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Abstract Background: Challenges inherent in researching rare congenital cardiac lesions led to creation of the
Congenital Heart Surgeons’ Society Data Center (Data Center) two decades ago. The Data Center pools
experiences from up to 60 institutions, and over 4,700 children have been prospectively recruited within nine
diagnostic inception cohorts. This report describes the operations of our research database, with particular
focus on analytic strategies employed. Methods and results: A procedural log is created of all investigations and
interventions, and reports from enrolling institutions are subsequently obtained. Cross-sectional follow-up is
undertaken annually by the Data Center. All data are linked to the individual child, and quality control
mechanisms ensure that completeness and accuracy are maximised. Specific advantages of Data Center analytic
approaches include multi-phase parametric hazard analysis, re-sampling techniques for reliable risk factor
identification, competing risks methodology, and propensity-adjusted comparisons. Virtues of applying these
techniques to a research database are illustrated by clinically pertinent questions that have been addressed in
place of what would be difficult through randomised trials. Conclusions: The Data Center is a cost-effective,
versatile tool for researching congenital cardiac surgical outcomes. Research databases are ideally suited to in-depth
investigations of survival and functional outcomes. Multi-center propensity-adjusted analyses represent efficient
surrogates for randomised trials. Well-designed observational prospective studies should remain a principle
mode of researching congenital cardiac disease.
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A
MAJOR OBSTACLE TO PROGRESS IN PAEDIATRIC

heart surgery is the limited experience of any
individual surgeon with any one particular

lesion. In 1984, Drs. John Kirklin and Eugene
Blackstone proposed that the Congenital Heart
Surgeons’ Society surgeons pool their experience.
The seminal study involved enrolling newborns less
than 2 weeks of age with complete transposition

of the great arteries. This ‘‘diagnostic inception
cohort’’ was designed to answer the question of
whether the emerging, then high-risk, arterial
switch operation was a suitable surgical strategy
to replace the established, low-risk, atrial switch
operation. Within 4 years, 985 newborns (equiva-
lent to over 30 years experience at any large single
institution) had been enrolled and entered into a
database in Birmingham, Alabama (the Data
Center). This seminal Data Center cohort demon-
strated the surgical learning curve and clarified
long-term outcomes following atrial and arterial
repairs.1–7 The Data Center has subsequently
studied 8 rare congenital cardiac diseases and 1
procedure with datasets totalling over 4,700 infants.
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Research databases should not be confused with the
growing number of registries,8–10 which are distinct
entities with different objectives. Central to the Data
Center are several key features. First, all are inception
cohorts based upon diagnosis or specific procedure,
independent of subsequent intervention or outcome.
Consequently, the full spectrum of diagnostic lesions
and management protocols is incorporated. Second,
children undergo annual cross-sectional follow-up, so
the database is constantly updated with each child’s
progress. This contrasts with the acquisition of data
only at specific ‘‘events’’ (death or intervention, for
example) and not during the intervening period.9,11

Third, all data are temporally linked to the individual
child, allowing for longitudinal analysis of outcomes
with repeated measures. Fourth, data entry is per-
formed at the Data Center using documents submit-
ted by the participating institution. This ensures
uniform definition and adjudication of data entry.
Fifth, data entry undergoes systematic quality control
to maximise both completeness and accuracy, which is
proving difficult and laborious in large registries.12

Lastly, numerous patient-specific baseline character-
istics are extracted, allowing for sensitive data-driven
risk-adjustment (as opposed to by consensus or
categorical risk-stratification13,14). We describe the
mechanics of the Data Center and outline several
aspects of the analytic process that characterise our
work. We provide analytical examples that illustrate
the value of research databases in an era biased
towards randomised, hypothesis-based clinical trials.

A. Operations of the Data Center

Inception and participation

New project proposals by Congenital Heart Surgeons’
Society members are critically appraised before design
of approved proposals is finalised. New proposals have
historically not required securing external funding
sources, although there is now increasing pressure to
obtain external funding. Inclusion criteria are
intentionally broad in order to simplify enrolment
and provide an all-inclusive morphologic spectrum.

