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Abstract

Understanding the determinants of parasite infection in different hosts is one of the main
goals of disease ecology. Evaluating the relationship between parasite–host specificity and
infection parameters within host communities and populations may contribute to this under-
standing. Here we propose two measures of specificity that encompasses phylogenetic and
ecological relatedness among hosts and investigated how such metrics explain parasite infec-
tion prevalence and mean infection intensity (MII). We analysed the parasites associated with
an anuran community in an area of Atlantic Forest and used the number of infected hosts and
the net relatedness index to calculate the phylogenetic and ecological specificities of the para-
sites. These specificity measures were related to infection metrics (prevalence and MII) with
generalized linear mixed models at community (all hosts) and population (infected host spe-
cies) scales. Parasite prevalence was correlated with the number of infected hosts and, when
considering only multi-host parasites, was positively related to parasite ecological specificity at
community and population scales. Thus, parasite species have similar prevalences in ecologic-
ally closer hosts. No relationship was found for parasite MII. Incorporating ecological char-
acteristics of hosts in parasite specificity analyses improves the detection of patterns of
specificity across scales.

Introduction

Identifying patterns in host–parasite relationships can help unveil what shapes such interac-
tions, enabling an understanding of how parasites diversify and circulate among different
hosts (Fountain-Jones et al., 2017). The use of different host species by parasites, i.e. their
niche breadth, is an intrinsic property described as host specificity (Poulin, 2006). Parasite
host specificity is not inflexible and can vary according to the composition of host assemblage
and the environment (Fountain-Jones et al., 2017; Saldaña-Vázquez et al., 2019). Thus, some
parasite species may be specialists or generalists according to ecological context. The success of
parasite association with different hosts within a community or population is generally mea-
sured through parameters such as infection prevalence and intensity. Similar, to host specifi-
city, such extrinsic infection parameters may vary according to ecological context and the
observed scale.

Despite there being numerous studies reporting on how host and environment affect infec-
tion prevalence, intensity and host specificity (Poulin, 1996, 2007; Poulin and Guegan, 2000),
little is known about how such parasite infection properties are related to each other. This
knowledge is elementary to the identification of patterns in host–parasite interactions
(Cooper et al., 2012) and to shedding new light on how they may be affected by host charac-
teristics. Considering that host evolutionary history and functional traits may be related to
variation in the expression of extrinsic characteristics of parasites (Fountain-Jones et al.,
2017; Saldaña-Vázquez et al., 2019), assessing parasite host specificity and its relationship
with infection parameters is crucial to understanding parasite establishment in host commu-
nities and to identifying potential host shifts (Fountain-Jones et al., 2017; Saldaña-Vázquez
et al., 2019).

The evolutionary history of hosts can influence the dynamics of parasite communities and
populations (Barrett et al., 2008; Lutz et al., 2015), and can explain the infection of multiple
hosts by parasites, i.e. their specificity, through the sharing of phenotypic similarities and
phylogenetically conserved resources among hosts (de Oliveira et al., 2019; Fecchio et al.,
2019). Thus, phylogenetic relationships among hosts can reflect parasite specificity, and the
success of parasite colonization and establishment will be reflected in infection metrics.
Similarly, host functional traits also affect their interactions with parasites (Dobson et al.,
2008; Kamiya et al., 2014). Host body size is a known predictor of host importance to the suc-
cess of host–parasite associations, with several studies reporting that larger hosts have a posi-
tive relationship with parasite infection parameters (Poulin, 1996; Kamiya et al., 2014;
Campião et al., 2015; Johnson et al., 2019). Experimental studies have shown that
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host body size is positively related to their attractiveness to para-
sites, thus influencing parasite choice (i.e. realized infection) of
certain hosts when multiple host species are available (Johnson
et al., 2019). Host attractiveness to parasites is also mediated by
chemical signs and behaviour (Haas, 2003). Moreover, host habi-
tat use is another factor that can potentially influence the diversity
and composition of parasite communities, as it directly influences
the scale of exposure to infective stages (Koprivnikar et al., 2017;
Leung and Koprivnikar, 2019; Euclydes et al., 2021). Although
both body size and habitat may be evolutionarily determined,
such traits may not present a phylogenetic signal when analysed
from a community perspective (Blomberg et al., 2003; Pavoine
et al., 2014), because the assembling of local communities may
result in a heterogeneous pool of sympatric species. In this con-
text, assessing the host specificity of parasite species from an eco-
logical or functional perspective can provide new information
about the role of non-phylogenetically related filters in the estab-
lishment of parasites in a host community (Clark and Clegg,
2017).

