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                         CARMICHAEL’S ARCTAN TREND: PRECURSOR 
OF SMOOTH TRANSITION FUNCTIONS 

    BY 

    TERENCE C.     MILLS     AND     KERRY     PATTERSON            

 In an almost unreferenced article, Fitzhugh Carmichael ( 1928 ), writing of the 
period around the First World War, noted that “during the past twelve years many 
economic series have undergone what appears to be a permanent change in level.” 
These are prescient words that are widely applicable today. Carmichael noted that 
the then-standard practice of linear detrending was inappropriate in the presence 
of what we would now call “structural breaks”; as a result he proposed a method 
that would not only model a nonlinear trend, but would be suitable for situations 
where the transition from one regime to another was smooth. This study establishes 
the precedence of Carmichael’s ideas, re-examines his methods, and solves the 
problems that he thought would hinder wider applications of his approach, which 
has since become a central part of contemporary nonlinear econometric methods 
and for which Carmichael should be given credit.      

   I.     INTRODUCTION 

 The purpose of this paper is to draw attention to, and re-examine, an important and 
rarely acknowledged paper by Fitzhugh Carmichael ( 1928 ),  1   who introduced the arc 

    Terence C. Mills, Loughborough University; Kerry Patterson, University of Reading. The authors grate-
fully acknowledge the constructive comments of two anonymous referees and the encouragement of the 
editor. We would also like to thank Amy Catlin of the Registrar’s Offi ce of the University of Denver for 
biographical information on Professor Carmichael.   
   1   Professor Fitzhugh L. Carmichael was born on October 29, 1893, and died on June 11, 1990, aged ninety-six. 
He received the following degrees: AB from the University of Alabama, MA from Princeton University, 
and MS from the University of Denver. He was professor of statistics at the University of Denver from 
1925 to 1962, director of the Bureau of Business and Social Research at the University of Denver, and a 
charter member of the Denver Chapter of the American Statistical Association (ASA), for which he was 
district secretary; later, he was one of three vice-presidents of the ASA. He was an army offi cer during 
World War II. The article referred to in this paper has just two citations in Google Scholar, neither of which 
is substantive. JSTOR lists six sole author articles by Carmichael between 1916 and 1934 and two jointly 
authored articles in 1934; there are no listings after 1934.  
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tangent (arctan) trend as an alternative to the linear trend, which was very much the 
standard of his day, as illustrated by Warren Persons ( 1916 ). In addition, Carmichael 
extended the arctan trend to include smooth transition adjustment to structural breaks, 
which might otherwise be modelled by discrete changes. Smooth transition is a feature 
we now recognize in a different form, largely in sigmoid-type adjustment functions, 
such as the logistic and exponential; see especially Timo Teräsvirta ( 1994 ). We note 
Carmichael’s skill in solving, by reasoned argument and a careful graphical analysis of 
the data, what was then, and still is to some extent, a complex estimation problem. 

 Carmichael’s paper is a prescient taxonomy of the problems of structural breaks, 
and how to model them, that continue to bedevil the fi tting of time series models today. 
In his opening paragraph he noted that:

  The straight-line tendency commonly experienced prior to the World War was inter-
rupted in many cases in 1915–1917 by a sharp rise, followed in 1920–1921 by an 
abrupt drop and subsequent resumption of a more regular movement at a level widely 
different from that of the pre-war period. (Carmichael  1928 , p. 253)  

  These were, as Carmichael noted, “permanent changes in level,” and economic time 
series for which this pattern was apparent included stock prices and the real price of 
agricultural and livestock products. Whereas the pre-war era was one in which a 
“straight-line tendency” was a reasonable assumption, thereafter that was, Carmichael 
argued, no longer the case. A practical question was, therefore, whether, in forming the 
trend of a series, earlier data should be ignored or whether it could be modelled in a 
more general and integrated approach, relative to the simple, but usual, straight line 
assumption. Moreover, in commenting on the impact of the First World War on trend 
fi tting, Carmichael noted:

  Instead of ignoring the war period in the analysis of time series, as a result of trend 
diffi culties, it is possible by their [arc tangent function] use (in many cases) to fi t one 
continuous curve to the entire period of the data which will serve as an adequate 
measure of the trend. (Carmichael  1928 , p. 254)  

  Carmichael’s ideas anticipated two later concerns in econometrics—concerns that 
were to become of central importance in modern methods. The fi rst is the problem of 
structural breaks that divide the sample into different regimes; in the quotation above 
Carmichael had in mind the effects of the First World War, but recent history is replete 
with similar examples, such as the two Gulf wars, ‘9/11,’ and the credit crisis of 2007–08. 
Given the occurrence of potentially regime-changing events, how should these be dealt 
with in econometric modelling? A popular approach is to divide the observations into 
subsamples by means of discrete dummy variables or, more generally, by an indicator 
variable, where both imply a sudden switch between the two regimes. Carmichael’s 
suggestion included this possibility, but was not limited by it; rather, he conceived a 
framework in which the transition phase could be smooth, as expressed in his phrase 
“one continuous curve.” 

 Carmichael’s practical analysis was, however, left with two problems, which he 
feared might hinder its use; namely, the selection of the break date, or dates, and the 
“strength” of the adjustment between regimes—the “smoothness” of the adjustment. 
Although Carmichael offered a graphical method of determining both of these param-
eters, it was clear that some skill was required in making an appropriate selection. 
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It is probable that the importance of Carmichael’s contributions was passed by 
partly, if not largely, because of the complex nature of the problem he had posed, 
even though he provided some informal guidance with which to aid an at least 
approximate solution. 