All Congenital Heart Surgeons’ Society members
are informed of study cohorts and invited to
participate. Presently, participation is entirely volun-
tary and non-remunerated. Some institutions have
specific research interests and will therefore invest
more energy into one cohort than another. Alter-
natively, institutions may already be committed to
collaborative investigations with alternative initia-
tives (for example the Pediatric Heart Network15) and
therefore defer involvement with a particular Con-
genital Heart Surgeons’ Society study. A drawback
of voluntary multi-institutional participation is
the potential for selection bias. It is difficult to verify

that all known eligible patients within each
participating centre have been approached. We are
therefore currently auditing enrolment within centres
in order to improve completeness of representation
of patients.

Data extraction and quality control
For each enrolee, a log is created to document the
dates of all procedures, investigations and consulta-
tions. The Data Center requests copies of reports
from all these ‘‘episodes’’. Once reports are received,
data are extracted using a standardised uniform
protocol for each study and entered into hierarchical
electronic data forms (Microsoft Access) stored on a
central, secure Data Center server. The work-load
has been exacerbated by the large increase in
variable fields in recent years. For example, cardiac
imaging data fields have increased from 16 for the
transposition of the great arteries cohort (1985) to
126 for the latest left ventricular outflow tract
obstruction cohort (presently open to enrolment).
Quality-control mechanisms ensure that ‘‘missing’’
clinical reports are periodically re-requested.

Centralisation of data has proved one of the most
important tools assisting quality control. Storing
submitted medical records on-site enables us to refer
back to original operation notes, echocardiography
reports and clinic letters at any point. A recent
attempt to delegate data entry to local institutions
(via online data entry forms) compromised accuracy
and completeness of data accrual and was therefore
abandoned. As an example, a minority of institu-
tional ethics boards insist on de-identified data,
which mandates local institutional follow-up.
Completeness of follow-up is less than 10% when
delegated to local institutions, in contrast with more
than 80% when undertaken by the Data Center.

The importance of quality control cannot be over-
estimated. Misreporting of early mortality in the
European Association of Cardiothoracic Surgery
Congenital database is estimated to be as high as
10%.12 We recently explored the impact of error rates
on calculating survival outcomes by intentionally
inducing errors in recoding of events at fixed rates.
Error rates as low as 5% significantly affect analysis of
outcomes, especially for low-mortality procedures.

Follow-up

Annual cross-sectional follow-up is undertaken
centrally by Data Center staff. Families are
contacted by mail and subsequently by telephone
if necessary. The general status and progress of the
child is documented and their log of clinical
episodes is updated with all consultations, investi-
gations, admissions and procedures undertaken in
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the intervening year. The goal is a complete
longitudinal patient record to provide the substrate
for repeated-measures and time-related outcomes
analytical methods.

We have several mechanisms to minimise loss of
patients to follow-up. Contact details of a close
friend or relative are obtained to provide a link to
re-establish contact if lost through re-location.
Attempts are otherwise made via the local institu-
tion, and rarely the Social Security number may be
used to confirm a child’s death via national death
registries.

B. Analytical strategies

1. Principles of analysing time-related outcomes

Three principles underpin the analysis of time-
related events: 1) starting with a time-point where
all subjects are ‘‘at risk’’, 2) ending with a time-point
where no subjects are at ‘‘risk’’ and 3) defining an
‘‘event’’ precisely. For survival analyses, death is
obviously both a precise event and a time-point at
which no subject remains at risk. However, for other
outcomes, defining these time-points may be less
clear. For example, a child cannot be considered at
risk of requiring repair of tetralogy of Fallot until
they have received a diagnosis of tetralogy of Fallot.
Therefore in this circumstance, ‘‘date of diagnosis’’

is an appropriate time zero, but ‘‘date of birth’’ is
not. Similarly, a child is at risk of surgical death
after the date of operation but not before.

Creating parametric regression models. We employ
parametric methodology for risk-hazard analyses of
time-related events.16,17 ‘‘Parametric’’ means that the
model of time-related outcome is in the form of a
mathematical equation. Numerical constants (para-
meters) estimate underlying instantaneous risk of
death (hazard function) and weigh the contribution of
statistically significant risk factors (covariables) by
‘‘parameter estimates’’ (Fig. 1). Inclusion of covariables
in the parametric equation means that the effect of
varying one risk factor can be examined while hold-
ing values for the remaining covariables constant
(stratification). Alternatively, hypothetical covariate
values can be inserted into the model to generate
outcome predictions or simulations. These two
properties – stratification and prediction/simulation
– are key advantages to the use of parametric
techniques over non-parametric (Kaplan-Meier) or
semi-parametric ones (Cox’s proportional hazards) –
for a historical perspective, see Appendix.