Anuran species represent a good model to assess patterns of
host use by parasites (Brooks et al., 2006; Hamann et al., 2013;
Johnson et al., 2013) since they are a species-rich group com-
prising high evolutionary distinctiveness and a great diversity
of ecological traits (Jetz and Pyron, 2018; Womack and Bell,
2020). Their parasite communities result from evolutionary
and/or ecological aspects (Poulin and Morand, 2000;
D’Bastiani and Campião, 2021), and analysing the relationship
between parasite infection and evolutionary and ecological char-
acteristics can contribute to disentangling how these two factors
influence the distribution and abundance of parasites in differ-
ent hosts (Bongers and Ferris, 1999; Hechinger et al., 2007).
In this context, the Atlantic Forest is a heterogeneous environ-
ment with a great diversity of anuran species (Ribeiro et al.,
2009) that provides variable ecological and phylogenetic oppor-
tunities for anuran–parasite interaction. Here, we assess parasite
infection of anuran species from the Atlantic Forest, and the
relationship between parasite host specificity and infection
prevalence and mean intensity. We propose two measures of
parasite specificity based on the phylogenetic and ecological
relatedness of infected host species and analysed how such
indexes influence parasite infection prevalence and intensity at
both community (all hosts) and population (infected host spe-
cies) scales.

Materials and methods

Host collection and parasite identification

Anurans were collected in Marumbi State Park (Mananciais da Serra),
state of Paraná, southern Brazil (25°29′31.9′′S; 48°59′36.8′′W).
The area has a subtropical climate and is composed of rainforests of
typical Atlantic Forest formations, such as ombrophilous forest,
which presents trees and shrubs in association with ferns and terres-
trial bamboos (Scheer and Blum, 2011), in addition to Araucaria
angustifolia, the dominant tree that distinguishes this type of forest
(Reginato and Goldenberg, 2007; Scheer and Blum, 2011). Anuran
collections, employed visual and auditory active search techniques to
find the target species (Crump and Scott Jr., 1994). A total of 213
individual anurans (135 males and 78 females, all adults)were cap-
tured by hand. Field sampling occurred in the warm and rainy seasons
from October 2018 to February 2019. Captured specimens were trans-
ported to the laboratory where they were measured for snout-vent
length and classified according to habitat use as arboreal and/or terres-
trial and/or semi-aquatic (Supplementary Table 1), based on Moen
et al. (2016) and Haddad et al. (2013). A total of 11 anuran species
of six families of anurans (Brachycephalidae, Hylodidae, Hylidae,

Leptodactylidae, Odontophrynidae and Bufonidae) were analysed.
The sampled anurans varied in body size and occupied arboreal, semi-
aquatic and terrestrial habitats (Supplementary Table 1).

The anurans were euthanized with 4% Lidocaine, following
the Federal Council of Biology (CFBIO – Resolution 308), and
then necropsied by longitudinal incision along the antero-
posterior axis for the collection of parasites. All organs of the
gastrointestinal tract, plus lungs, kidneys, bladder and abdom-
inal cavity, of the hosts were examined. Anuran nomenclature
was updated according to the American Museum of Natural
History (Frost, 2021). The collected specimens were deposited
at the Museum of Natural History Capão da Imbuia in
Curitiba, Paraná, Brazil.

Following anuran dissections, all parasites were collected and
fixed in 70% ethyl alcohol. For identification, emporary
slides were mounted for all specimens. Nematodes were clarified
with Aman’s lactophenol and acanthocephalans with lactic acid,
while platyhelminths were subjected to hydrochloric-carmine
staining (described by Amato and Amato, 2010). The specimens
were preserved in 70% ethyl alcohol and deposited in the
Invertebrate Collection of the Federal University of Paraná.
Parasite nomenclature follows Anderson et al. (2009) for
Nematoda, Amin (1985) for Acanthocephala and Khalil et al.
(1994) for Cestoda.