 From a modern perspective, Carmichael sought to solve a problem that involves 
a process that is changing in some form over time, specifi cally from one regime to 
another and so on; in current terminology the process is said to be nonstationary and 
contrasts with its opposite of a stationary process, where the underlying structure is 
constant. Thus, in Carmichael’s case, the way that the observations are being gener-
ated over time is varying, possibly with an indicator of ‘regime’ change; he intro-
duced a further complexity by specifying a nonlinear process of adjustment between 
regimes, due to the role of the strength of an adjustment parameter. At the time 
Carmichael was writing, practical regression models were linear and complexities 
such as nonlinearities and structural breaks were barely conceived; regression 
methods remained largely concerned with linear models for such a long period of 
time that Carmichael’s paper was overlooked in the precedence of ideas. 

 The handmaiden of the practical means of implementation, although subordi-
nate, has to accompany the idea before it can elicit its full impact. In the 1920s, the 
best means that were available to aid computations were relatively simple electro-
mechanical calculators: see, for example, Arthur Norberg ( 1990 ). While, as we 
show below, Carmichael had the skill to come close to an optimal solution of what 
is, in effect, a highly nonlinear optimization problem, the lack of a ‘ready-made’ 
routine to solve the general problem is likely to have held back the use of his ideas. 
Even when, much later, the ideas of regime change were again considered, they 
were initially formulated within a linear (and quite limited) framework (for example, 
Richard Quandt  1958 ,  1960 ), which made their solution computationally feasible. 
Subsequently, there were developments in a nonlinear framework. See, for example, 
David Bacon and Donald Watts (1971) on smooth transition between two regimes, 
Howell Tong ( 1978 ,  1982 ,  1983 ) on threshold autoregressive models (TARs), and 
Kung-Sik Chan and Tong ( 1986 ), who combined the ideas of Bacon and Watts with 
the TAR; these developments accompanied improvements in computing power that 
made feasible the practical solution of such problems. 

 The remainder of this paper is organized as follows.  Section II  assesses the 
background of the trend/cycle decomposition that was prevalent at the time that 
Carmichael was writing, including some methods to deal with changing trends. 
 Section III  outlines the models suggested by Carmichael, with a stylized illustra-
tion of one of his models.  Section IV  considers the relationship of Carmichael’s 
arctan function to other smooth sigmoid-type functions, while  section V  discusses 
estimation issues.  Section VI  re-examines two of Carmichael’s original examples 
using both his and modern methods. Finally,  section VII  concludes.   

 II.     THE BACKGROUND: DECOMPOSING A TIME SERIES; DEALING 
WITH STRUCTURAL BREAKS 

 The concept of a trend is one that has intrigued economists for the last century or so, 
notwithstanding considerable improvements in econometric and statistical methods. 
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But exactly what is a trend? Just prior to Carmichael’s  1928  article, Karl Karsten 
wrote: “Trend-lines are intended to describe some imaginary state of ‘normalcy’ 
wherewith to compare the actual conditions depicted by the curve” (Karsten  1926 , 
p. 31). Although still imprecise, perhaps deliberately so, this quotation serves to 
emphasize a trend as an underlying tendency (‘normalcy’) that is masked by periodic 
movements such as those due to cycles, seasonal effects, and random irregular events. 
Recently, Peter Phillips commented that a

  distinguishing characteristic of most economic time series is trending behavior. 
Such time series often behave either in a wandering manner with long and erratic 
cycles (as in the case of interest rates and stock prices) or as if they were infl uenced 
by some secular drift over time (like many national income components). … In prac-
tice, therefore, while many economists see trends in the data, the econometric mod-
eling of such trends is a much more diffi cult task. (Phillips  2005 , p. 402)  

  Early concerns about the presence of a trend, which was often referred to as being 
‘secular,’ were twofold, broadly arising from (a) modelling and (b) forecasting.  2   In the 
fi rst case, there was a concern about whether trends should be removed from time 
series data and, in the second, about the implications of trends for projecting data 
series forward in time. 

 Following developments in correlation and regression analysis in the late nineteenth 
and early twentieth centuries (for example, Karl Pearson  1896 , and G. Udny Yule 
 1897 ), there was considerable interest in applying these new techniques of analysis to 
‘uncover’ economic relationships.  3   However, there was also a widely expressed con-
cern that short- and long-run movements would be confounded by regressing one pos-
sibly trended series on another;  4   see Reginald Hooker ( 1901 ) and the later seminal 
contribution of Yule ( 1926 ). Thus, in what soon became a fairly standard procedure, 
the data were fi rst linearly detrended and the resulting residuals (adjusted if necessary 
for seasonal movements) were termed ‘the cycle,’ and it was these cycles rather than 
the ‘raw’ series that were the subject of correlation analysis; see, for example, Persons 
( 1916 ). Wesley Mitchell summarized this approach succinctly, if somewhat harshly: 
“Secular trends of time series have been computed mainly by men who were con-
cerned to get rid of them” (Mitchell  1927 , p. 212). 

 Mitchell distinguishes the empirical method of determining trends from a more 
theoretical approach related to the interpretation and implications of particular forms 
of the trend. On the former, he provides a useful summary of empirical practice at the 
time as to how the trend may be modelled: fi tting a mathematical curve to the series or 
its logarithm; fi tting a moving average (mean or median); fi tting a curve to the moving 

   2   Simon Kuznets (1928, p. 403) suggested the difference as follows: “The purposes for which analysis of 
time series is undertaken may be divided into two groups. In the fi rst, the interest is in measuring cyclical 
fl uctuations themselves, and the secular movement is determined only to be eliminated and forgotten. In 
the second, the long-time changes are described in order themselves to be studied and made use of further. 
To the fi rst group belong all the investigations of correlation; to the second, the studies in forecasting, the 
comparisons of past changes, the attempts to generalize as to the course of long-time movements.”  
   3   For more development of this theme, see John Aldrich ( 1995 ) and Terence Mills ( 2011 ) for a critical 
overview.  
   4   These concerns were to become much more important later, as in Clive Granger and Paul Newbold ( 1974 ).  
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average; drawing a freehand curve; and using ratios between items paired in time 
where series are considered to have substantially the same secular trend. By contrast, 
motivating the form of a trend from possible underlying economic causes was rela-
tively undeveloped.  5   