A third advantage of parametric methodology is
the decomposition of the time-related risk into
‘‘hazard phases’’.17 The ‘‘hazard’’ is the instantaneous
risk of an event occurring, which typically varies
with time. Consider the hazard for ‘‘death’’ (Fig. 2a).

Figure 1.
A simple linear regression equation (model) involves solving an equation to generate a line that ‘‘best fits’’ the data (a). This equation
involves an intercept (a), and the slope is represented by one or more covariables (X), each with its own parameter estimate (b). In a
multivariable risk-hazard analysis, each covariate (X) represents a risk factor being tested (b). If the risk factor is not significant, then the
parameter estimate is zero. If the risk factor is significant, then the parameter is a number greater than or less than zero – and the polarity
dictates whether the risk factor is protective or hazardous. Parametric analyses of time-related outcomes involve modelling the distribution of
survival intervals within the sample population. In multi-phase techniques, computer-generated algebraic shaping parameters independently
model the distribution of survival intervals in more than one phase (c). The survival curve generated by the parametric model may be super-
imposed on Kaplan–Meier estimates to demonstrate the model ‘‘goodness-of-fit’’. Once the equation (model) is solved, stratified curves can be
created by altering particular covariate values, with the remainder set at their mean (d). Alternatively, a set of hypothetical data can be
entered for the covariables to generate predictions. Multi-phase parametric survival curves incorporate several sets of shaping parameters, each
representing a distinct hazard phase (and each phase will have distinct covariables with their parameter estimates).

154 Cardiology in the Young: Volume 18 Supplement 2 2008

https://doi.org/10.1017/S1047951108002849 Published online by Cambridge University Press

https://doi.org/10.1017/S1047951108002849


Following birth, there is a declining risk of death
during infancy (early hazard phase), which then
stabilises at a very low level of risk during teenage
years and early adult life (constant hazard phase).

Gradually the risk of death starts to increase again,
especially toward the latter years (late hazard phase).
Risk factors for death are clearly different in each of
these different hazard phases (the definition of non-
proportional hazard).

The hazard for an event following surgery (for
example, death or re-operation) often mirrors the
hazard for death, with distinct early, constant and
late phases. Multi-phase parametric techniques
involve generating models that incorporate each
phase separately. Separate risk factors can then be
identified that influence one particular phase or
another (Fig. 2b).

2. Statistical process
The first step involves generating an ‘‘overall model’’
that represents the characteristics of our data. It is
derived using computer programs that estimate
‘‘shaping parameters’’ to ‘‘fit’’ the model as closely as
possible to the time-related changes in hazard
function of the data. Graphically, however, the model
is seen as a curve that overlies the Kaplan-Meier
estimates closely (Fig. 3). When the best possible fit
to raw data is obtained, the shaping parameters are
‘‘fixed’’ and the model is now subjected to risk-hazard
analysis. Modelling the hazard function is the
only hurdle to those unfamiliar with parametric
techniques. However, this is not a great hurdle, and
assistance can be found at www.clevelandclinic.org/
heartcenter/hazard.

Managing data and transformation of variables for
analysis. Risk-hazard analysis involves the identification

Figure 2.
Multi-phase hazard analysis: schematic representation of the
hazard for ‘‘death’’. Immediately after birth there is reducing
hazard for death in the neonatal period and infancy (early
hazard phase). Thereafter, there is a low and constant risk of
death during adolescence and early adulthood (constant hazard
phase). Subsequently, the hazard for death begins to rise
progressively with advancing age (late hazard phase). The
hazard following surgical intervention frequently mirrors this
hazard for death, with a pronounced early hazard phase (early
mortality), a subsequent constant hazard phase (slow and constant
rate of attrition) followed by an elevated risk of late hazard
(related to a need for repeat operation, for example). The advantage
of considering outcomes in distinct hazard phases is that risk
factors can be sought that influence each distinct phase. For
example, coronary artery disease is a risk factor for death in the late
phase of ‘‘life’’, but not a risk for the early and constant phases
(Fig. 2b). Other methods of analyzing survival outcomes include
non-parametric (simple Kaplan-Meier stratifications of actual
survival) and the commonly used Cox’s proportional hazards.
Cox’s proportional hazards assumes that the ratio of hazard for any
given risk factor is constant over time. The technique therefore
cannot distinguish between the influences of various risk factors at
different stages in time (non-proportional hazards).