Infection parameters and host specificity metrics

We used two infection parameters to describe the populations of
parasite taxa: parasite prevalence and mean infection intensity
(MII). Each of these metrics was calculated for two different
scales: within the anuran community and in the population of
infected host species. For prevalence at the community scale,
the number of hosts infected by a species of parasite was
divided by the total anuran sample (213 anurans). For the popu-
lation scale, we considered all individuals of the species of hosts
infected divided by the total number of hosts, that latter combin-
ing individuals of the populations of the different infected species.
MII at the community scale is the mean number of parasite speci-
mens found in infected hosts, regardless of host species, whereas
MII at the population scale is the mean number of parasites
within the total number of individuals of an infected host species
(Bush et al., 1997).

The calculation of host phylogenetic specificity used the
anuran phylogenetic tree provided by Jetz and Pyron (2018),
pruned based on the anuran species sampled using the ‘match.-
phylo.data’ function (picante package, Kembel et al., 2010). A dis-
tance matrix among the sampled anuran species was created
based on phylogenetic relatedness, which was used to calculate
the phylogenetic specificity measure for the host species infected
by each parasite taxa with the ‘ses.mpd’ function(picante package,
Kembel et al., 2010).

Anuran functional traits, namely snout-vent length and habi-
tat, were used to determine ecological specificity. The first is
related to body size, a trait that directly affects parasite establish-
ment (Kamiya et al., 2014), while the latter reflects infection
opportunity due to exposure to parasite species, since different
habitats can restrict or facilitate parasite–host encounters
(Anderson, 2000; D’Bastiani et al., 2020). Snout-vent length is a
continuous variable, whereas habitat comprises three binomial
variables (presence/absence for arboreal, terrestrial and semi-
aquatic), with anuran species being able to be present in more
than one habitat. For the calculation of distance of variables of
different statistical types, an ecological dataset was first prepared,
based on mixed-variables coefficient of distance (Pavoine et al.,
2009), and then a distance matrix was generated using modified
Gower distance (Dray and Dufour, 2007) to represent ecological
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dissimilarity among anuran hosts. The same procedure used to
calculate phylogenetic host specificity was then employed but
using the host ecological distance matrix instead of the host
phylogenetic distance matrix (Pavoine and Bonsall, 2011).

It is worth noting that anuran functional traits were tested for
phylogenetic signal using the “phylosignal” function (picante
package; Kembel et al., 2010). Based on these analyses, we
found no phylogenetic clustering for any anuran functional traits,
with the exception of arboreal habitat (because all hylids are
arboreal). Nonetheless, we also did not find the host phylogenetic
distance matrix and the host ecological distance matrix to be cor-
related (Supplementary Script), so we considered both host speci-
ficity indexes as suitable to perform statistical analysis.

We used three metrics to calculate host specificity for each
parasite taxa: number of host species, host phylogenetic specificity
and host ecological specificity. The first metric is simply the num-
ber of host species infected by a given parasite taxa, whereas the
latter two were calculated based on the net relatedness index
(NRI) among the infected host species (Webb, 2000). The NRI
approach is commonly used in ecological studies to assess the
amount of phylogenetic and ecological information in a given
community (Webb, 2000; Webb et al., 2008). These analyses
determine whether a community is formed by phylogenetically
closely or distantly related species (high or low phylogenetic
NRI; Webb et al., 2008). Similarly, NRI also determines whether
a community has ecologically redundant or divergent species
(high or low ecological NRI; Pavoine and Bonsall, 2011).
Phylogenetic and ecological specificity metrics were not calculated
for 11 parasite species (out of the 25) because they were found
infecting only one host species, and these values are based on
the distance between host species.