 On this view the fi tting of a trend is a rather practical matter, only very loosely, if at 
all, related to any theoretical considerations. This led to some rather ad hoc (but 
still used) ways of dealing with what we now recognize as nonstationarities in the 
underlying generating process. The infl uential work of Persons and his co-authors 
(‘the Harvard group’) illustrates the dominant line of thinking that had arisen at the 
time, especially in the construction of what were known as Business Barometers (for 
example, Persons  1916 ).  6   The underlying methodology was to fi t a linear trend and 
measure the cycle as the deviation of the original observation from the trend—a meth-
odology that is not unfamiliar now. The barometer then aggregated a number of com-
ponent cycles into a single indicator. A key consideration in the often prior graphical 
examination of the component time series was to establish ‘homogenous’ periods over 
which to fi t the linear trend. A good example of the issues that were considered is pro-
vided by Persons ( 1919 ). In examining various time series, ranging from the price of 
pig iron and general wholesale prices through to immigration and the number of shares 
sold, Persons observed that the

  study of seventeen series of annual items for the period 1879–1913 led to the conclu-
sion that the secular trend of all the series was quite different during the subperiod 
1879–96 from that during the subperiod 1897–1913. Straight lines fi t the data very 
closely for the two subperiods but not for the whole period 1879–1913. … If, how-
ever, we had broken the period into two subperiods, the fi rst ending in the 90’s and the 
other beginning there,  two  straight lines would have shown the secular trend of each 
subperiod accurately. (Persons  1919 , p. 38; italics in original)  

  Segmenting the trends implicitly assumes a discrete break, and hence a ‘jump,’ between 
adjacent points in time. For example, Persons (1919, Table H) reports the following 

   5   Concerned about the implications for the mechanical projection of empirically determined trends, Mitchell 
poses the question: “What meanings have the secular trends fi tted to time series by empirical methods? … 
To take the simplest example: a straight line sloping upward implies future increase without limit” (Mitchell 
 1927 , p. 221). He refers approvingly to work by Simon Kuznets, who fi tted trends by means of Gompertz 
and logistic curves, but this work does not appear to have been published; these curves are in the family of 
sigmoid curves, as is the arctan function chosen by Carmichael. The perceived economic advantages of a 
logistic type trend (shared by the ‘sigmoid’ family) are that its limits are fi nite, the approach to the upper 
limit is asymptotic and the rate of growth declines, especially as the upper limit is approached. Mitchell, 
again referring to unpublished work of Kuznets, notes: “These three characteristics, Dr. Kuznets supposes, 
appear in the history of the many economic processes, whose long-time statistical record is well described 
by a logistic curve” (Mitchell  1927 , p. 225).  
   6   Persons’s opening comment is of interest: “A barometer showing the fl uctuations of business and indus-
trial activity may be put to many uses. Economists and sociologists need such a barometer when dealing 
with the phenomena of a dynamic society; government offi cials when handling the problem of unemploy-
ment or when considering the advisability of inaugurating large government undertakings; manufacturers 
and dealers when considering the desirability of making extensions to their plants or of contracting or 
expanding their purchases, sales or commitments; bankers need a business barometer to guide them in 
extending or calling their loans and discounts; and investors need one to direct their purchases and sales of 
securities” (Persons  1916 , p. 739). Well-known business barometers of the time included those by 
Brookmire and Babson.  
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estimates for two trends of the production of pig iron, here denoted  ty   , and regarded as 
an important leading indicator of economic activity: 

 1879–1896:  = +ˆ 32.0 3.59ty t   
 1897–1913:  = +ˆ 107.0 11.9ty t   
 These trend lines indicate substantial, discrete jumps in the intercept and slope of 

trend production of pig iron, which occur between 1896 and 1897. 
 Even if this approach is somewhat ad hoc, it predates later and rather more sophis-

ticated models of segmenting trends. For example, it can be considered as part of the 
general problem of (linear) regressions that may be subject to two regimes, as in 
Richard Quandt’s infl uential (1958) article, followed by Quandt ( 1960 ), who proposed 
a now widely used approach to test for two regimes against the null hypothesis of a 
single regime. Subsequently, D. E. Robison ( 1964 ) and Derek Hudson ( 1966 ) consid-
ered the problem of how to join the regression sub-models so as to minimize the dis-
crete nature of the change in regimes. 

 It is perhaps too harsh to dismiss these early attempts to deal with nonstationarities, 
arising from structural breaks in the underlying process, as being purely ‘empirical.’ 
Modelling change in the form of a discrete jump between regimes is generally ‘shorthand’ 
for a more complex adjustment process. Apparently discrete changes, such as the start 
of the First World War, or more contemporaneously the ‘credit crisis,’ are often much 
more detailed than a simple ‘off/on switch.’ The interesting practical question is whether 
the data for such a period should be ignored or whether methods can be devised to either 
approximate a ‘local’ trend that adjusts to the changing economic circumstances or 
allows a non-instantaneous transition between regimes. 

 Some of the empirical approaches referred to by Mitchell can be viewed more pos-
itively in this light. Rather than assuming a linear trend subject to a discrete break, a 
method that adjusts the trend gradually, perhaps giving a greater weight to more recent 
observations, may be a better way of modelling what appears to be a break in a linear, 
or indeed a nonlinear, trend. Reginald Hooker ( 1901 ) suggested using a (simple) 
moving average (MA) to represent the trend, from which a cycle would be measured. 
The moving average was centered on the period  t , taking a window of  p  (usually 
an odd number) observations to compute a simple arithmetic average, referred to 
as the ‘instantaneous’ average. In effect, each observation receives an equal weight 
in the window, but the window moves through the sample and so a ‘local’ trend is 
constructed. The choice of window length was guided by what was thought to be the 
length of the cycle. The moving average offered some fl exibility in modelling the 
trend, being responsive to the evolution of a time series, and is still a widely applied 
technique, but it has the disadvantage that, given a sample of length  T , the MA trend 
cannot be computed for the fi rst and last  ( )− −1

2 1T p    observations. 
 An alternative method that similarly constructed a local trend was due to Lincoln 

Hall ( 1925 ), who suggested a method that we now know as a form of recursive 
estimation, in which a moving (or rolling) window of observations of fi xed length 
is used to estimate a local linear trend; as new observations become available, they 
replace the observations that were previously at the beginning of the sample. Hall’s 
method of recursive estimation was, however, another idea well ahead of its time 
and it was not taken up in force until much later in the development of econometric 
methods. It is likely that the computational demands of Hall’s method were too 
much for the pre-computer age in which his suggestion was made; to some extent 
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he recognized this by offering a slightly simpler computational method in a later 
paper (see Hall  1926 ). 