Figure 3.
A parametric survival model (solid line) super-imposed on
Kaplan-Meier estimates (circles). The model demonstrates distinct
early and late hazard phases. Within hazard phases, the
distribution of survival intervals has been modelled using
computer-generated shaping parameters derived for that phase
(www.clevelandclinic.org/heartcenter/hazard). The parametric
survival curve can then be subjected to risk-hazard analysis to
identify risk factors that influence one particular phase or another.
Dashed lines enclose 70% confidence intervals.
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of demographic, morphologic, functional and
procedural variables that exhibit association with
one or more of the parametric hazard phases. A
sequence of processing steps takes place to prepare
variables before multivariable risk-hazard analysis.

For instance, in the case of baseline variables, either
the inception imaging study or the last echocardio-
gram prior to intervention (or both) might be selected.
All potential variables are assessed for accuracy
(i.e. inappropriate negative values, incorrect decimal
places) and missing values. Variables with more than
75% missing values or associated with less than 5
events are excluded from analysis. Biological systems
may have different scales to clinical recordings (for
example, the pH scale is the logarithmic transforma-
tion of [H1]). Therefore, all continuous variables are
tested for transformations (logarithmic, inverse,
square-root, etc) that improve linear calibration with
the logit probability of the event occurring. Sizes of
cardiovascular structures are then standardised accord-
ing to body size or normative data. For dimensions
that have published normative data, z-scores are
calculated.18 Indexing is otherwise performed to body
surface area (or height for cardiac lengths). Finally,
missing values are imputed with mean values. Rarely,
the fact that a recorded variable is missing is itself a
predictor for death (for example, the absence of a
systolic blood pressure recording in extreme hypoten-
sion). Therefore, a missing-value ‘‘indicator’’ is created
and subsequently tested as a covariable, to adjust for
or exclude any influence of ‘‘missing-ness’’.

After all potential variables have been processed
and checked, they are tested for significance within
the overall parametric model. We usually use
forward stepwise regression with a retention thresh-
old of p,.1. Colinearity amongst variables can be
identified by examining each iteration step and also
by testing correlation between variables.

Reliability of analysis: bootstrap bagging.

‘‘A statistician is a man who believes figures don’t lie, but
admits that under analysis some of them won’t stand up either.’’

Evan Esar 1899–1995.
Bootstrap aggregating (‘‘bagging’’) is a method

for assessing which variables are more likely to
‘‘stand up’’ in clinical practice. Risk-hazard analysis
will identify important variables within the
‘‘sample’’ dataset (the Data Center cohort). However,
the research aim is typically to identify variables
that are important across the wider ‘‘population’’ (all
children with the condition being investigated).
Although increasing sample size is the most obvious
method of improving the reliability of risk-factors
within the sample, bagging is a technique that tests
the reliability of risk factors within the ‘‘sample’’
cohorts across the wider ‘‘population’’.19

Bagging involves mimicking a population by
randomly creating ‘‘training’’ sets’’ from the
sample cohort, against which the covariables are
tested for inclusion in risk-hazard analyses. Many
thousands of random training sets can be tested
rapidly in automated programs. The proportion
of training samples in which a particular variable is
selected for inclusion in the regression equation
indicates the reliability of that variable (Fig. 4).
We typically bootstrap in excess of a thousand
times and include in final multivariable models
only those variables that are selected in more than
50% of training sets.

Absence of bagging is a limitation of the
majority of clinical research studies. Variables
identified during risk-hazard analysis frequently
fail to withstand bootstrapping. To quote Leo
Breiman, who developed the technique in the late
1980s: ‘‘ybagging is a step towards making a silk purse
out of a sow’s ear, especially when the sow’s ear is
twitchy’’.19 It improves accuracy and reliability of
the risk-factors identified, and ought to form part of
every modern clinical risk-hazard analysis.

