fe at room temperature are reported to be 716 and

Figure 4. (Color online) The variations of lnA(L) versus d∗2Chklfor (a) edge dislocation character, (b) screw dislocation character, related to sample Cu48 for
L = 1 nm to L = 10 nm.

TABLE IV. Contrast factors and the parameter LambdaΛ for the diffraction
planes of Fe.

Diffraction plane Cedge Cscrew C L

110 0.1378 0.0470 0.1442 1.3612
200 0.3048 0.3124 0.2699 5.0869
211 0.1795 0.1133 0.1414 4.0833

Figure 5. (Color online) The plot of M4(q)/q
2 versus q for the three

diffraction peaks of Fe48. The fitted line to the first linear part of (200)
curve is shown as an example.
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826 mJ m−2, respectively (Zhao, 2006). Assuming m = 0.5
nm for relaxed boundaries, the room temperature GB energies
of Cu and Fe can be calculated as 1432 × 106 and 1652 × 106

J m−3, respectively. Now the increase of interface width in
non-equilibrium boundaries, will result in higher interface vol-
ume and more stored energy.

The calculated interface stored energies of the milled
powders are shown in Table VI. The crystallite sizes which
are resulted from the MWH method (in case of Cu) and the
Variance method (in case of Fe) are used as the finest approx-
imations. For all of the prismatic shapes, U is assumed as
0.25c. Moreover, the average interface thickness in the nano-
crystalline milled powders is assumed as 0.8 nm.

The dislocation energy for one mole of material can be
calculated via Eq. (21), in which ED is the dislocation energy
for unit length of dislocation line. ED can be calculated via Eq.
(22) (Hull and Bacon, 2001), in which G is the shear modulus,
Re and ro are the outer and inner radiuses of the dislocation
strain field and α is equal to 1/4π for screw and 1/4π (1− υ)
for edge dislocations. υ is the Poisson’s ratio.

Edis = rEDV
m (21)

ED = aGb2 ln (Re/r0) (22)

Figure 6. (Color online) (a) Schematic illustration of
TO crystallites with a boundary thickness of m at the
hexagonal sides, (b) four kinds of interfacial spaces.

Figure 7. (Color online) (a) Schematic illustration of crystallites as prism with hexagonal base, (b) the seven shapes of boundary volumes which exist in this
geometry, and (c) the applied dimensions.

TABLE V. Comparison of the literature data about GB width of metals with various grain sizes and preparation methods.

Metal Width (nm) Grain size Sample preparation Calculation method Reference

Ag 0.5 200 µm Annealing GB self-diffusion Sommer and Herzig (1992)
Au 0.6–2.2 A bicrystalline systems Vapour deposition An electron diffraction technique Hagege et al. (1982)

0.8–3.7 Hot-pressing + annealing
Cu 0.5 50–80 µm Annealing GB self-diffusion Surholt and Herzig (1997)
Cu* 0.8 6.09–12.17 nm – Central-symmetry parameter Li and Xu (2011)
Cu 2.1 About 100 nm Severe plastic deformation Electrical resistivity Islamgaliev et al. (1997)
α-Fe 0.5 2.5 mm Annealing GB self-diffusion Inoue et al. (2007)
Ni 0.6 500 µm Annealing GB self-diffusion Prokoshkina et al. (2013)
Ni* 0.7 5.2–12 nm – Geometrical modelling Caro and Van Swygenhoven (2001)
Ni 3.7 About 100 nm Severe plastic deformation Electrical resistivity Islamgaliev et al. (1997)
Pd 0.7–1.1 8–11 nm Gas condensation + compaction GB diffusion Mütschele and Kirchheim (1987)
Pd >0.6 8.9 nm Gas condensation + compaction HRTEM Wunderlich et al. (1990)
Pd 0.4 ± 0.2 5 nm Gas condensation + compaction HRTEM Thomas et al. (1990)
α-Ti 0.5 200–300 nm Equal channel angular pressing GB diffusion Fiebig et al. (2011)

*The boundary width is result of computer simulation.
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Here, the internal radius is assumed to be equal to the Burgers
vector and the external radius is assumed as half of the mini-
mum distance between two dislocations. It is stated that the
least distance between two edge dislocations can be calculated
via Eq. (23) (Nieh and Wadsworth, 1991), where h is hard-
ness:

Lmin = 3Gb
p(1− y)h

(23)

Using the material parameters in Table VII, the minimum dis-
tance between dislocations in Cu and Fe is calculated to be
equal to 5.6 and 4.2 nm, respectively. On the other hand, the
dislocation densities form the MWA method (in case of Cu)
and the Variance method (in case of Fe) are applied.