 The conceptual framework underlying these various methodologies was in effect an 
embryonic unobserved components (UC) model. This is the decomposition of a series 
into trend, seasonal, cycle, and irregular components; these components are not 
directly observed, but constructed from a (particular) modelling approach. Later 
developments in econometrics saw an increasing sophistication in the nature of the 
underlying models for each component, but within the same underlying paradigm; see, 
for example, the developments due to Stephen Beveridge and Charles Nelson ( 1981 ), 
which are based on an underlying random walk framework, and the structural model-
ling approach due to Andrew Harvey ( 1985 ). 

 In the methodology of the 1900s, the removal of the ‘secular’ trend was regarded as 
the fi rst of two stages in analyzing a time series or relationships between time series, 
where the trend, in keeping with the absence of an accepted framework for a probabi-
listic interpretation, was generally regarded as deterministic. (This approach was some-
times labelled the “deviations from trend” or “individual trend” method.) Attention 
could then be focused on the ‘cycles’ that remained, as these were thought to be of 
greater interest than the trend itself; see Mary Morgan (1990, chs. 1–3). 

 However, there were two far-reaching contributions that showed that, in a linear 
framework, this two-stage procedure was not necessary. The fi rst was due to Bradford 
Smith ( 1926 ), who showed that the time trend could be included in the regression of 
direct interest; that is, suppose there was interest in the relationship between two vari-
ables, say  Y  and  X , each of which was trended; then Smith (1926, equation (8)) showed 
that the time trend,  t , could be included directly in the regression of  Y  on  X  and that the 
resulting coeffi cients would be simply related to those in the deviation from trend 
approach. Smith’s approach was referred to by Ragnar Frisch and Frederick Waugh 
( 1933 ) as the “partial trend regression,” and they went on to correct Smith in some 
respects, although they agreed with the fundamental approach: “The partial trend regres-
sion method can never, indeed, achieve anything which the individual trend method 
cannot, because the two methods lead by defi nition to identically the same results. They 
differ only in the technique of computation used in order to arrive at the results” (Frisch 
and Waugh  1933 , p. 388). Thus, the circle is ‘squared’: there is no need to regard trend 
removal as a prior and separate stage—nothing will be gained by such an approach.   

 III.     CARMICHAELS’S ARCTAN TREND: MULTIPLE REGIMES AND 
SMOOTH TRANSITION 

 Neither a rolling window estimation of a linear trend nor a moving average trend 
would react instantaneously to a change in regime; both would have to ‘sense’ the 
change from new observations as they became available to their respective algorithms. 
Moreover, forecasting with Hall’s rolling window trend would not differ in principle 
from projecting a linear trend; in his case projecting the last local trend that had been 
estimated. Carmichael’s approach offered a change in method that would have impli-
cations for forecasting; indeed, one of the explicit rationalizations for his approach 
was expressed as follows: “While no attempt is made to summarize criteria for curve 
fi tting, it is desired to emphasize the importance of reasonable projection into the 
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future and the desirability of avoiding gaps in the analysis” (Carmichael  1928 , p. 253). 
Carmichael’s concerns fi nd support in a recent assessment of modelling trending 
behavior: “if the trend mechanism is poorly captured in an empirical model, we can 
expect forecasts from the model to carry forward the poor approximation” (Phillips 
 2005 , p. 402). 

 Rather than adopt a methodology that either smoothed the impact of a break, as in 
Hooker’s MA approach or Hall’s local trend method, or imposed a jump in the trend or 
foreshortened a sample, Carmichael suggested modelling the breaks by allowing a 
smooth transition between multiple regimes. Moreover, in his most general model, he 
allowed for the possibility of three regimes and so anticipated more recent developments 
that allow for multiple regime changes, on which there is now an extensive literature; 
see, for example, Jushan Bai ( 1997 ) and Bai and Pierre Perron ( 1998 ,  2003 ). Carmichael 
thus not only suggested an alternative and inherently nonlinear trend, he also showed 
how to model multiple structural breaks in the fashion of smooth transition adjustment 
functions, which have become an important component in modern econometric methods. 

 Carmichael was not only aware that events, such as the First World War, could lead 
to structural breaks in the underlying economic processes, but also that to remove such 
data directly or to model the distinct regimes by means of a simple split trend were not 
the only, nor necessarily the most desirable, options. Using a split trend in effect 
involves a step change from one regime to another, whereas the adjustment could be 
modelled so as to allow a smooth transition between regimes and, moreover, there 
could be more than one adjustment process in any historical period. While accommo-
dating the impact of the First World War was Carmichael’s impetus to nonlinear mod-
elling, there is no shortage of recent events that have been considered as leading to 
structural breaks—hence the importance of Carmichael’s framework. 

 Against the background of the decomposition of a time series outlined in  section II  
and the predominant practice of linear detrending, Carmichael observed that a number 
of time series did not exhibit uniformly smooth growth about which there was cyclical 
movement. This led him to consider a nonlinear trend that would be suitable in three 
circumstances: (i) inappropriate projection of a negative linear trend, leading, for 
example, to “negative or ridiculously small positive values when comparatively large 
positive values only are possible” (Carmichael  1928 , p. 253); (ii) approximately linear 
growth that is resumed after interruption by an abrupt change in level; (iii) as in (ii) but 
with a fi rst interruption, for example a sharp drop, followed by another abrupt change 
in level, before resumption of the previous growth. 