Figure 4.
The aim of ‘‘bagging’’ is to determine the reliability of risk factors
that have been identified within the analysis (‘‘sample’’) dataset
(significant risk factors identified are ‘‘A’’, ‘‘B’’ and ‘‘C’’).
Patients within the sample dataset are randomly re-sampled to
produce ‘‘training datasets’’ of equal size to the original. The risk-
hazard analysis is undertaken on each training dataset to identify
statistically significant variables. Automated computer programs
can perform many thousand bootstrap re-samplings. In this
hypothetical example, variable ‘‘A’’ is also significant in all
training sets. The inference is that there is 100% likelihood that
the p value is less than or equal to the value chosen for the
threshold for significance in the model (e.g. p < .1 or p < .05).
Variable ‘‘B’’ is significant in 50% of training sets, and the
inference is that there is at least a 50% likelihood that the
p value is less than or equal to the chosen threshold for significance.
Although variable ‘‘C’’ was identified as a significant risk factor
in the sample dataset, it is only significant in 30% of the training
sets. Because this is below our accepted threshold of 50%, we infer
that variable ‘‘C’’ is not a reliable risk factor.
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3. Transition to competing endstates

Problem: How should you accurately investigate
outcomes other than survival?

Example: After undergoing Norwood palliation, a
child may subsequently transition to cavo-pulmonary
shunt. However, the rate of transition to cavo-pulmonary
shunt is always competing with the risk of death. At any
point, the child may either have: 1) died without
transition, 2) transitioned to cavo-pulmonary shunt, or 3)
transitioned to some other endstate. Alternatively, the
child may be ‘‘none of the above’’ and is therefore: 4) alive
without having transitioned (Fig. 5).

If a child dies before transitioning, then they are no
longer at risk of undergoing cavo-pulmonary shunt.
Therefore a key principle of survival analyses has been
broken: not everyone is ‘‘at risk’’ of the ‘‘event’’ for the
duration of follow-up. One frequently adopted
approach is to remove all the ‘‘deaths before interven-
tion’’ from the analysis or otherwise use a composite
event outcome. This approach is both ill-conceived
and derived from poor logic.

Competing risks methodology uses parametric
and non-parametric modelling to consider instead
the simultaneous time-related risk of a patient
reaching any one of previously defined mutually
exclusive outcomes.20 Each outcome is indepen-
dently modelled, and patients reaching an alter-
native endstate before the event are censored in that
particular model. The competing endstates can be
viewed together by examining the proportion of the
population in any given endstate at any given time.
At time zero, all are alive and free from transition to
any endstate (including death), but infants will
gradually assume one of the endstates (Fig. 5a).
Competing risks methodology therefore provides
a true representation of the time-related risk of
assuming competing endstates. These analyses
behave like any other parametric model and can
be used to make predictions and stratifications
(Fig. 5b). In practice, almost any time-related event
other than death should be analysed using a
competing risks concept, because death is always a
mutually exclusive competing endstate with its own
hazard function and associated risk factors.

4. Predictive models
Problem: Few groups have amassed large experiences
with rare, complex problems. How can we use the
Data Center to aid in clinical decision management?

Example: Critical left ventricular outflow tract
obstruction is managed by either of two dichotomous
strategies: univentricular repair or biventricular repair. A
decision to pursue either strategy must usually be made
within the first few days of life, is difficult to reverse, and
is potentially fatal if incorrect.

We employed parametric risk-hazard analysis to
generate a prediction model to aid in the decision-
management in critical left ventricular outflow tract

Figure 5.
Competing risks analysis of transition to endstates. Babies who
undergo Norwood palliation will assume one of several mutually
exclusive endstates including: 1) either death without receiving
further transition to cavo-pulmonary shunt (CPS), 2) transition
to cavo-pulmonary shunt or 3) transition to some other outcome.
Any child not in any of these categories is actually in a fourth
endstate: 4) alive, with no transition. By creating separate
parametric models of each of these time-related outcomes, a
competing risks model can be constructed. At ‘‘time zero’’, all
children are alive with no transition. Gradually, as time
progresses, children will assume each different endstate at different
rates, as shown by each individual curve. At any time point, the
sum of all curves is 100%. Any outcome other than death (for
example ‘‘freedom from re-operation’’) should ideally be analyzed
using competing risks methodology because that outcome will
always be competing with death. Parametric competing risks
analyses can be used like any other parametric model to create
stratifications and make predictions. For example, the competing
risks plots have been stratified for: a, a neonate with favourable
characteristics (3.6 kilograms with 4.7 millimetre ascending
aorta, mitral valve z-score 24.3, undergoing Norwood on day 4
of life); b, a neonate with unfavourable characteristics (2.8
kilograms with 2 millimetre ascending aorta, mitral valve z-score
27.4, undergoing Norwood on day 9 of life).24
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obstruction.21 For any given patient, the presence or
absence of certain risk factors determines the
magnitude by which biventricular or univentricular
repair is favoured (Fig. 6). The model (available
at www.chssdc.org) was derived from 362 infants
across 26 institutions and covers the entire
morphological spectrum of left ventricular outflow
tract obstruction.