As can be seen in Table VI, the main element in the stored
energy is the proportion of interfaces. This result is in agree-
ment with the works of Oleszak (Oleszak and Shingu, 1996)
and Zhao et al. (Zhao et al., 2001; Zhao et al., 2002) on the
ball-milled metals. Usage of various crystallite shapes
changed the calculated interface energy about 10%.
However, the main geometrical parameter, which affects the
stored energy is the thickness of interface. For example, in-
crease of m from 0.5 to 1.5 nm results in growth of the inter-
face energy of Cu48 from 626 to 1733 J mol−1.

C. Estimation of the interface width of Cu

The crystallite size of milled Fe is drastically smaller than
Cu. Therefore, the calculated stored energy in nanocrystalline
Fe is superior. It may be concluded that the released
energy during DSC annealing of Fe powder should be higher
than Cu. But as can be seen in Table VI, Δ HDSC shows a re-
verse trend. On the other hand, the crystallite sizes of Cu48
and Cu48-9 are nearly the same, but the released energy of
the sample Cu48 is about five times higher than that of
Cu48-9.

The DSC curves of samples Cu48 and Cu48-9 can be
seen in Figure 9. In the newly milled Cu sample, energy is
released between 150 and 340°C via two connected broad
peaks, while the first peak is disappeared in the aged powder.
It can be concluded that the first exothermic peak was
because of the recovery of far from equilibrium boundaries
and this recovery was conducted during room temperature
ageing. Fecht et al. (1990) claimed that the boundary energy
of ball milled metals is larger than the energy of fully
equilibrated GBs. Here, the difference between the released
energy of samples Cu48 and Cu48-9 is 891 J mol−1, which
can be considers as excess interface enthalpy. Therefore,
this energy should be added to the calculated energies of
Table VI. The increased interfacial enthalpy can be seen in
Table VIII.

Using the presented geometrical model, the increased GB
energy (γ *) of the milled powder can be calculated indirectly.
As an example, the stored interface energy of sample Cu48 in
TO geometry is calculated as 1868 J mol−1. Using an as-
sumed boundary thickness of 0.8 nm, γ* of milled Cu can
be calculated as 1369 mJ m−2. As can be seen in
Table VIII, the GB energy increased about 1.9 times during
mechanical milling. Assuming the GB energy of Cu as 613
mJ m−2, the proportion of γ* / γ for Cu after 15% deformation
and recrystallization at 600°C is measured to be about 1.6
(Grabski and Korski, 1970). This is slightly smaller than the
result of this study, which was predictable because the milled
powder is not submitted to any thermal process.

On the other hand, the variation of energy in a constant
crystallite size can be due to the difference in the thickness
of GB. In this way, the thickness of the developed interface
region of MM Cu is calculated about 1.6 nm (Table VIII).
Further relaxation is possible in longer ageing times.
Therefore these amounts should be considered as a minimum
quantity for the energy and the thickness of the far from equi-
librium boundaries of the ball-milled Cu.

V. CONCLUSION

The crystallite size and dislocation density of the Cu
and Fe powders were determined via conventional and

Figure 8. (Color online) Comparison of the GB volume fraction predicted by
the equations of Mütschele and Palumbo and the geometrical models of this
study. The crystallite diameter is assumed 6 nm and the equivolume shapes
are used.

TABLE VI. The calculated dislocation and interface energy of nanostructured Cu and Fe powders in various geometries, besides the released energy
during DSC.

Edis (J mol−1) DHI
TO (J mol−1) DHI

P (J mol−1) DHDSC(J mol−1)

Equiaxed Flaky Columnar

Cu48 9.6 977 1031 1047 948 1099
Cu48-9 9.5 1056 1027 1043 941 208
Fe48 50.2 5781 5664 5711 5356 948 & 967
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advanced XRD analysis methods. The results of WH, MWH,
WA, and MWA methods are compared in the case of nano-
crystalline Cu powder. The density of dislocations is also cal-
culated via method of WS, besides the modified WA
approach. It is clarified that the main dislocation type in the
MM Cu powder is screw. In case of nanocrystalline Fe pow-
der, the results of WH, WA, and WS methods are compared
to the Variance method.

On the other hand, a geometrical approach is offered
for calculation of the inter-crystalline volume using the
obtained crystallite sizes. Crystallites with equiaxed, flaky,
and columnar shapes are considered. The interface volume
fraction is calculated via the expression 1− VS/(VS + VIS),
in which VS is the volume of each crystallite and VIS the
connected interface volume. The specified equations were
stated for TO and prism with the hexagonal base. The
assumption of various crystallite shapes changed the cal-
culated stored energy almost 10%, while the main

geometrical parameter was the GB thickness. The thickness
is studied by application of differential scanning calorimetry
on room temperature aged Cu powder. It is calculated
that the thickness of GB is about 1.6 nm, whereas the
interface energy is increased 1.9 times than equilibrium
amount.
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