 Carmichael’s suggested form, either to amend or supplement the linear trend, was 
the arctangent function. Three models were distinguished by Carmichael, correspond-
ing to the cases discussed above, as follows:

  = + arctan( )y a c x  (1) 

   = + + arctan( )y a bx c x  (2) 

   α β= + + + +arctan( ) arctan( )y a bx c x d x  (3) 

   We would now conventionally add time subscripts to the variables  y  and  x  and include 
a random term,  εt  . Carmichael suggested that the variable  y  may either be the level or 
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the logarithm of the original data, noting that the difference was between modelling 
constant absolute changes or constant rates of change (Carmichael  1928 , p. 255). The 
variable  x  is a ‘distance’ measure relative to an origin, for which  = 0x   ; it is related, but 
is not necessarily equal, to the simple time trend  t  that increments by 1 (or some 
other constant) each time period. Carmichael worked in degrees rather than the now 
more usual radians. Consider an angle  z  that varies from –90° to 90°; its tangent then 
varies from –∞ to +∞. In general,  = tan( )x z   , and conversely to obtain the angle from 
the tangent  x ,  −= 1tan ( )z x   , where  −1tan    is the inverse function referred to as  arctan( )z   ; 
 z  is in degrees and the conversion to radians is  π= ( 180)y z   . Thus, in radians, the 
limits of  arctan( )z    are  π± = ±( / 2) 1.5708   and, by a suitable scaling constant, say  c , 
the limits can be adjusted; for example,  π −= 1c    results in limits of  ± 1

2   . 
 While the estimated trend from the standard linear model is invariant to the 

scaling of  x , this is not the case for the arctan function, so Carmichael also consid-
ered how to choose the origin for  x  and the increment  Δx   , which varied in his exam-
ples from  Δ = 0.25x    to  Δ = 1x   . Carmichael commented that “it is necessary to make 
[an] arbitrary choice, based upon graphical considerations, of the point of origin 
and scale of the  x  axis” (Carmichael  1928 , p. 255), and continued in a footnote, 
“could it [the arbitrary choice] be obviated without loss of fl exibility of the curve, 
the technique would be vastly improved.” As we illustrate below, these unknowns 
can be estimated although, at the time (the 1920s and 1930s), it seems likely that 
the skill required in making appropriate choices may well have hindered the prac-
tical dissemination of Carmichael’s ideas. 

 For our purposes, the arctan function can be reparameterized with  δ= − 0( )x t t   , 
where  0t    is the (fi xed) origin in time and, therefore,  δΔ = Δ Δ Δ = − 0( )x t x t x t t    
and  δ = Δx    for  Δ = 1t   ; thus the origin and the increment become explicit parame-
ters, so that the arctan function, as a function of  t , becomes  ( )( )δ − 0arctan t t   . This 
reparameterization allows the interpretation that the coeffi cient  δ    governs the speed of 
transition, whereas the coeffi cient  c  governs the overall impact of the change in regime. 
Also, a simple generalization of Carmichael’s specifi cation is to allow the arctan effect 
to operate on a function of  x ,  ( )f x   , so that, for example,  = + [ ( )]y a cA f x   , where 
 ( )( )=[ ( )] arctanA f x f x   . 

 In a terminology that has now become almost universal, the function  [ ]⋅A    is referred 
to as the “transition function,” so that it governs the path of adjustment, or transition, 
between regimes. Moreover, the transition between the regimes is, in Carmichael’s 
model, smooth rather being a discrete step change. Thus, although writers before 
Carmichael had suggested regime changes by fi tting two linear trends, for example to 
take account of the First World War, their implicit transition function simply switched 
between 0 and 1, corresponding to regimes 1 and 2, respectively. The arctan function 
is able to capture this case because, as  δ    → ∞, the transition function becomes a 
switching function. On the other hand, for ‘small’ values of  δ    the transition is smooth 
and gradual, a feature that Carmichael was evidently aware of when determining 
empirical values of  δ   . 

 Carmichael’s typology of models fi rst allows for a single regime governed by a 
nonlinear trend; the second model then allows for a change in regime, where the 
change between regimes is smooth; and the third model allows for two changes in 
regime, and so three regimes overall, where each change between regimes is 
smooth. It seems reasonable to presume that Carmichael had in mind a model that 
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would allow multiple regimes but that it was suffi cient to illustrate the general 
pattern by his model (3). Carmichael’s ideas, therefore, clearly anticipated modern 
concerns about the existence of multiple regimes in economics, fi nance, and even 
(electrical) signal processing; to illustrate the breadth of applications, see, for example, 
Stephen Gray ( 1996 ), Suzanne Cooper ( 1998 ), and Matthieu Sanquer et al. ( 2013 ), 
respectively. 

 It may be helpful to stylize what Carmichael had in mind and, to that effect, we 
illustrate his model (2), the two-regime model, in  fi gures 1a  and  1b . In this case, 
the model taken to generate the data is (for clarity of illustration no random ‘errors’ are 
included):

 ( )( )( )100 0.1 2.0 arctan 50 1, …, 150.ty t t tδ= + + − =            

 This is a linear trend modifi ed by a nonlinear regime change, with the ‘origin’ at 
 = 50t   . The speed of adjustment coeffi cient  δ    is varied, starting from slow adjust-
ment,  δ = 0.1  , to increasingly fast adjustment, with the fi nal  δ = 1.9  . The successive 
values of  ty    are plotted in  Figure 1a  and the corresponding changes in  ty   ,  Δ ty   , are 
plotted in  Figure 1b . 

 The variation in  δ    shows how adjustment can be relatively slow (the shallow 
adjustment path) or fast (the steep adjustment path). With the corresponding  Δ ty    
small and increasing with  δ    then in the limit  δ → ∞  , the adjustment becomes a 
step change.   