The medical literature is over-flowing with (usually
expert- or consensus-based) algorithms to assist
practice: do we really need mathematical decision
aids to assist in the management of congenital heart
disease? Unfortunately, the human brain is not an
especially reliable tool for computing precise quanti-
tative predictions based on a multitude of concomitant
information.22 Provided with detailed case summaries,
cardiologists perform significantly worse at predicting
prognosis than computer regression models based on
data.23 Operative mortality following coronary artery
surgery is predicted more accurately by logistic
regression models using parsimonious characteristics,
than by surgeons using a full abstract of clinical
information. Interestingly, even when the surgeons
were provided with the predictive rule, they placed
greater trust in their own intuitive judgement, despite
its being less accurate.24

Several barriers exist to clinical adoption
of decision aids. Implicit in their use is an
acknowledgement that expert clinical opinion and
experience is fallible. Regression models are
complicated to use, as they require solving a
complex equation. In addition, a regression model
will only function when provided with all the
necessary clinical information, and in the correct
form. Lastly, an assumption under-pinning all
models is that their use translates into improved
clinical outcome. This latter point is merely
speculation without model validation (for example,
through retrospective examination of concordant
and discordant practice).

We (and others25) believe that decision-making
regarding critical left ventricular outflow tract
obstruction is ideally suited to the benefits of a
prediction model. Few single individuals have
amassed large personal experiences, and decision
management is therefore likely to be obscured by
anecdote. Our regression tool has been derived from
the experiences of hundreds of infants in 26
institutions and the full spectrum of critical left
ventricular outflow tract obstruction. All the
variables can be discerned from a baseline echocar-
diogram, and the internet offers a ubiquitous
platform for efficiently performing the computa-
tion. In our latest re-evaluation of the model,26

survival was accurately predicted by the Congenital
Heart Surgeons’ Society model in an expanded
cohort of infants (Fig. 7).

Figure 6.
Concept of the Congenital Heart Surgeons’ Society prediction model for
critical left ventricular outflow tract obstruction. For all 362 children
enrolled with critical left ventricular outflow tract obstruction, 139
underwent biventricular repair and 223 underwent univentricular
repair. Parametric survival models were created for those who received
either biventricular repair or univentricular repair, and risk-hazard
analysis was then undertaken for each management strategy.
Subsequently, for any given patient ‘‘X’’, that patient’s constellation
of univentricular repair risk factors (risks A and B) enables survival
to be predicted with univentricular repair. For the same patient’s
constellation of biventricular repair risk factors (risks C and D),
survival can be predicted with biventricular repair. The magnitude in
difference between predicted survival for either management strategy
therefore indicates the magnitude by which one strategy is favoured
over the other.

Figure 7.
The Congenital Heart Surgeons’ Society prediction model for
critical left ventricular outflow tract obstruction was initially
reported in 2001 and derived from a cohort of 295 infants.
During revision of the model in 2006, the original Congenital
Heart Surgeons’ Society prediction model (2001) was tested against
the larger and updated cohort of 362 infants. Survival predictions
generated by the original model (dashed line) closely match actual
survival (circles) of the expanded and updated cohort, serving to
validate the predictive accuracy of the methodology.
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5. Comparisons in the absence of randomised
controlled trials

Problem: How do we make appropriate compar-
isons of clinical management options when rando-
mised controlled trials would be impractical or
prohibitively expensive?

Example: The reduced availability of paediatric
allograft conduits is driving the search for safe alternatives.
However, are we satisfied that the performance of bovine
jugular vein (Contegra) matches that of allograft conduits in
neonates?

Observational studies from individual institutions
have been the main source of data on functional
performance of specific conduits.27–29 Crude compar-
isons can therefore be undertaken, but are clouded by
case-mix and institutional bias. A randomised control-
led trial to compare conduits would be the ideal
scenario, but seems unlikely and would be expensive.
A multi-institutional, non-randomised, propensity-
adjusted approach is instead a useful alternative method
of comparing treatment arms in a risk-adjusted
retrospective fashion, mimicking a randomised trial.
The Data Center has recently employed propensity-
adjusted methodology to compare Contegra and
allograft performance in patients with common
arterial trunk, otherwise known as ‘‘truncus arter-
iosus’’. This analysis illustrates how a large indis-
criminate inception cohort (all patients receiving
any form of prosthetic right ventricle to pulmonary
artery conduit) has subsequently been used to
answer additional questions driven by clinical need.