The NRI varies from 1.96 to −1.96, which represents more
specialist or more generalist than expected by chance, respectively.
Thus, higher phylogenetic NRI values correspond to parasites
infecting closely related host species, which are thus considered
phylogenetic specialists. In contrast, lower phylogenetic NRI
values correspond to parasites infecting distantly related host spe-
cies, which are thus considered as phylogenetic generalists. We
opted to use NRI to calculate both host phylogenetic specificity
and host ecological specificity. This approach avoids any spurious
correlation with the number of host species, and overcomes bias
related to differences in sample size among anuran species. The
NRI is based on a null model comparison (Miller et al., 2017),
thus null models were generated through 1000 randomizations
of host species names in both the ecological distance matrix
and the phylogenetic distance matrix, the values of which were
then compared to observed values of the respective host specificity
metric. Comparisons were made by subtracting the random mean
from the observed values and dividing the result by the random
standard deviation, with random values being represented by
zero. Values below zero indicate low host specificity (phylogenet-
ically distantly related and/or ecologically distinct hosts), whereas
values above zero indicate high host specificity (the parasite tends
to infect phylogenetically closely related and/or ecologically simi-
lar hosts).

Statistical analysis

To test if host specificity affects the parasite infection metrics at
both community (all host species) and population (infected host
species) scales, we considered all analysed parasite taxa and
only multi-host parasite species. To do so, we created different
datasets: (i) two based on the infection metrics (prevalence and
MII) at the community scale, with columns presenting these para-
meters for each parasite species, and (ii) two based on the infec-
tion metrics at the scale of populations of infected hosts, with

rows presenting the values of prevalence and MII for a parasite
species in the infected host populations.

We then tested the effects of taxonomic, ecological and phylo-
genetic host specificity on the infection metrics. For taxonomic
specificity, we tested the effect of the number of host species on
prevalence and MII at community scale and at the scale of popu-
lations of infected hosts using the complete dataset for both. We
then created a data subset to analyse parasite species that infect
two or more host species (multi-host parasites), and analysed
whether the number of host species, phylogenetic host specificity
and ecological host specificity determine the prevalence and MII
of multi-host parasites. We used generalized linear models (GLM)
for the analyses at the community scale and generalized linear
mixed models (GLMM) at the scale of populations of infected
host. Different error distribution families were applied for each
model to respect the statistical assumptions (Zuur et al., 2009).
For the GLM, we used beta regression for the models of preva-
lence (Ferrari and Cribari-Neto, 2004) and linear regression
(Gaussian family) for the models of MII. For the GLMM, we
used a binomial family error distribution in the models analysing
prevalence and a Gaussian family error distribution to analyse
parasite MII. We used this distribution family for both the total
dataset and the multi-host species dataset, and also considered
host species and parasite species as random variables in all popu-
lation scale analyses. For each model, we assessed the significance
of each variable using analysis of variance (ANOVA) considering
α < 0.05.

Prior to running the models, we calculated the log10 of MII
values for better model fitting. We also validated all models
based on residual distribution, leverage and Cook-distance infla-
tion factor (Zuur et al., 2009). We report the estimated coefficients
and 95% confidence intervals (CI), and consider significant those
variables with a 95% CI that does not encompass zero. We used R
software version 4.0.0 for all analyses (R Core Team, 2020), the
scripts of which can be found in Supplementary material.

Results

The parasite community comprised 27 parasite taxa belonging to
three taxonomic groups: Acanthocephala, Nematoda and
Platyhelminthes. Acanthocephala was represented by one taxon
of Centrorhynchidae and Platyhelminthes by one taxon of
Cestoda. Nematoda was the most representative taxonomic
group with 25 taxa.

Host phylogenetic specificity ranged between −1.582 and
1.621, with parasite species that occurred in phylogenetically
close hosts (e.g. Oxyascaris cf. caudacutus) and parasites species
that occurred in phylogenetically distant hosts (e.g. Schrankiana
formosula). The same was observed for host ecological specificity,
as some species occurred in ecologically close hosts (such as
Rhabdias fuelleborni with ecological NRI = 2348) and others
occurred in ecologically distant hosts (such as Cosmocerca parva
with ecological NRI = −0.841, Oswaldocruzia sp.1 with ecological
NRI = −0.819 and S. formosula with ecological NRI =−0.791)
(Table 1).