 IV.     THE ARCTAN AND OTHER TRANSITION FUNCTIONS 

 Carmichael wanted a transition function that allowed for smooth nonlinear adjust-
ment, with a parameter that would govern both very fast and very slow adjustment. 
He chose the arctan function for that purpose; the choice of a trigonometric function 
seems natural in the context of his likely exposure to such concepts (on the history 
of trigonometric education in the United States in the relevant period, see Jenna Van 
Sickle  2011 ). However, whatever the precise choice of function, it is important to 
realize that the idea precedes the choice of function, although one can only speculate 
as to what other functions Carmichael might have considered off the record; we are 
not given any clues in the text save for the general comment: “The inverse trigono-
metric function known as the arc tangent appears to be adapted to measuring the trend 
of series behaving as above described” (Carmichael  1928 , p. 253). In a footnote 
Carmichael commented: “Numerous examples are presented in subsequent para-
graphs in which the arc tangent and logarithmic arc tangent curves appear to possess 
a decided advantage, so far as these requirements are concerned, over the equation 
types generally employed” (Carmichael  1928 , pp. 253–254). 

 By the nature of his choice, Carmichael is clearly aware of the sigmoid nature 
of the arctan function. In an infl uential article of a much later period, David Bacon 
and Donald Watts mentioned the arctan function as a possible transition function 
but noted: “There are many transition functions which could be used: for example, 
the cumulative distribution function of any symmetric probability density function 
or the hyperbolic tangent” (Bacon and Watts  1971 , p. 527). Bacon and Watts used 
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the hyperbolic tangent for purposes of illustrating the estimation of smooth transi-
tion models.  7   

 Another possibility, although far less likely to be considered at the time that 
Carmichael was writing, is the logistic function, which (along with the exponential 
function) became the dominant choice in the (much) later work of Teräsvirta and his 
colleagues. Nevertheless, it is worth making a comparison between the arctan and 
logistic functions, given the present dominance of the latter as a transition function. 
The arctan function is close under some choice of parameters to the logistic func-
tion,  ( ) γ ψ= + −/(1 exp( ))L x x   , where  ( ) γ→L x    as  → ∞x   , for  ψ > 0  . The logistic 
function was favored at the time in population studies: see, for example, Raymond 
Pearl and Lowell Reed ( 1923 ). It was originally developed by Pierre-François Verhulst 
( 1845 ) as an alternative to modelling the growth of a population as exponential, which 
was unsatisfactory because it was without a limit; in contrast the rate of growth of the 
logistic was not constant, but depended on how close the population was to its limiting 
value. Jan Cramer ( 2002 ) notes that the logistic curve was discovered ‘anew’ by Pearl 
and Reed. 

 The derivatives of the arctan function are well known: for example, the fi rst deriva-
tive with respect to  x  is 

  

  Figure  1a.      Stylised Arctan transition function.    

   7   In the context of smooth TARs, Eleftherios Giovanis ( 2008 ) considers a number of alternative transition 
functions for the sigmoid family.  
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   A simple arctan function is illustrated in  Figure 2  with its derivative shown in the 
lower fi gure; in both cases these are compared with the centred logistic function 
 ( ) ψ= + − −1 [1 exp( )] 0.5]L x x   , so that  ( ) → ± 1

2L x    for  x → ± ∞   (for comparability, 
the arctan function is in units of radians and the calibration is  4cψ = −   ,  1c π −=   ). 
Although  0x =    is referred to as the “origin,” being the point at which  0t    is the origin on 
the time axis, it is perhaps better described as a switch point, or point of symmetry, 
where the sign of the fi rst derivative with respect to  x  (and  t ) changes from positive to 
negative: see the lower panel in  Figure 2 .     

  

  Figure  1b.      Corresponding transition changes.    
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 A relatively recent but important development in time series modelling is the TAR 
model of Tong (1977,  1978 ,  1983 ). The basis of the TAR is the autoregressive (AR) 
model due to Yule ( 1927 ), in which the variable of interest,  ty   , is regressed on, say, 
 p  lags of itself. A TAR model extends the AR model to allow for more than one regime 
or state. In the simplest extension the models are distinguished by state. For example, if, for 
some choice of the lag parameter  d ,  t dy c− <   , then the model is generated in state 1; whereas 
if  t dy c− ≥   , the model is generated in state 2. The models are distinguished by time if 
 c  is replaced by a time index, such that regimes 1 and 2 correspond to  byt d t− <    and 
 byt d t− ≥   , respectively. The general idea is that there is a threshold, respectively  c  or 
 bt   , the crossing of which triggers transition between the states/regimes. 

 The further development of the TAR to have smooth transition, as in Bacon and 
Watts ( 1971 ), is due to Chan and Tong ( 1986 ), who introduced the acronym STAR, the 
S denoting ‘smooth’; their choice of transition function was the cumulative distribution 
function (cdf) of the normal, which, as the normal distribution is symmetric, gives the 
classic sigmoid shape.  8   Ritva Lukkonen et al. ( 1988 ) noted that using the logistic func-
tion, which has analytical derivatives, for the transition function was computationally 
easier than using the cdf of the normal and, moreover, that the logistic was a good 
approximation to the normal cdf. In subsequent applications of STAR models, the 
choice of the logistic function, leading to the acronym LSTAR (with the T sometimes 

  

  Figure  2.      Arctan and logistic trends/transition functions.    

   8   The sigmoid shape is like the letter S, although in most cases a rather elongated S, which is stretched and 
pulled to the right. Sometimes the sigmoid shape is taken to refer to the logistic function, although the term 
is more general than relating to a single function.  
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now taken to refer to transition rather than threshold), has dominated the literature; for 
a review of the many variants of the TAR model, see Bruce Hansen (2007).   