Numerous baseline patient-specific features (diag-
nosis subtype, demographics, anatomical dimensions,
functional and morphological variables) are included
in a logistic regression analysis predicting the likeli-
hood (or ‘‘propensity’’) of a patient belonging to one
group or the other. Using this soup of information, the
propensity is therefore an indicator of the ‘‘distance’’ in
one patient’s characteristics from that of another.
During the longitudinal analysis of conduit function,
the propensity score is included in the regression
models in order to adjust for baseline differences
between the experimental groups.

6. Continuous outcome analysis
Problem: How do we undertake longitudinal
analysis of functional outcomes in the most cost-
effective manner?

Example: Emphasis in congenital heart disease is now
shifting from early survival and re-intervention to long-term
quality of life and functional outcomes. In order to
understand time-related progression of cardiac functional
performance, we need to be able to undertake longitudinal
analysis of patients within large cohorts, often using
numerous repeated measures.

Longitudinal analysis requires temporal data to
be linked to the individual patient. Because every
intervention, investigation, or clinic consultation is
documented for cohorts of the Data Center, we have
been able to acquire data for longitudinal analysis
relatively efficiently and at minimal cost. For
example, the progression of right ventricle to
pulmonary artery conduit attrition in 329 infants
was investigated by studying reports for all 1534
echocardiograms known to have been undertaken on
every child in the cohort.30

In addition, because we remain in contact with
the families, acquiring consent for participation in
additional outcome assessment is facilitated. For
example, in order to study long-term functional
outcomes after repair of pulmonary atresia with
intact interventricular septum, the Data Center is
embarking on an analysis of late functional
assessment using exercise-testing and quality of life
questionnaires. The denominator cohort is well
known to us, their baseline morphology is fully
characterised, and we are in regular consensual
contact with them. The logistical and financial
challenges involved in recruiting for functional
assessment have therefore been minimised.

C. Managing ethics and consent in the
modern era

Ethics
The Data Center has endured radical changes in
attitudes towards the requirements of research ethics
boards, confidentiality, and privacy of protected
health information. Seeking approval from the
institutional ethics board was not required (or even
thought of) at the time of recruitment for the study of
patients with transposition of the great arteries in
1985. By contrast, approval is now universally
necessary. This task has become onerous, because in
North America, multi-institutional studies require
institutional approval at all local centres and the Data
Center. The implementation of a central application
process31 or national committees with jurisdiction
over local ethics boards – as exists in other countries –
would greatly facilitate multi-institutional work. In
addition, different legal interpretations of who has
ethical jurisdiction can be problematic, particularly
where follow-up care has involved numerous institu-
tions. Frequently, parent institutions insist that they
hold jurisdiction, despite patients having previously
consented to central Data Center follow-up and
data accrual.

Recruitment and consent
Until ethical jurisdiction issues are resolved on a
national and international level, we are exploring
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avenues to cement a consensual relationship between
family and Data Center from the outset. Presently,
individual members are responsible for obtaining
consent, which is then forwarded to the Data Center.
Therefore, written consent is not obtained directly by
the Data Center (although consent is subsequently
‘‘legally implied’’ by families returning follow-up
information by mail).

An alternative model we are pursuing is for the
member to instead instigate contact between family
and Data Center – who then obtain consent for
participation. Consent by telephone is both legal
and feasible. We contend that direct consent with
the Data Center will supersede certain constraints
imposed by individual institutional ethics boards,32

for example, ‘‘pseudonymisation’’.33 For example, if
a family has consented to central data accrual and
follow-up, a local ethics institution cannot over-ride
their consent and insist on de-identified data. In
addition, a model of telephone consent will allow
for repeated consent during follow-up, thereby
easing the transition from parental assent to patient
consent. The transition of patients to adulthood
is presenting an important obstacle to continued
follow-up, because if contact is lost, it has been
difficult or impossible to re-establish. However,
repeated telephone consent for patient-tracing
during this transition may significantly simplify
the re-location of young adults ‘‘lost-to-follow-up’’.