The analysis of all parasite taxa, both single and multi-host,
indicated a relationship between the number of infected hosts
and infection parameters. Parasite prevalence was affected by
the number of hosts at both community (all hosts) and popula-
tion (infected host species) scales. However, the effect of this pre-
dictor variable presented opposite patterns: parasite prevalence
was positively related to the number of host species in the com-
munity (β = 0.22, 95% CI = 0.07–0.38), whereas this relationship
was negative in the populations of infected hosts (β =−0.31, 95%
CI =−0.58 to −0.03). This means that when using the number of
associated host species as a specificity measure, the prevalences of
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generalist parasites tends to be higher in the host community but
lower in the populations of infected hosts. The number of host spe-
cies did not affect MII at the community scale but was also nega-
tively related to the populations of infected hosts (β =−0.21, 95%
CI =−0.40 to −0.02) (Fig. 1).

When considering only multi-host parasite species, the para-
site infection parameters were not related to parasite phylogen-
etic specificity (host phylogenetic NRI) neither at community
(all hosts) or population (infected hosts) scales (Fig. 2).
However, parasite prevalence was positively related to ecological

specificity at both community and population scales (host eco-
logical NRI, community: β = 0.27, 95% CI = 0.08–0.45; infected
host populations: β = 0.31, 95% CI = −0.57 to −0.06). The preva-
lence of parasite taxa at the community scale was also positively
related to the number of host species (β = 0.26, 95% CI = 0.07–
0.44). Host specificity was less relevant for MII, since this infec-
tion parameter was negatively related only to the number of host
species (Fig. 2), and this relationship was observed only at the
scale of host community (β = −0.32, 95% CI = −0.66 to 0.03)
(Table 2).

Table 1. Diversity, specificity and infection parameters of parasites associated with 11 anuran species of the Atlantic Forest. We report the number of associated
hosts (No. host), net relatedness index (NRI) values for the phylogenetic and ecological specificity of the parasites, and parasite prevalence and mean intensity of
infection (MII) at the community (all hosts) and population (infected host species) scales

Prevalence MII Prevalence MII

Parasites No. host Phylogenetic NRI Ecological NRI Community Population

Acanthocephala

Centrorhynchidae gen. sp. 6 −0.823 −0.722 0.05 0.35 0.09 1.50

Nematoda

Atractidae

Schrankiana formosula 2 −1.582 −0.791 0.03 24.33 0.20 647.87

Cosmocercidae

Aplectana macintoshii 2 0.447 2.456 0.07 0.48 0.30 6.86

Aplectana travassosi 1 – – 0.07 6.51 0.75 92.53

Cosmocerca brasiliensis 4 −1.184 1.290 0.13 0.81 0.33 5.96

Cosmocerca parva 4 0.126 −0.841 0.05 0.13 0.14 2.63

Cosmocerca cf. podicipinus 2 0.070 −0.019 0.03 0.07 0.24 2.12

Cosmocercidae gen. sp. 10 −0.789 0.439 0.35 44.10 0.37 125.26

Raillietnema simples 1 – – 0.04 6.64 0.50 157.33

Kathlaniidae

Oxyascaris cf. caudacutus 4 1.621 0.077 0.13 0.41 0.39 3.06

Oxyascaris oxyascaris 2 – – 0.04 0.36 0.50 8.55

Rhabdiasidae

Rhabdias androgyna 1 – – 0.03 0.05 0.25 1.57

Rhabdias elegans 1 – – 0.04 0.13 0.50 2.90

Rhabdias fuelleborni 5 −0.548 2.348 0.15 0.38 0.32 2.48

Rhabdias tobagoensis 1 – – 0.004 0.01 0.05 3

Rhabdias sp.1 1 – – 0.05 0.19 0.60 3.41

Rhabdias sp.2 1 – – 0.08 0.40 0.66 4.83

Rhabdias sp.3 1 – – 0.01 0.03 0.20 2

Rhabdias sp.4 1 – – 0.004 0.009 0.07 2

Physalopteridae

Physalopteridae gen. sp.1 3 −0.338 −0.893 0.03 0.09 0.12 2.62

Physalopteridae gen. sp.2 3 1.324 −1.304 0.03 0.23 0.13 6.25

Molineidae

Oswaldocruzia mazzai 1 – – 0.09 1.78 0.90 19.05

Oswaldocruzia sp.1 3 0.874 −0.819 0.14 2.37 0.46 16.83

Oswaldocruzia sp.2 1 – – 0.03 0.10 0.36 3.28

Oswaldocruzia sp.3 2 0.070 −0.019 0.01 0.03 0.12 1.75

Platyhelminthes

Cestoda 3 0.939 0.094 0.05 0.35 0.18 6.90
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Discussion