 V.     ESTIMATION 

 Carmichael’s examples were estimated using graphical inspection for the origin of the 
switch point and for two or three likely values of  xΔ   ; however, the model is linear 
given  xδ = Δ    and conditionally on  0t   , so we fi rst defi ne two sets each containing the 
respective true values,  δ    ∈   B   and  0t ∈     T  , and minimize the residual sum of squares 
 2

1
ˆT

tt
ε

=
   over   B   and   T  : that is  

0

2
1
ˆmin (min )

T

t ttδ ε
=

   over the two-dimensional grid 
formed by the Cartesian product   B   ×     T  . The resulting estimators are consistent under 
fairly standard conditions. (The procedure is an application of the principle in Dag 
Tjostheim [ 1986 ], which has been used in various structural break papers that consider 
all possible break points in a particular sample; see, for example, Donald Andrews 
[ 1993 ], and Hansen [ 2000 ].) Note that  0t    is not constrained to lie between 1 and  T , 
and in one of Carmichael’s examples the origin is taken to pre-date the beginning of 
the sample, in which case  0t    would be negative. 

 This method can be extended to a double break and, hence, to two transitions as 
in Carmichael’s model (3). In this extension it is convenient to defi ne  1 1xδ ≡ Δ    and 
 2 2xδ ≡ Δ   , and the corresponding sets  1δ    ∈  1B    and  2δ    ∈  2B   ; similarly defi ne two origins 
and corresponding sets for the centred break points,  0,1t    ∈  1T    and  0.2t    ∈  2T   . The least 
squares solution then minimizes over  1 2 1 2× × ×B B T T   . 

 While this describes the modern approach, how did Carmichael solve the problem 
of obtaining estimates of the parameters? From his perspective he was faced with a 
problem without a practical solution unless it could be simplifi ed. The simplifi ca-
tions came in the form of conditioning the least squares estimates on (a) the origin 
and (b) the speed of adjustment. In Carmichael’s own words:

  When fi tting curves of types (1), (2) and (3) by the method of least squares it is 
necessary to make arbitrary choices, based upon graphical considerations, of the point 
of origin and of the scale on the  x -axis. If a downward tendency approximating the 
straight-line throughout the period is indicated, the origin is chosen at a point several 
years prior to the beginning of the data. In the other cases referred to, the origin is 
taken near a point of rapid change in level. (Carmichael  1928 , p. 255)  

  Once these choices are made, and together with some consideration of whether 
the data is best modelled in terms of its original form or its logarithms, the estima-
tion becomes simply that of a linear least squares model. What is evident from 
Carmichael’s careful prior analysis is the importance of understanding the nuances 
of movements in the data based on a careful graphical analysis.  9   This supports the 
views expressed in Jeff Biddle ( 1999 ) and Mary Morgan ( 1990 ) on the use and 
importance of graphs in the statistical analysis of the period. Moreover, while 

   9   To aid the reader, Carmichael notes: “Determination of the yearly change in  x  in the case of the logarith-
mic arc tangent curve may be made similarly by use of a graph of the logarithms of the actual data on 
simple arithmetic paper, or of the actual data on semi-logarithmic paper” (Carmichael  1928 , p. 255).  
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Carmichael does not report formal measures of the goodness of fi t of his proposed 
trends, he is aware of the need to ‘fi t the data well’ in making his choice of functional 
form and conditioning parameters.   

 VI.     EXAMPLES 

 We consider two of Carmichael’s examples  10   to illustrate the application of the arctan 
function and how the selection of the choice parameters can be included in the process. 
In so doing we are able to see how well Carmichael did from a modern perspective. 

 Carmichael’s fi rst example concerns modelling the trend in the common stock price 
of International Paper, which poses a challenge because neither a linear nor an exponen-
tial trend would seem to capture the key trend features of the data, which embody a 
gradual, but sustained, increase about halfway through the sample period of 1900 to 
1926. The data, which are annual and obtained as the yearly average of ‘tenth-of-month’ 
prices ($ per share), are plotted in  Figure 3 . Carmichael used logs of the data and obtained 
his results for choices of  0.75xΔ =    and 0.6; he chose the origin of the switch point by a 
visual examination of a graph of the data and, by this method, chose the origin to be 
25 December 1917 (with 25 June 1917 as a possible alternative). Estimation over the orig-
inal sample period gives results very close to those reported by Carmichael; see  Table 1 , 
rows (1) and (2). The ‘original’ arctan trend is also plotted in  Figure 3 . To illustrate the 
difference with the then standard of the day, a linear (in logarithms) trend was also esti-
mated and is also shown on  Figure 3 . Evidently the implied cycles (residuals) and even 
fairly short-term projections differ quite markedly, depending on the choice of trend.         

 Searching over  xδ = Δ    and the origin  0t    locates the minimum at  0.71xΔ =    and the 
switch point at  0t =   25 December 1916, which is twelve months earlier than Carmichael’s 
choice; see row (3) of  Table 1 . This earlier choice is evident in  Figure 3 , which also 
shows the revised arctan trend, and picks up the increase in the series noticeably earlier 
than the ‘original’ arctan trend. 

 How well did Carmichael do in his original choices? In broad terms, Carmichael 
came fairly close to the best fi tting trend by using his graphical methods.  Figure 4  
shows the residual sums of squares as a function of the break date and  xΔ   . Note that 
the objective function has a distinct valley approaching 1916/1917 (the projection 
from left to right on the fi gure), although a choice of 1917/1918 is not far away, and 
there is also a local minimum much earlier in the sample around 1908, which 
Carmichael avoids. The objective function is much fl atter for the choice of  xΔ    (see 
the projection from right to left), so selecting  0.75xΔ =    is relatively close to the min-
imum that occurs at  0.71xΔ =   ; nevertheless the residual sum of squares can be reduced 
by approximately 25% by moving to the minimum of the RSS function.     