Summary

Multi-institutional observational analyses have pro-
vided much of our present understanding of
congenital cardiac procedures and outcomes. We
believe the Data Center – and similar other
observational research enterprises – will become an
ever more valuable commodity in the future. Now
that overall survival after paediatric cardiac surgery
is over 95% (and as high as 98% in selected
centres), attention is shifting towards long-term
quality of life. Data Center cohorts undergo annual
cross-sectional follow-up for life and will offer ideal
opportunities for assessing long-term functional
outcomes.
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Appendix

Cox Versus temporal decomposition

Commentary by Dr Eugene H Blackstone. Over the
years it has been a source of great amusement to me
that the development of a parametric decomposition
model at the University of Alabama, Birmingham by
myself, David Naftel, and Malcolm Turner is often
pitted against Cox modelling as being more complex
(harder to use) while noting that Cox models are now
so much more flexible with time-varying aspects and
so forth. I agree that Cox models are simpler to use
because they have become ubiquitous in statistical
software. However, the temporal decomposition
method has only a single hurdle as its disadvantage
and no other; namely that the underlying – usually
very simple – hazard function must be modelled.
With little experience, this is not a great hurdle.
However, compared with the 1960s, 70s, and 80s, the
level of biomathematical training of statisticians has
recently declined enormously. Therefore, even
graduates of advanced statistical programs, with a
lot of mathematical background, have zero apprecia-
tion of biological – particularly compartmental –
models. This then becomes a hurdle and is the one
drawback to temporal decomposition methods.

However, once the hurdle of biomathematics is
overcome, everything else becomes far easier and more
intuitive than any kind of Cox modelling, including
its extensions. Time-varying covariables are handled in
a natural way, whereas in Cox modelling they are
instead handled in a rather stereotypical and not
necessarily biological fashion. Prediction still uses the
baseline survival function in Cox modelling, and I see
few reports where statisticians using Cox models have
been willing to predict survival for a series of patients
and compare their predictions based on their
multivariable models (with or without time-varying
covariables) against observed data.

Arguments about left censoring are specious
because all this has to do merely with how one sets
up the likelihood. In the meantime, ever since 1983
we have included interval censoring, analysis of
repeated events, and weighted-events analyses,
which have been useful in industrial situations
(but for some unknown reason have not yet made it
into medicine). The point is, there is absolutely
nothing that Cox modelling can do that cannot
be done with a temporal decomposition model
after the hurdle of modelling the generally simple,
low-order underlying hazard is done.

Why then should we be amused? We are amused
because all these features of our temporal decomposi-

tion models were developed in direct response to
challenges from Dr D. R. Cox himself when David
Naftel and I spent time with him in London in either
the late 1970s or very early 1980s. He reviewed with
us many of the survival curves we had stratified in
multiple ways for congenital cardiac disease and valvar
cardiac disease. He immediately pointed out the
problem of the early hazard phase, which he believed
very likely indicated non-proportional hazards
and predicted would be a function of different types
of variables from those of late hazard. He said, ‘‘You
boys ought to be smart enough to figure out how
to model this.’’ Up to that time we had been using
time-segregated Cox models, which he thought
was suboptimal because they required an arbitrary
temporal cutoff point. He also expressed opinion that
he was surprised at how the so-called Cox or
proportional hazard model had caught on with all
its simplistic assumptions, when it would be so easy to
go the next steps. He challenged us to go those next
steps. At that same time, we also collaborated with
Dr Wayne Nelson, a statistician at General Electric,
who was focused on industrial applications of time-
to-event analysis. It was really Dr Nelson who directed
our attention to the cumulative hazard function to
help us begin to understand what the underlying
hazard might be. He was also the one who challenged
us to incorporate repeating and weighted events
into any attempts we made at bettering the state of
time-to-events models.

We, of course, have not been alone in attempting
to develop better models than Cox models in
cardiovascular medicine. Dr Keaven Anderson34

developed some similar models for the Framingham
heart study. Dr R Clifton Bailey, at what was known
as Health Care Financing Administration and now
Centers for Medicare and Medicaid Services,
actually took a temporal decomposition approach
to modelling mortality among Medicare recipients
stratified by institution in the early 1980s.35 The
Health Care Financing Administration actually sup-
ported some of the development of our parametric
models, particularly certain features that were
important to them, such as interval censored data
and certain variable selection features. Our program
for testing goodness-of-fit is essentially unchanged
from the specification given to us by the Health
Care Financing Administration, and I suppose some
day we ought to update it.

Thus, over the years it has been hard for us to
escape Dr Cox’s admonition that we should be smart
enough to be doing something better than using
Cox regression!
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