The use of multiple hosts by parasites, as well as their variable
competence among the infected hosts, is directly related to the
emergence of infectious diseases. The comprehension of every
factor associated with parasite specificity and infection success
is important to improve the predictive power and application of
knowledge in disease ecology. In this study, we described how

the range of use of host species by parasites, host phylogeny
and host functional attributes influenced parasite infection para-
meters. Parasite species that occur in ecologically close hosts are
more prevalent, which shows that both the specificity and infec-
tion parameters of parasites are associated with the ecological
characteristics of the hosts, such as habitat use, and it is related
to the opportunities for parasites to exchange among hosts.

Fig. 1. Relationship between the number of host species and infection metrics for the community (left) and infected host populations (right): (A) infection preva-
lence; (B) mean intensity of infection (MII). The β estimate and its respective 95% confidence interval are shown in the upper-right of each scatter plot. The fitted
linear curve (blue line) and the 95% confidence interval (grey area) are also presented.

Fig. 2. The effect of parasite host specificity on (A) infection
prevalence and (B) mean intensity of infection MII. The β
estimate (circle) and 95% confidence interval (line) for
both the community (pink) and infected host populations
(dark green) are presented. Non-significant estimates are
shown transparently.
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We found that the sampled parasite community is assembled
by species that are notphylogenetic specialists, indicating host
functional traits to be more relevant than host evolutionary his-
tory in this parasite community. Analysis of both functional
and phylogenetic host specificity of multi-host parasite taxa
allowed us to identify whether the parasite community analysed
here may be tracking hosts that offer specific resources, which
may or may not be phylogenetically conserved. The concepts of
false specialist and false generalist parasites define a false specialist
as a generalist limited to one or a few host species due to eco-
logical, spatial or environmental factors (Brooks and McLennan,
2002). On the other hand, false generalists are specialists on a par-
ticular phylogenetically diffused resource (Brooks and McLennan,
2002; Agosta et al., 2010; Nyman, 2010; Roy and Handley, 2012).
The species we found on multiple hosts may be resource-specialist
parasites (false generalists). Good examples of this pattern are the
host functional specialist species Aplectana. macintochi and
Rhabdias fuelleborni, which were found only in hosts that share
the same habitat (arboreal and terrestrial respectively). Thus, eco-
logical opportunity, such as habitat use by phylogenetically distant
hosts, may be mediating shifts between hosts (Brooks et al., 2006;
Agosta et al., 2010).

Since hosts are resource patches for parasite colonization, the
number of host species available in an environment can influence
the probability of encountering parasites, which, in association
with parasite specificity, can influence prevalence and MII
(Hellgren et al., 2009; Ellis et al., 2020). When we analysed the
entire sampled community, we found a positive correlation
between the prevalence of parasite infection and the number of
infected host species. This result corroborates the resource
breadth hypothesis (Krasnov et al., 2004), which states that species
with greater niche breadths tend to have better local performance
(high prevalence in the present study). According to this hypoth-
esis, the same attributes of parasites that enable the association
with different hosts will also allow the parasites to infect and
exploit the hosts more efficiently, resulting in higher values of

infection parameters (Krasnov et al., 2004; Pinheiro et al., 2016;
Garcia-Longoria et al., 2019).

Interestingly, when we changed the scale and considered only
the populations infected by each parasite taxa, we observed a
negative relationship between prevalence and the number of
host species. This result diverges from the resource breadth
hypothesis and fits with the trade-off hypothesis. The trade-off
hypothesis can also help to understand the patterns observed
here, as it assumes a negative relationship between the range of
hosts and parasite performance (Poulin, 1998; Krasnov et al.,
2004). According to the trade-off hypothesis, parasites that asso-
ciate with multiple hosts would have higher energy costs to reach
physiological compatibilities and overcome immune defences of
different species, and this would reduce transmission (or repro-
duction) capacity and, consequently, prevalence (Robalinho
Lima and Bensch, 2014).