 The second example illustrates Carmichael’s case (3), where a fi rst ‘abrupt’ change is 
followed by a further change. The series is the price of Central Leather common stock; 
data are annual from 1900 to 1926, centred on 25 June of each year, and are shown as 

   10   Carmichael also illustrates his arctan model with data on the price of American Car and Foundry common 
stock and the US Index of Wholesale prices. The examples are chosen by Carmichael as they show evi-
dence of rapid, large, and possibly multiple, changes that would not be well fi tted by straight-line trends.  
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the unbroken line in  Figure 5 . In present terminology, the model embodies a double 
structural break, with smooth transition, the fi rst captured by the arctan function 
 arctan( )x   , with origin at  0x =   , and the second by the arctan function  arctan( )xα β+   , 
with origin at  0xα β+ =   . Carmichael again selected the break points by graphical 
methods, which are worth briefl y recounting: the point of most rapid rise was identi-
fi ed as 25 December 1915, and that of most rapid decline as 25 June 1920, a difference 
in time of 4.5 years; the origin of  x  was, therefore, taken to be the fi rst of these dates, 
and  α    and  β    were then determined such that  0xα β+ =   .     

 The parameter  α    governs the ‘strength’ of the second adjustment function relative to the 
fi rst, which Carmichael judged to be equal, and on setting  1α =    this implies that  4.5β = −   . 

 Table 1.      International Paper common stock: single break, arctan estimation  

Dep. var: log( y )  constant  X arctan( x ) RSS  xΔ   origin,  x  = 0,  0t     

  Carmichael’s original estimates 
(1) 1.38295 –0.034338 0.0064119 n.a 0.75 25 th  Dec, 1917 
 Re-estimation 
(2) 1.38274 –0.034328 0.0064082 0.2640 0.75 25 th  Dec, 1917 
(‘t’) (58.02) (–4.369) (9.534)  
 Global minimum: Estimation over   B   and   T   
(3) 1.35593 –0.047389 0.0071171 0.1954 0.71 25 th  Dec, 1916 
(‘t’) (69.46) (–6.050) (11.455)   

    Notes: logs are to the base 10; the number of decimal places reported follows Carmichael; RSS = 
residual sum of squares; n.a indicates not available.    

  

  Figure  3.      Internationl Paper Stock Prices.    
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 The double-switch model was estimated using Carmichael’s parameters and also by 
extending the search procedure over  α    and the second switch point (which implicitly 
determines  β   ). The results are reported in  Table 2 . Row (1) constrains the choice parame-
ters as in Carmichael (his reported results are confi rmed; see footnote to table). The 
restrictions are then relaxed in stages: i) keep  1xΔ =   , but search for the best double switch 
points, which results in row (2); ii) constrain the  xΔ    to be equal but not equal to 1, which 
results in  0.86xΔ =    and  ˆ 4.5β = −   ; the estimated switch dates are, however, each one year 
later than Carmichael’s estimates, although the difference between them is the same. 
Finally, iii) unrestricted estimation, that is, relax the restriction of equality of the  xΔ    
in the two arctan functions: see row (3), where  1xΔ    and  2xΔ    are now distinguished.     

 The results show that Carmichael was again ‘out’ by one year in his timing of the 
breaks, and relaxing the assumption that  1xΔ =   , and then distinguishing  1xΔ    and  2xΔ   , 
shows that Carmichael overestimated  xΔ    for the fi rst break point ( 1 0.81xΔ =   ), but was 
very close in his choice for the second break point ( 2 1.03xΔ =   ). However, given the 
four-dimensional search undertaken across two possible switch points and the values 
of  1xΔ    and  2xΔ   , Carmichael clearly showed great skill in coming as close as he did to 
the global minimum in the RSS function. The original and revised trends, including 
the simple (log)linear trend, are also shown in  Figure 5 .   

 VII.     CONCLUDING REMARKS 

 Carmichael’s opening sentence was prescient of present times: “During the past twelve 
years many economic series have undergone what appears to be a permanent change 

  

  Figure  4.      Minimising over the break and ΔX.    
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in level” (Carmichael  1928 , p. 253). As a result he recognized that fi tting a simple linear 
trend to economic time series would often be inadequate and, instead, proposed a simple 
but effective method of modelling changes by means of smooth transition functions. 
While this is the language of the present, rather than of the 1920s, Carmichael was clear 
in his intentions and modelling strategy, of which there were three key principles: to 
allow continuity in the adjustment rather than a step jump from one regime to another; to 
use a sigmoid-type adjustment function in which the rate of adjustment varied depending 
on the stage in the path of adjustment; and to allow for multiple regimes, the number 
depending on the particular economic circumstances of the case at hand. 

 In proposing such a strategy Carmichael made a major, but previously unrecog-
nized, contribution to time series analysis. The idea that economic processes may 
undergo shocks that result in permanent changes was taken up much later, especially 
in concerns about the implications for testing for unit roots; for example, Perron 
( 1989 ,  1992 ). The idea of smooth transition between regimes is now a standard part 
of the modelling ‘toolkit’; and the potential presence of multiple ‘structural breaks’ 
is a topic that has great relevance in a world of seemingly endless economic and 
political upheaval. 

 Moreover, although the technical means of solving the problems he had posed were 
many years away from Carmichael, his skillful reasoning and understanding of the 
issues involved in estimating the break date(s) and strength of adjustment of his arctan 
adjustment mechanism(s) were quite exceptional. A combination of graphical methods 
(which, as Biddle [ 1999 ] notes, were an important part of the methodology of the era), 
and analysis of the changes in the data and economic circumstances, led him 
close to the solutions he would have obtained had he the benefi t of modern methods. 

  

  Figure  5.      Central Leather Stock Prices.    
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However, the inherently nonlinear nature of Carmichael’s models was probably a step 
too far at the time and for some time thereafter. The linear regression model was then, 
and for much later, the dominant paradigm for analysis. It was not until the 1970s, and 
even then somewhat hesitantly, that the seeds of nonlinear analysis began to come to 
fruition; see Tong’s ( 2010 ) interesting retrospective. The parallel of such developments 
with those in computing, especially ‘micro’ or personal computing, seems relevant and 
related, but is left for others to analyze.     
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