The occurrence of single-host parasite taxa (such as
most species of Rhabdias) is another relevant factor for the con-
trasting results in the relationship between prevalence and num-
ber of infected hosts at community (all hosts) and population
(infected host species) scales. These lung-worm parasites had
high prevalence values for the populations of infected hosts
(≥0.5), despite the population size (assumed here as the sampling
effort). Such single-host parasites had low prevalence at the com-
munity scale, since they occur in only one species and, conse-
quently, in a low number of hosts when compared to the total
number of anuran individuals in the community analysed here.
Thus, our results emphasize the importance of exploring infection
metrics at different scales and that presumably contrasting hypoth-
eses (such as niche breadth and trade-off) are not necessarily mutu-
ally exclusive since one may have more influence than the other
depending on the scale analysed (Pinheiro et al., 2016).

Analyses with multi-host parasite taxa revealed that infection
metrics at community and population scales did not correlate
with host phylogeny, suggesting that a shared evolutionary history
between hosts does not necessarily affect their chances of being
infected by the same species of parasites (Brooks et al., 2006;
Agosta et al., 2010). Parasite species can, potentially, use available
resources, such as a different environment or host, without neces-
sarily having to undergo changes in genotype, but because they
use existing characteristics, i.e. via ecological fitting (Janzen,
1985; Brooks et al., 2006; Agosta and Klemens, 2008; Araujo
et al., 2015). The prevalence of parasites in the community and
populations of anurans analysed here was positively correlated
with parasite ecological specificity, so that parasites associated
with ecologically close hosts were more prevalent. Similar results
were observed in other studies (see Johnson et al., 2019 for a good
example), inferring that host attributes, such as body size and
habitat, are relevant to infection, regardless of host species identity
(Kamiya et al., 2014; D’Bastiani et al., 2020; Euclydes et al., 2021).
These results, together with those observed here, point to the
importance of functional characteristics of hosts in the metrics
of infection by parasites. Thus, ecological characteristics of hosts
can promote host–parasite interactions and associations due to
the exaptation capacity of parasites, and consequently influence
the prevalence of these parasites (Agosta, 2006; Agosta et al., 2010).

We conclude that parasite infection parameters are related to
host specificity, and the use of different scales can provide com-
plimentary information about this relationship. The effects
of the ecological specificity of parasites on their respective infec-
tion metrics, both at community and population scales, indicates
the importance of host attributes in the assembly of the parasite
community. The influence of host functional traits and the
absence of a phylogenetic effect indicate the importance of eco-
logical similarities among hosts as a driver for potential host
shifts, which resulted from increased opportunity of contact for

Table 2. Factors related to the prevalence of anuran parasites of the Atlantic
Forest area. Analysis of variance (ANOVA) considering the correlation of
parasite prevalence with the number of infected hosts, and the net
phylogenetic and ecological relatedness indexes (NRI) at community (all
hosts) and population (infected host species) scales.

Predictor variables D.F. χ2 P

Community prevalence

No. host 1 7.7458 0.0053

Phylogenetic host specificity (NRI) 1 1.9096 0.1670

Ecological host specificity (NRI) 1 8.2384 0.0041

Community IMI

No. host 1 4.6026 0.0319

Phylogenetic host specificity (NRI) 1 2.8871 0.4777

Ecological host specificity (NRI) 1 0.5040 0.0892

Population prevalence

No. host 1 0.7794 0.3773

Phylogenetic host specificity (NRI) 1 0.9384 0.3326

Ecological host specificity (NRI) 1 6.7780 0.0092

Population IMI

No. host 1 2.6502 0.1035

Phylogenetic host specificity (NRI) 1 0.7563 0.5273

Ecological host specificity (NRI) 1 0.3996 0.3845
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the exchange of hosts by the parasites. Expanding studies related
to the aspects of parasite specificity allows a better understanding
of the characteristics of hosts and parasites that are related to
higher infection among individuals within host populations and
communities.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0031182022000087
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